

A Formal Approach for High-Level Automatic Rhythm Generation

George Sioros

University of Porto (Faculty of Engineering)

and INESC - Porto

Rua Dr. Roberto Frias, s/n 4200-465 Porto

Portugal

E-mail: gsioros@gmail.com

Carlos Guedes

University of Porto (Faculty of Engineering)

and INESC - Porto

Rua Dr. Roberto Frias, s/n 4200-465 Porto

Portugal

cguedes@fe.up.pt

Abstract

In this paper, we present a novel algorithm for automatically generating rhythms in real time in a given meter. The

generated rhythms are "generic" in the sense that they are characteristic of each time signature without belonging to

a specific musical style. A stochastic model in which various aspects and qualities of the generated rhythm can be

controlled intuitively and in real time was developed. Such qualities are the density of the generated events per bar,

the amount of variation in generation, the amount of syncopation, the metrical strength, and, of course, the meter.

The kin.rhythmicator software application was developed to implement the algorithm.

Introduction

In this paper, we propose an approach for real-time rhythm generation based on a stochastic model. This

approach contrasts with recent ones involving evolutionary methods such as genetic algorithms [1][2],

cultural algorithms [3] or connectionist approaches [4], as well as other non-stochastic methods like in

[5][6]. In our approach, the algorithm produces a rather static output with slight variations due to the

stochastic nature of the algorithm. It is up to the user to modify the output of the algorithm by altering

descriptive musical parameters that produce perceivable changes in the output, such as the amount of

syncopation, the degree of metrical strength, and the density of events. In this sense, the algorithm

behaves like a musical companion that responds musically to requests made by the user in musical terms.

 The algorithm is based on a stochastic model that automatically generates rhythms in a certain meter

and metrical subdivision level defined by the user. The stochastic model comes from the output of the

metrical indispensability algorithm by Clarence Barlow [7]. The generated rhythms are "generic" in the

sense that they are characteristic of the specified meter but do not belong to a specific musical style.

Several musical parameters of the performance can be intuitively controlled in real time. Such parameters

are the density of events per bar, the amount of syncopation, the amount of variation in generation, the

metrical strength of the rhythm being generated and, of course, the meter itself. The kin.rhythmicator

application, that implements the algorithm, is developed as a Max/MSP [8] abstraction and a Max4Live

[9] device.

The Algorithm

The algorithm has two distinct phases. First, the musical meter entered by the user is subdivided into the

number of pulses of a specified metrical subdivision level. Each pulse is assigned a weight value

according to its importance in the meter so that a pattern characteristic of the meter emerges. These

weights can be thought of as a measure of how much each pulse contributes to the character of the meter

Bridges 2011: Mathematics, Music, Art, Architecture, Culture

233

as prescribed by Barlow’s indispensability. In the second phase, the weight values are used to generate a

stochastic performance. A direct mapping of the weights to probabilities of triggering events gives rise to

simple rhythmic patterns expected for a given meter. The weights are processed in order to enforce or

weaken the metrical feel, syncopate according to the specified meter and control the variations in the

generated rhythm. During the performance the user controls these values, as well as the events’

articulation (staccato or legato), indirectly through graphic controls. This gives a very intuitive control

over these parameters and over the real-time rhythm generation. In the upcoming sections we describe in

detail the steps taken to achieve these results.

Calculating the weights. The first phase in the algorithm is articulated in two steps: sorting the pulses

by metric indispensability and then calculating the weights based on the stratification levels.

 The pulses are assigned weights based on the order of their importance in the meter according to

Clarence Barlow's metric indispensability formula and the stratification of the meter [7]. The user inputs

meter information in the form of a time signature and a metrical subdivision level which defines the

number of pulses the measure is divided into – e.g. a 3/4 meter at the 16
th
 note metrical subdivision level

has 12 pulses. Based on this information the meter is stratified by decomposing the number of pulses into

prime factors (see Figure 1). Each prime factor describes how each stratification level is subdivided. The

stratification level at index 0 is always a whole bar (prime factor 1). In the above example, a 3/4 meter at

the 16
th
 note metrical level is factorized as 1x3x2x2, which means that the first stratification level divides

the bar into 3 quarter notes, each quarter note is divided in 2 eight notes and each eight note is divided in

2 sixteen notes, yielding the product of 12 pulses per bar.

