Bridges 2011: Mathematics, Music, Art, Architecture, Culture

Arc Forms: Interactive Exploration of a
Discrete Combinatorial Design Space

Christopher Carlson
Wolfram Research, Inc
100 Trade Centre Drive

Champaign, IL, 61820, USA
E-mail: carlson@wolfram.com

Abstract

In the course of exploring parametric forms derived from corporate logos, I stumbled upon an elegant “minimum
inventory, maximum diversity” system of forms. Due to combinatorial explosion, that discrete space of forms is
unimaginably large. Using Mathematica, 1 explored not only the forms themselves, but also interfaces for grasping
what that large space contains. Productive exploration depends on being able to explore the interfaces as fluidly as
the forms themselves.

Minimum Inventory, Maximum Diversity

The variety and expressiveness of the forms in Figure 1 belie the exceedingly simple structural scheme on
which they're based. You may want to pause here to ask yourself if you can discern what these forms
have in common before you read on.

eCaD$5:90900090
DEHQOEEHSE

IPIOPLLICIE

Figure 1: 4 sampling of arc forms.

All of these forms are composed of semi-circles joined at points evenly distributed along a vertical axis.
Such “arc forms” are an example of a “minimum inventory, maximum diversity” (MIMD) system, a term
coined by Peter Pearce in his book, Structure in Nature is a Strategy for Design [1]. MIMD systems
achieve maximal expressive effect from a minimal kit of modular parts and rules of assembly. Nature
excels at this game: every one of the many millions of natural proteins is assembled from an inventory of
just 20 amino acids, and snowflakes are all just arrangements of the humble water molecule. In human
design as in nature, MIMD systems promise efficiency: a small effort invested in a minimal inventory
pays off in a huge diversity of designs.

201

Carlson

MIMD systems lead naturally to the concept of a “design space”, a conceptual tree of forms with an
initial (perhaps empty) form at the root, construction steps that lead from form to form along the
branches, and finished forms at the leaves. The collection of all finished forms is sometimes referred to
as a “design language”. In the case of arc forms, the space is a discrete combinatorial space, meaning that
the forms are assembled from a finite set of discrete units combined in a finite number of ways.

The number of choices at each construction step compounded by the number of steps in a construction
leads to a combinatorial explosion in the number of possible finished forms. Thus the design languages of
MIMD systems can be immense. Using Mathematica [2], I explored the space of arc forms, at the same
time grappling with how best to construct interfaces to explore and understand what that immense space
contains.

Arc Forms

The path that led to the forms in Figure 1 began with the logo for a concert hall by Peter Andermatt [3]
shown on the left of Figure 2. This was one of many forms that I examined in a series of explorations of
the design spaces that arise from parameterizing corporate logos [4]. Although this logo is trivially easy to
parameterize and get into Mathematica, 1 nearly didn’t try doing so because I didn’t think that the
exploration would lead anywhere interesting. My intuition was completely wrong. The simple idea of
joining semicircles at fixed points along a line is one of the richest and most expressive modular systems
that I’ve encountered. That becomes apparent once you build an interface to explore the concept.

Not wanting to invest much effort in something that I thought wouldn't be productive, I dashed off an
interface that hooked sliders to the y-coordinate values of the endpoints of the semicircles in Andermatt's
logo. Exploring that parameterization yielded the sequence of forms shown in Figure 2.

@ -QO0OGd0D-

Figure 2: Logo for a concert hall by Peter Andermatt, and
an exploration of a parameterization of the logo.

There was nothing particularly astounding in those forms, but at this early point two things became
apparent: (1) there was more out there to explore than I had expected, and (2) it would be worth my while
to invest effort in a better interface to explore it with. My quick-and-dirty interface had done its job: it
pointed the way toward something more interesting. If it hadn't been so easy to construct, I probably
wouldn't have made it, and I would have passed right by the elegantly simple system this paper describes.
I can't emphasize enough how important easy interface building is in this kind of exploration. If building
an interface is a project rather than something you can do on a whim, you'll miss opportunities to discover
new things.

