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Abstract  

All possible immersions of a torus in 3D Euclidean space can be grouped into four regular homotopy classes. All 

possible immersions within one such class can be transfigured into one another through continuous, smooth, 

homotopy-preserving transformations that will put no tears, creases, or other regions of infinite curvature into the 

surface. This paper introduces four simple, easy-to-understand representatives for these four homotopy classes and 

describes several transformations that convert a more complex immersion of some torus into one of these 

representatives. Among them are operations that turn a torus inside out and others that will rotate its surface 

parameterization by 90 degrees. Some new, aesthetically interesting torus models are also presented. 

 

1. Introduction 

Topologically, a torus is a rectangular domain folded up onto itself, so that opposite edge pairs merge 

with proper orientation (Fig.1a). Already the first merger of such an edge pair can be done in many 

different ways: It may either form a cylindrical tube (Fig.1b), or the rectangle may pass through itself to 

form a figure-8 shape (Fig.1c) or a cylinder with two or more layers (Fig.1d). In the second merger step, 

where these “tubes” are closed into a loop, this closure may be performed without any twist, or with 

discrete twists in increments of a full turn (360°). The sweep path of this loop may be circular, or it may 

form multiple loops, self-intersecting figure-8 shapes (Fig.2), or even more complex knots or tangles [11]. 

(a) (b) (c) (d)  

Figure 1:  Folding up a rectangular domain (a) into a torus: Merging the two vertical edges into a 

cylinder (b), a self-intersecting figure-8 shape (c), or a multiply-rolled tube (d).     

 

We evaluate the result not just as an unmarked shape, but as a parameterized surface that displays the 

parameter markings of the original rectangular domain, the front of which is shown in Figure 1. The back 

of this rectangle carries the same (mirrored) pattern but with a more purplish hue and darker shading. We 

will only allow transformations that maintain the end-to-end connectivity of the pattern placed on this 

rectangle. In these transformations, surface regions may pass through one another, but no tears, punctures, 

creases, or spots of infinitely sharp curvature are allowed. At any moment, every small localized piece of 

the torus surface must be homeomorphic to a disk. If this condition is fulfilled, we call this an immersion 

of the torus in 3D Euclidean space (R
3
). Now the question arises: How many different parameterized 

(decorated) tori can be formed that cannot be transformed smoothly into one another? 

According to a paper by Hass and Hughes [5], an orientable 2-manifold of genus g, immersed in R
3
, 

has 4
g
 regular homotopy classes. Surfaces are in the same class, if they can be smoothly transformed into 

one another while remaining proper immersions throughout the whole process. For surfaces of genus zero 
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there is only a single class. This implies that a sphere as well as the sphere with its parameterization 

mirrored must belong to the same regular homotopy class, and that therefore a sphere can be turned 

inside-out through a smooth continuous sequence of immersions. This was proven by Steve Smale in 

1958 [12], but it took many years before a first sequence of actual moves was published [9]. A different 

sphere-eversion process was later conceived by Bernard Morin [8], and it led to a first computer-graphics 

movie of that transformation created by Nelson Max [7]. The same basic series of moves was later 

optimized in the film Optiverse [13] so as to minimize the highest level of bending energy reached during 

that process. Another sphere eversion process relying on Dirac’s Belt Trick [4] has become well-known 

through the video Outside-In [6]. Both these movies also exhibit very high aesthetic quality. 

Based on that same paper [5], we expect four different immersion classes for the torus (a genus-1 

surface), where the representatives in one class cannot be turned into that of another class through regular 

homotopy-preserving moves. Unlike for the case of the sphere, much less work has been done to make 

visualizations of the regular homotopy classes for the torus. With the exception of the eversion process of 

an ordinary torus, I have not seen any good depictions of homotopy-preserving torus transformations. 

 

2. Capturing Four Different Representatives 

Following a suggestion made in a personal communication by John Sullivan [14], an easy way to generate 

distinct representatives of the four regular homotopy classes of the torus is to fold up the two dimensions 

of the rectangular fundamental domain of the torus surface in either a circular way or along a figure-8 

path. This will result in the four classes of tori shown in Figure 2. 