 The stratification algorithm that is used distinguishes between simple and compound meters which

contain the same number of pulses. These meters are decomposed in to the same prime factors but these

factors should be in a different order. In general, different permutations of the prime factors describe

different metrical hierarchies. For example, the meters 3/4 and 6/8, although they contain the same

number of subdivisions at the sixteenth-note level (12), the first is decomposed as 1x3x2x2, while the

second as 1x2x3x2. The stratification algorithm takes care of the order of the prime factors by first

subdividing the bar according to the time units specified by the time signature’s denominator, e.g. 3 x

(quarter notes) in the 3/4 meter and 6 x (eighth notes) in the 6/8 meter. If the nominator can be divided by

both 2 and 3, it is first divided as many times as possible by 2, putting the corresponding number of “2s”

first in the list of prime factors followed by the “3s” and the rest of the “2s”. In any other case, i.e. in

simple meters, the prime factors are always ordered in descending order, from the greatest to the

smallest.

Figure 1: Calculation of the indispensability values of a 3/4 meter

Sioros and Guedes

234

 Barlow´s indispensability algorithm [7] takes the prime factors of each stratification level and sorts

the pulses in the meter according to how much each pulse contributes to the character of the meter, from

the most indispensable to the least important (see Figure 1). The algorithm is based on what Barlow

terms as the basic indispensability values that represent the order of importance of the subdivisions in

each prime number stratification level. Each pulse is assigned with a separate indispensability value for

each stratification level. These values are then multiplied by the prime factor of the corresponding level

and all higher ones. The resulted arrays are rotated by one step to the left. The sum of all levels is

calculated for each pulse. The resulting array is rotated back, i.e. one step to the right, yielding the

indispensability values for the pulses.

 Barlow’s metrical indispensability algorithm [5] is summarized in the following equations.

 
 

 




















































































1

0

1

0

0

1

1
mod

mod2

11
1

z

r

rz

i

rzr

k

kz

z

j

j

pi p

p

pn

pn
z

 (1)

where)(n is the indispensability value of the n
th
 pulse of a meter decomposed into prime factors p0 x

p1 x p2 x… with p0 = pz+1 = 1, z is the number of stratification levels,  xp is the basic indispensability

of the x
th
 pulse of a first-order bar with the prime stratification p, mod denoted the modulation operator,

and [x] is the whole-number component of x. Additionally the basic indispensability of the n
th
 pulse of a

first order meter with prime divisor p is given by:

 

   

    pnnq
p

q
qnelse

pnpn

npnp

pp

p

p

/,
1

2

41

2

1

2








 
















 (2)

where  xp 1 gives the indispensability values for a bar of pulses numbering p-1, factorized and

stratified with prime factors in decreasing order.

 A similar result to the indispensability ranking described above can be obtained using the metrical

structure of Lerdahl and Jackendoff [10]. By following a process as the one described by G. Toussaint in

[5], one can calculate the relative strength of each pulse according to the stratification level it belongs

into. The result exhibits a strong similarity to the output of the indispensability algorithm. However, the

indispensability algorithm has the advantage of producing a unique indispensability score for each pulse

distinguishing, this way, between pulses even when they belong to the same hierarchical level. This leads

to a richer performance when mapping those scores to pulse weights and then to probabilities and

amplitudes.

 We then assign to each pulse a weight based on the stratification level it belongs to and its

indispensability ranking. Each level i has its own distinct range of weights Wi (see Figure 2):

   ii

i RRW ,minmax, 1 (3)

where R is a parameter related to the density of events of the resulted performance and ranges between 0

and 1. Equation (3) implies that the calculation of the ranges begins with the highest stratification level

for i = 1 and continues until it reaches the metrical level defined by the user.

A Formal Approach for High-Level Automatic Rhythm Generation

235

Figure 2: Weight ranges (left side) and calculated weights for a ¾ meter stratified to the 16
th
 note level.

 The pulse with the highest ranking value in each stratification level, i.e. the most indispensable, is

assigned the maximum weight corresponding to the stratification level. The rest of the pulses in the

stratification level are assigned smaller weights dividing the range into a corresponding number of equal

parts. According to equation (3), for R = 1 all pulses have a weight equal to 1, while for R = 0 only the

1st stratification level survives.