I made a more intuitive, direct-manipulation interface that let me drag arcs directly and add and remove
arcs by command clicking. I added controls for line thickness, end caps, and orientation, so that I could
explore graphic variations in the renderings of the forms. This interface took more thought than my first
one, particularly in understanding how to implement the constraints that keep the endpoints of the arcs on
the connection points as the arcs are dragged. Nevertheless, | had the new interface refined and running in
about 20 minutes. Figure 3 shows the interface and the Mathematica code that implements it.

202

Arc Forms: Interactive Exploration of a Discrete Combinatorial Design Space

Manipulate[

connection points
Graphics[{AbsoluteThickness[th], CapForm[caps],

thickness —© (
Rotate|

orientation ©-
endcaps [Butt |Round (* constrain points to connection points *)
pts = RotationTransform[45°][Round[#, Sqrt[.5]]& /@
RotationTransform[-45°][#]]& /@ pts;

(* draw the arcs *)
Circle[{0, #[[2]1]}, Abs[#[[1]1],

If[#[[1]] < O, {90 °, 270 °}, {-90 °, 90 °}]] & /@ pts
}, angle °, {0, 0}1}, PlotRange -> (n + 2)/2],

(* controls *)

{{n, 9, "connection points"}, 3, 24, 1},

{{th, 4.6, "thickness"}, 1, 100},

{{angle, 0, "orientation"}, 0, 360, 1},

{{caps, "Round", "endcaps"}, {"Butt", "Round"}},

{{Ptsl {{21 1}1 {‘1-51 ‘1-5}1 {_ll O}I {ll 2}1 {1'51 1'5}}}1
-5 {1, 1}, 5 {1, 1}, Locator,
LocatorAutoCreate -> True, Appearance -> None}]

Figure 3: An interface for exploring arc forms, and the Mathematica code that implements it.

With this more user-friendly interface, I was off and running through the space of arc forms, and
discovering all sorts of intriguing designs. Figure 4 shows the course of one exploration. The more I
explored, the more I wanted to explore—a sure sign of an exploration that has legs.

As 1 explored, I noticed recurring themes—the idioms of this design language—such as spirals, wormy
forms, leaf-like structures, and the comma-shaped Fischblase or mouchette found in Gothic window
traceries. To gain a better understanding of the material I had to work with, I launched into some
exhaustive generation of forms.

Combinatorial Explosion
For exhaustive generation, I needed a symbolic representation of arc forms. I designed an expression with

head ArcForm whose arguments are the list of y-coordinate values of the connection points, and lists of
connection point indices for the left and right arcs, an example of which is shown in Figure 5.

33688 -0 0 REE

©0B60O®eCOE
53@5755@@%@%@@@@@-"

Figure 4: An interactive exploration of arc forms.

203

Carlson

fMANAY AN\ A
N6 CVo U
GIVIOIVIOIVIVY
M MA) 0L u
QOodOVwOLL W
D oo 6 ol)ou w
CICIOICICIVIY
CeNCeNoo NN RV NN R VEVY

ArcForm[{0,2,5}, {{2,3}},{{1,2}, {1,3}}]

AA
o
O
D
O
&
©

Figure 5: Symbolic representation of arc forms. Figure 6: Exhaustive generation of arc
forms with 3 connection points.

With this representation, writing a Mathematica function that generates all of the forms with a given
number of connection points is straightforward and concise:

ArcForms[n_] :=
Module[{allArcSubsets = Subsets[Subsets[Range[l, n], {2}11},
ArcForm[Range[l, n], #[[11], #[[2]1]]1& /@ Tuples[allArcSubsets, {2}]]

This function forms all pairs of the connection points, Subsets[Range[l, n], {2}11} (the
individual arcs); then all subsets of the pairs, al1ArcSubsets (the sets of arcs on one side of a form);
then all pairs of the subsets, Tuples|.., {2}] (both sides of a form). Every possible arc form is contained
in those combinations.

Using the ArcForms function, I could begin to see in a systematic way what's out there. ArcForms|[3]
yields the 64 forms with three connection points shown in Figure 6 (one of which, with 0 left arcs and 0
right arcs, is empty). That collection is the beginning of a useful catalog of the basic vocabulary of this
design language.