00 08 80 88  

  Type 00:  meridians (r): untwisted,   parallels (y): untwisted,  (1,1)-diagonals (g): 360° twist; 

  Type 08:  meridians (r): untwisted,   parallels (y): 360° twist,  (1,1)-diagonals (g): untwisted; 

  Type 80:  meridians (r): 360° twist,  parallels (y): untwisted,   (1,1)-diagonals (g): untwisted; 

  Type 88:  meridians (r): 360° twist,  parallels (y): 360° twist,   (1,1)-diagonals (g): 360° twist. 

Figure 2:  Tori in four different homotopy classes and their characterization by the amount of  

twisting of some characteristic ribbons embedded in their surfaces. 

 

Figure 2 displays the parameterization of the torus surface, by relying on the texture pattern shown in 

Figure 1a.  To make the discussions in this paper easier to understand, we introduce the following naming 

convention based on our envisioned construction of the torus: We take a rectangular domain and first roll 

up one dimension (say x) into a straight cylinder, either with a circular cross section (Fig.1b); or forming a 

figure-8 type profile (Fig.1c). These profile curves, lying in planes perpendicular to the cylinder axis, are 

called meridians. In a second step we bend the cylinder axis into a closed loop, again either along a 

circular or along a figure-8 sweep path. To reduce the ambiguity as to how the second set of parameter 

lines should be drawn, we will form a torus with a planar sweep path as a reference. The plane 

containing that sweep path is called the equatorial plane. All meridians then lie in planes that are 

perpendicular to this equatorial plane. If the cross section is constant and is swept in a torsion-minimizing 

manner, then the second set of parameter lines will lie in planes that are parallel to the equatorial plane, 
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and they can thus naturally be called parallels. (Topologists often call these lines “longitudes”; this is 

unfortunate, because on the globe the lines of longitude are called meridians.) We also call the few special 

parallels that lie in the equatorial plane equatorials.  There are also sets of diagonal lines that close on 

themselves. They combine integer numbers of loops along a meridian and along a parallel. On a normal 

torus, a (1,1)-diagonal will travel once around the major and minor circles, respectively. Figure 2 shows 

ribbons along a meridian in magenta, ribbons along parallels in yellow, and an additional (1,1)-diagonal 

ribbon in green. The amount of twisting exhibited by these characteristic ribbons is listed in the table 

within Figure 2. 

Some readers may object to the self-intersecting figure-8 sweep paths used in the tori of Type 08 and 

Type 88 in Figure 2. We can eliminate the self-intersections at the sweep-path cross-over points and 

untangle the figure-8 sweeps into perfectly round tori (Fig.3), but in this process we will introduce ±360° 

of twist around the sweep path – where the sign depends on the directions in which we move the two 

crossing branches apart. The result is equivalent to a regular torus on which a Dehn twist [3] along a 

meridial cut line has been introduced; we thus call this an M-twist. In this twisting operation all possible 

magenta meridial ribbons will remain untwisted.  

(a) (b) (c)     (d) 

Figure 3:  (ac) Untangling a torus of Type 08  starting with a downward move of the torus branch  

with the yellow-green ribbon crossing;  (d) unwrapped torus surface texture. 

 

In Figure 3c, the original green “diagonal” ribbon has been turned into a parallel ribbon, and the yellow 

ribbon has become a (-1,1)-diagonal. This can best be seen in the unwrapped texture pattern of the torus 

surface (Fig.3d).  If, alternatively, we separate the crossing torus branches in the opposite directions, then 

the yellow ribbon becomes a (1,1)-diagonal, while the green ribbon now becomes a (2,1)-diagonal, which 

shows up on the torus surface as a (1,2) torus knot with a total twist of the corresponding ribbon of 720°. 

The reader is encouraged to take a long, thin, physical paper strip, to model it in the shape of any of the 

shown colored surface ribbons, and then to verify the amount of twisting found in the ribbon. 