Stochastic Performance. Once the weights for all the pulses are calculated, a performance is generated

by cycling through each pulse comprising the metrical cycle and deciding if an event will be triggered in

that position or not. The probability of triggering an event on a certain time position is derived by the

corresponding weight according to a simple exponential relation:

  MWnp   (4)

where Wℓ is the weight assigned previously to that pulse ℓ, n is a normalization factor, M is a user defined

parameter related to the metrical strength and ranging between 0 and 1, and ε is a small offset which is

non zero only for Wℓ = 0. The above equation functions as a “probability compressor”, where for values

of M close to 0, the differences in the probabilities are smoothed out, while for values close to 1, the

original probabilities arise (see Figure 3). The small offset ε is needed only when the weight of a pulse is

zero. In this case, in order for a finite probability to arise for M < 1, the base of the exponent needs to be

different from zero.

Figure 3: Probabilities are exponentially scaled.

 The amplitudes of the triggered events are calculated independently from the probabilities. They are

directly proportional to the pulse weights calculated for a fixed value of R = 0.5. The value was chosen

such that the resulted rhythm is at the strongest metrical feel.

Generating Syncopation. Syncopation is introduced in the generated rhythm by “anticipating” pulses in

stronger metrical positions. Events are triggered according to the probability assigned to the immediately

following next pulse. At the same time, the amplitudes are also anticipated, so that the amplitude of a

syncopated pulse sounds louder, thus creating a dynamic accent. The decision of syncopating pulses is

made according to a user-controlled factor PS, varying between 0 and 1, which represents the probability

of anticipating a pulse and is related to the amount of syncopation in the resulted rhythm.

 Two restrictions are imposed in order for the generated result to be more musical. The first

restriction is a mechanism which forces syncopation to stop when too many consecutive pulses are

syncopated; otherwise for values of PS close to 1 the resulted rhythm would be just an offset version of

the non-syncopated one. This competing mechanism forces pulses to not syncopate ignoring the

Sioros and Guedes

236

syncopation decisions. The probability of a pulse to be forced to not syncopate depends on the number of

the consecutive pulses already been syncopated and to the weight of the current pulse. This way

syncopation tends to resolve to the stressed pulses creating an effect of “off-beat” syncopation.

 The second restriction relates to the fact that the feeling of syncopation is weakened when two

consecutive events get triggered, one on a weak pulse and the second on the stressed pulse that follows.

To avoid this behavior, a pulse is forced to always be mute and not trigger an event if the previous pulse

was anticipating and an event was triggered. This rule is applied only when the consecutive anticipated

pulses are less than three so that the “off-beat” type of syncopation is not canceled out.

Controlling density. The density of events D refers to the average number of triggered events per cycle.

It is equal to the sum of the probabilities in all pulses:





pulses all

pD (5)

 The density of events and the metrical feel are by nature interrelated. This can be easily seen in

extreme cases such as when the density is zero. Zero density means that no events are triggered which is,

by definition, a non-metrical state. This degenerate rhythm is not at all characteristic of the meter. In fact,

the outcome of the algorithm could belong to any meter and tempo. Similarly, the metrical feel is

weakened when an event is triggered on every pulse, in other words when the density is maximum, and

thus the meter can only be inferred from the amplitudes of the triggered events.

 The density of events can be controlled by the parameter R in equation (3). Although the value of R

cannot be used as a measure of the actual density of events it serves as an effective way of controlling it

without affecting the metrical feel. How the actual density varies with R depends on the meter and the

corresponding stratification. The probabilities are distributed to the pulses taking into account their order

of importance and additionally the stratification level they belong to, preserving the hierarchy and

structure of the meter for any value of R. The behavior of the probabilities when decreasing the value of

R in equation (3) tends to keep the metrical feel strong. As the value goes to zero the pulses of the highest

level of stratification take up more and more “space” squeezing the rest to lower probability values until

all the lower levels, one by one, disappear leaving present only the 1st level (see Figure 2). Events are

triggered on the “most important” pulses even for R = 0 keeping always the metrical feel strong. To

further lower the density of events a linear scaling of the residues probabilities is used. On the other

hand, the amplitudes of the triggered events are not affected by the changes in the parameter R. This way,

when the density reaches its maximum, i.e. when R = 1 and events are triggered on every pulse, the

character of the meter is made evident by the amplitudes of the triggered events.