From there, the number of forms grows so quickly that after four connection points it is no longer

n(n-1)
2

practical to render them all. There are two-element subsets of n objects—the number of different

arcs available for each side of a form with » connection points. Raising 2 to that quantity gives the
number of ways of taking subsets of that set—the number of arc combinations available for each side.
The square of that number gives the total number of distinct forms, as each form combines one member
of that set on the left side with one member on the right side. Thus the total number of forms with n

connection points is 2",

204

Arc Forms: Interactive Exploration of a Discrete Combinatorial Design Space

n number of arc forms

2 4

3 64

4 4096

5 1048576

6 1073741824

7 4398046511104

8 72057594 037927 936

9 4722366 482869645213 696

10 1237940039 285380274899 124224
11 1298074214633706907 132624 082 305024

12 5444517870735015415413 993718 908 291 383 296
Figure 7: The number of arc forms with n connection points rises rapidly with n.

How quickly the number of forms rises with increasing n—the number of connection points—is
graphically evident in the table shown in Figure 7. With eight connection points, a figure showing all
possible forms drawn at the scale of Figure 6 would nearly cover the Americas and Europe combined.
Such is the magnitude of the search task, an immensity that you're hardly aware of when such large
numbers are hidden behind the buttons and sliders of an interface. From here on out, this was the central
problem I grappled with: how to grasp the possibilities within this ungraspably large space of designs.

Exploring Exploring

At this point, my adventure became both exploration and meta-exploration. At the same time I was
exploring the design space, I was exploring how best to explore the design space. Mathematica's trivially
easy-to-use interface constructs made it possible for me to try out and discard a number of possibilities
before I arrived at a combination that worked well for the amount of effort I was willing to invest. I tried
"scrubbing" through entire design spaces using sliders, random sampling of various sorts, and several
methods of presenting samples. What I arrived at is a pair of interfaces that work together: a “discovery”
interface for sampling the design space and a “design” interface for developing particular forms that I
picked out of the design space. Both interfaces are available for download from the Wolfram
Demonstrations Project [5, 6].

The discovery interface is shown on the left of Figure 8. It implements a “generate-and-test” paradigm,
generating forms with a given number of connection points and left and right arcs, and selecting those that

round caps @ negate

more

show points ¥ invert
©eQRE ® —

forms 2~ = &~ S entation —_———
N POINts e Qs 6

L ———— L ——
N left arcs e 3
N right arcs se=m—— 3 re-space points)
(207025 possible forms) (undo)
—_—
sample size (4 16 136/ 64 100 @ E @ @ @ @ paste
Filter
B
P @) @ @ @ @ @
Rendering
thickness =@
orientation @
round caps ™ negate [

show points [

©686&0

Figure 8: The “discovery” and “design” interfaces.

205

Carlson

meet given criteria. Each press of the “more” button gives a new sample, whose size I can control. By
displaying many forms at once, I get an aerial view of the design language and can cover territory more
quickly. By providing for selection criteria, I get focused views into portions of the design language and
can explore specific phenomena more efficiently that if [were using random sampling alone.

The selection criteria are implemented as filter functions that return true (retain) or false (reject) when
applied to an ArcForm expression. The filter for forms that contain at least one circle tests that there is
some member of the left arcs that also occurs in the right arcs, i.e., that the intersection of the sets of left
and right arcs is not empty. Such a pair forms a circle:

SomeCircleFilter[ArcForm[, left , right]] := (Intersection[left, right] =!= {})

I wrote additional filters for rotational symmetry, forms that are enclosed in an outer circle, forms with
limited arc radii, and so on. I designed the filter portion of the interface so that I could easily drop in new
filters as they occurred to me.

The last section of controls in the interface let me choose how the forms are rendered. Depending on what
graphical phenomenon I'm interested in, I may want to see thick or thin lines, butt or round end caps,
black-on-white or white-on-black.

The second component of my exploration tools—the “design” interface—pops up when you click one of
the forms in the discovery interface (see Figure 8, right side). It provides a means of exploring a single
form in detail by dragging, creating, and deleting arcs directly, plus controls for various graphic
renderings of the forms. Using the discovery and design interfaces together is a little like beach combing.
With the discovery interface, you wander around the design space looking for interesting forms or
something that sparks an idea. When you find one, you toss it into the design interface for tweaking or
exploration of related forms.