Figure-8 Cross-Over Moves 

By going through a regular homotopy transformation starting from Figure 3c, going through Figure 3a, 

and ending up in the alternative circular torus mentioned above, we have changed the (meridial) twist in 

the toroidal loop by 720° while remaining in the same regular homotopy class. By repeating or reversing 

this Figure-8 Cross-over Move, we can readily add or subtract meridial twist in increments of 720°. Thus 

for our classification of torus immersions, we will always count twists modulo 720°.  

The Figure-8 Cross-over Move can also be used to untangle the central crossing in tori of Type 88 

(Fig.4a). Again, depending on which way the crossing strands are moved apart in order to separate them, 

when the figure-8 path has been unwound into a planar, circular loop, a twist of ±360° will have been 

introduced. For this surface the difference between a negative twist (Fig.4b) and a positive twist (Fig.4d) 

is much more obvious, since it shows up in the surface geometry itself, and not just in its 

parameterization. Again, the move from Figure 4b, through Figure 4a and 4c, into Figure 4d will result in 

a change of twist of 720°. Here is a preview of what will become clear later in this report: If we do not 
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pay attention to the parameterization of the torus surface, the tori of Types 00, 08, and 80 are all in the 

same homotopy class, but the torus of Type 88 (Fig.4) is in a class of its own (Fig.9). 

(a) (b) (c) (d) 

Figure 4:  Untangling the figure-8 path of Type 88:  (ab) result of moving green-yellow crossing 

upwards;  (cd) result of moving green-yellow ribbon-crossing downwards.  

 

3. Additional Regular Homotopy Moves 

Turning a Torus Inside-Out 

On the web one can find several references to the process of Torus Eversion. In particular Cheritat 

presents an elegant and easy-to-understand video that shows this process [1].  A closely related process is 

described in diagrammatic form by [2].  Here is my own depiction of this process (Fig.5): 

 

Figure 5:  Turning a torus inside out: (a) (e) schematic view of two parallels (equatorials). 

 

During the whole process, the sweep curve remains planar, and thus the whole transformation can be 

depicted by simply showing two opposite parallels in red and green, respectively, which are the 

intersection lines of the torus with the equatorial plane (two equatorials). Surface parts of the torus that 

were originally facing inward and are finally facing outward are shown as dashed lines; this makes it 

obvious that the torus gets turned inside-out. The process starts by introducing a rotationally symmetrical 

fold around some meridian in the torus (Fig.5a). This everted tube segment is then turned through 90° 

(Fig.5b) and further turned and stretched, so that the two “Klein-bottle mouths” that delimit this segment 

can be moved apart (Fig.5c). They are moved in opposite directions around the toroidal loop and brought 
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together on the other side. There they are recombined into a short, straight tube segment (Fig.5d). This 

tube segment is then turned into alignment with the toroidal ring (Fig.5e) and unfolded in place. 

All these moves are “planar” operations, and thus they introduce no twisting of any kind. The 3-layer 

fold introduced in Figure 5a can also readily be generated for a tube with a figure-8 cross-section. 

Moreover, the two Klein-bottle mouths have no problem passing through the (topologically irrelevant) 

cross-over intersection generated by a figure-8 sweep path. Thus this eversion process is directly 

applicable to tori of all four regular homotopy types. 

 

Changing Parameterization and Profile 

Another planar transformation that introduces no twist allows us to swap the parameterization and 

exchanging the roles of parallels into meridians (Fig.6). We introduce a triple fold into a torus of Type 80 

and maintain the resulting inverted segment as the core of a future “tubular” torus. By sliding the lobes of 

the figure-8 loop next to the inverted segment trough one another, we obtain just a simple loop connected 

to the inverted segment. When we let this loop contract, we realize that the new meridians formed have a 

figure-8 shape and thus are twisted (Fig.6d). The result is a Type 80 torus with swapped parameterization. 

 

Figure 6:  Swapping the parameters is equivalent to switching between torus Type 08 and Type 80. 