 Controlling metrical strength. The strength of the metrical feel depends, on the one hand, on the

probabilities assigned to the pulses and, on the other hand, on the amplitudes of the generated events. A

sense of meter is established when the events are triggered in important pulses (the most indispensable

ones). The way the weights are calculated ensures that the more important a pulse is, the more often an

event will be triggered in that position and this event will accordingly have higher amplitude. The more

the indispensability relation is preserved among the pulses, the stronger the metrical feel. When all pulses

have similar probabilities of triggering events and the amplitudes of the triggered events are random, not

organized and do not establish a pattern, the resulted rhythm sounds random, not belonging to a specific

meter. Therefore, in order to effectively control the strength of the metrical feel probabilities and

amplitudes of the triggered events need to be adjusted simultaneously.

 The probabilities can be directly manipulated through the exponent M in equation (4). The

normalization factor n ensures that the density of events is not affected by the changes in the exponent M.

A Formal Approach for High-Level Automatic Rhythm Generation

237

Values of M close to 1 result in probabilities proportional to the weights and, thus, in a stronger metrical

feel. While M approaches 0 the probabilities are evened out and the metrical feel gets weaker. The

amplitudes of the triggered events are proportional to the pulse weights at the strongest metrical feel, i.e.

for a fixed value of R. In order to weaken the metrical feel as the value of M decreases, the amplitudes

also get randomized but in a way that the distribution of amplitudes over time is kept constant.

 Figure 4 summarizes the main aspects of the performance and their relation to the parameters of the

algorithm.

Figure 4: A summary of the basic user controls and the corresponding parameters in the algorithm.

Generating Variation. The generated rhythm varies and is non-repetitive due to its stochastic nature.

The amount and type of variation can be controlled by restricting the mechanisms described above,

namely the triggering of events and their syncopation. At each pulse, two different decisions are made.

First, it is decided whether the pulse will anticipate the next one according to the amount of syncopation

set by the user. Second, the triggering of an event is decided according to the probability of the

corresponding pulse or the following one when anticipating. The variation in the resulted rhythm is

controlled by restricting the number of such decisions that are allowed to change from one cycle to the

next.

 Two modes of variation have been implemented: the stable and the unstable. In the stable mode, the

variation revolves around an initial pattern which is randomly generated. In the unstable mode, the

rhythm departs from an initial pattern and follows a random walk. It evolves constantly into new patterns.

In both modes, an initial pattern is generated at the beginning of the performance but the user can re-

generate a new random pattern at any time, creating an abrupt change in the performance.

Events’ articulation. The duration of the triggered events can be either fixed, in staccato mode, or can

extend until the triggering of a new event, in legato mode. Syncopation is enhanced in legato mode by

favoring the release of held events on stressed pulses even when no new event is triggered. A held event

that was triggered on an anticipating pulse can be released on a following anticipating pulse, even if no

new event is trigged. The probability of releasing an event on an anticipating pulse is proportional to its

original weight.

Controlling the performance: the complexity space. The metrical feel, the amount of variation and the

amount of syncopation form what we call a “space of complexity”. A rhythm is considered to be simple,

when the metrical feel is strong, the variations are kept to a minimum and there is no syncopation. On the

other hand, when the metrical feel is weak or when syncopation is introduced into the rhythm or when

the rhythm is constantly changing, then the rhythm is perceived to be more complex. Rhythmic

complexity in this sense is attributed to combinations of different aspects of the rhythm: metrical

strength, syncopation and variation.

 We grouped the parameters of the algorithm related to complexity, namely the amount of

syncopation, the exponent M and the amount of variation in the event triggering and syncopation

Sioros and Guedes

238

decisions, into a two dimensional map (see Figure 5). As one moves away from the center the resulted

rhythm becomes more complex. The contribution of the above parameters to the complexity depends on

the direction of the position vector on this map. Each of these parameters is a function of the position

vector on this complexity plane, i.e. of the distance from the center and of the direction or angle between

the vector and the horizontal axis (see Figure 5).

Figure 5: Complexity space. On the left side a general description of the map is show. The contour plots

of the functions to map the position coordinates follow on the right side.