Exploring Arc Forms
With the discovery interface, I sampled spaces of increasingly complex forms, pulling out some that I
thought gave the illusion of design intention, that is, forms whose design appeared to show evidence of a

human hand (see Figure 9). The result is a collection of aesthetically pleasing marks with surprisingly
rich semantic associations. They are good raw material for further development.

(193399690 09¢ D@RHOOCE®

5 connection points, 1 left arc, 2 right arcs 6 connection points, 3 left arc, 2 right arcs

293600009 CHRCEOPE

5 connection points, 2 left arc, 2 right arcs

@9099¢085 VOOV

6 connection points, 2 left arc, 2 right arcs 8 connection points, 3 left arc, 4 right arcs

Figure 9: Some arc forms that appear to show evidence of a human hand.

206

Arc Forms: Interactive Exploration of a Discrete Combinatorial Design Space

GO$O 5@ ™ @ oo A
306856 T
8O96®0 wm v o o

Figure 10: Arc form “S” logos. Figure 11: Arc form printer’s embellishments.

One of the more interesting filters is the one for rotational symmetry, which yields a practically
inexhaustible supply of "S" logos, a small sample of which is shown in Figure 10. Most are unlikely to
win a beauty contest, and they tend to have a forties or fifties design vibe. But each is interesting in its
own right, and together they are a reminder of how surprisingly many variations there can be on a single
theme. Additionally limiting the arc radius to 2 units yields the forms shown in Figure 11, which remind
me of printer’s embellishments. Some are similar to traditional embellishments; some suggest new
possibilities.

Some of the generate-and-test filters are fantastically inefficient. The rotational-symmetry-with-
maximum-arc-diameter-2 filter that I used while exploring the printer's embellishments rejects upwards of
2000 forms for every one that it accepts. But who cares! It's fantastically efficient for me. The scheme
was easy to implement, and I was able to get down to the real work of exploring quickly. The typical
laptop is capable of generating and testing half a million forms in the amount of time I'm willing to wait
after clicking the "more" button. If a filter yields particularly interesting forms that justify investing the
effort, I can easily take the additional step of creating a custom generator that yields the forms directly
and efficiently.

As I was “beach combing”, I clicked those forms that looked interesting and that I wanted to explore in
more detail. Each click generated a design interface for that form beneath the discovery interface.
Returning to those interfaces, I explored graphic themes such as foreground-background relationships,

P @oer 2 & Q O

O YOHSDY
D & 2D

Figure 12: Results of some explorations using the “design” interface.

207

Carlson

relative line weights, and color inversions, as well as neighboring forms in the design space. Figure 12
shows some results of those explorations.

I undertake these graphical adventures out of sheer joy in form making and the excitement of discovering
new possibilities. Some of the resulting forms might provide material for logos or ornamentation or
larger compositions, which is a nice benefit. But for me the lure is more like the draw of the unexplored
Amazon basin or the outer reaches of the solar system, which derives not so much from the promise of
practical benefits as from intense curiosity about what lies out there.

AvOR

References

[1] Peter Pearce, Structure in Nature is a Strategy for Design, MIT Press, 1978
[2] Mathematica, http://www.wolfram.com

[3] Yasaburo Kuwayama, Trademarks & Symbols Volume 2: Symbolical Designs, Van Nostrand
Reihnold Company, 1973, p109

[4] Christopher Carlson, “Interactive Exploration of Corporate Logos: From Mercedes Benz to Sea
Creatures”, in BRIDGES Pécs Conference Proceedings, George W. Hart and Reza Sarhangi, eds, pp 119-
126, Tessellations Publishing, 2010

[5] Christopher Carlson, "Arc Form Discovery Widget" from The Wolfram Demonstrations Project
http://demonstrations.wolfram.com/ArcFormDiscovery Widget/

[6] Christopher Carlson, "Arc Form Design Widget" from The Wolfram Demonstrations Project
http://demonstrations.wolfram.com/ArcFormDesignWidget/

208