 The functions of the various parameters are empirically set taking into consideration some basic

restrictions derived from the nature of these parameters and our experience with various settings of the

algorithm. Some of these restrictions are: i) when the metrical feel is low, syncopation is meaningless, ii)

variation in the syncopation decisions apply only when the amount of syncopation is above a certain

value, iii) when the amount of syncopation is significant the syncopation feeling is weakened by too

much variation in the triggering decisions. Figure 5 shows the contours of the specific functions used for

each control.

Max/MSP Applications

The algorithm was implemented as two Max/MSP externals. A Max/MSP bpatcher abstraction and a

Max4Live device were developed around these externals. The kin.rhythmicator Max/MSP bpatcher

abstraction is intended to be used in a variety of Max/MSP based applications and installations which

implement some kind of rhythmic interaction. Such installations can take the form of virtual musical

instruments, compositional tools or interactive installations. It is designed in a way that is easily

integrated into any Max/MSP patch and can be controlled by several devices, from simple MIDI

controllers to complex game controllers, and it is ready to directly trigger sound on any MIDI enabled

synthesizer. The Max4Live MIDI device can be used as a compositional and/or performance tool, which

dynamically generates rhythms. All parameters can be controlled through MIDI, automated with

envelopes and saved together with the Live Set. They both implement all features of the algorithm

described above.

Figure 6: The Max/MSP applications’ interface.

A Formal Approach for High-Level Automatic Rhythm Generation

239

Conclusion and Future Work

An algorithm for generating rhythmic performances in a given meter was presented. The algorithm

implements intuitive controls over various musical parameters that specify a stochastically generated

performance. It can be thought of as a constrained improvisation that takes the place of a detailed music

score. Among the musical parameters that can be effectively controlled are the metrical strength and the

density of events. This has been made possible by using the stratification levels of the meter in the

mapping process of the indispensability output of Barlow´s [7] formula to the weights and the

corresponding probabilities. A syncopation algorithm based on the anticipation of pulses and which tends

to keep a strong metrical feel is introduced. Variation in the performed rhythms is an innate quality of the

algorithm arising from the use of probabilities in the performance. Future development of the algorithm

and devices include the development of intelligent agents, which collaborate in generating a coherent

output. The kin.rhythmicator Max/MSP abstraction and Max4Live device is available for download at

our group website “http://smc.inescporto.pt/kinetic/”.

Acknowledgments

This research was done as part of the project “Kinetic controller driven adaptive music composition

systems”, (ref. UTAustin/CD/0052/2008), supported by the Portuguese Foundation for Science and

Technology (FCT) for the UT Austin| Portugal partnership in Digital Media.

References

[1] Bernardes, G., Guedes, C., Pennycook, B. “Style emulation of drum patterns by means

of evolutionary methods and statistical analysis.” Proceedings of the Sound and Music

Conference, Barcelona, Spain, 2010.

[2] Eigenfeldt, A. “The Evolution of Evolutionary Software Intelligent Rhythm Generation

in Kinetic Engine.” Proceedings of EvoMusArt 09, the European Conference on

Evolutionary Computing, Tübingen, Germany, 2009

[3] Martins, A. and Miranda, E. “Breeding rhythms with artificial life.” Proceedings of the

Sound and Music Conference, Berlin, Germany, 2008.

[4] Martins, A. and Miranda, E. “A connectionist architecture for the evolution of rhythms.”

Proceedings of EvoWorkshops 2006 Lecture Notes in Computer Science, Berlin:

Springer-Verlag, Budapest, Hungary, 2006

[5] G. T. Toussaint, "A mathematical analysis of African, Brazilian, and Cuban clave

rhythms," Proceedings of Bridges: Mathematical Connections in Art, Music, and

Science, Towson University, Baltimore, Maryland, July 27-29, 2002

[6] G. T. Toussaint, "Generating “good” musical rhythms algorithmically," Proceedings of

the 8th International Conference on Arts and Humanities, Honolulu, Hawaii, January

13-16, 2010

[7] Barlow, C. “Two essays on theory”. Computer Music Journal, 11, 44-60, 1987

[8] http://cycling74.com/

[9] http://www.ableton.com/maxforlive

[10] Lerdahl, F. & Jackendoff, R. (1996). A Generative Theory of Tonal Music. Cambridge:

The MIT Press.

Sioros and Guedes

240

http://cycling74.com/
http://www.ableton.com/maxforlive