 

If we try to do a similar operation on a torus of Type 00 (Fig.7a), we find that we cannot collapse the loop 

without moving its sweep path out of the equatorial plane. The loop has to be un-tangled by going 

through the 3
rd

 dimension (Fig.7b). This 180° flip introduces an M-twist of 360° into the contracting tube 

segment (Fig.7c). The previously untwisted parallels have now become untwisted diagonals in this Type 

80 torus with a 360° E-twist. We have achieved a swap of the parameterization combined with a profile 

change and the introduction of 360° E-twist. 

 

Figure 7:  Turning a torus of Type 00 into Type 80 with a twist and swapped parameterization. 

 

Adding Dehn Twist 

At this point it is worthwhile to point out that there is also a simple operation to willfully add incremental 

E-twists of ±720°, which would be equivalent to a “cut-twist-reconnect” operation along an equatorial cut 

line. Figure 8 shows how we might grab the inner wall of a tubular torus, pull it sideways through the 

outer wall, and subject it to a complete Figure-8 Cross-over Move (Fig.8b and 8c). This will introduce an 

M-twists of ±720° into this tubular loop, which then results in a ±720° E-twist in the final torus. 
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Figure 8:  Introducing an incremental E-twist of  ±720° with two half-flips of a loop in the inner tube. 

 

 

4. Torus Re-Parameterizations 

So far we have looked at sequences of transformations that leave the surface in the same regular 

homotopy class. Now we turn the question around and explore how the homotopy type changes as we 

modify the surface parameterization in various ways. The operations we can perform on the 

parameterization of a torus include: 

Evert:   Turning the surface of a torus inside out, 

Twist:   Adding E-twists or M-twists of ±360°, 

Swap:   Swapping the roles of the meridial and parallel parameter lines. 
 

We have already seen (Fig.5) that the eversion process, which is equivalent to reversing (mirroring) the 

direction of exactly one of the two parameterization axes, keeps any of the four types of tori in the same 

regular homotopy class. Based on the discussion associated with Figure 3 we also know that the 

introduction of an M-twist of 360° switches a torus back and forth between Type 00 and Type 08; and 

Figure 6 tells us that the swapping operation, i.e. a 90° rotation of the parameter grid converts Type 08 

into Type 80, and vice versa. 

For a convenient overview over the effects of the many different re-parametrizations possible, we 

introduce the map in Figure 9. It shows the four types of tori symbolically in the four gray circles, 

including a diagram of the geometry of a key representative as shown in Figure 2 and a characterization 

of the twistedness (“u”/”t”) of three characteristic ribbons. The amount of twisting of two such ribbons 

yields an unambiguous description of the type of a torus, because the amount of twist that is built into a 

closed ribbon loop cannot change under regular homotopy transformations. Any untwisted circular loops, 

like the meridians and parallels in Type 00, are characterized by u=1. But if we connect a paper strip into 

a figure-8 loop without any twisting, then we find, when we open the figure-8 path into a circular loop, 

that the ribbon now shows a 360° twist; such a ribbon is characterized by t=1. Since we can always add or 

subtract twist in increments of 720° with a figure-8 crossover move, twist is counted modulo 2, and thus 

twist is always either 1 or 0.  

An important insight is that un-twistedness u, the complement of twist t, defined as u = (1–t) mod2, 

is more important than twist itself. The value of u is directly linked to the turning of the Darboux frame, 

the local coordinate system that is used in differential geometry to describe the behaviour of curves on 

surfaces. For the planar meridians and parallels the turning number modulo 2 sets the value of u. This 

makes u an additive quantity when we concatenate multiple ribbon loops [14]. Thus the doubly-looped 

meridians in Figure 1d have u = 2(mod2) =0; which implies t =1; meaning they are twisted! But ribbons 

passing around a circular loop an odd number of times are untwisted. The u-values of two different 

characteristic ribbons allow us to unambiguously characterize each of the four regular homotopy classes 

of a torus: the four possible combinations of 1 and 0 for the u-values of two characteristic ribbons (e.g. 

meridians and parallels). With this knowledge we can calculated the u-values for arbitrary (m,p)-diagonal 

ribbons from the u-values of the meridians and parallels: ud = (m*um + p*up) mod2. With some simple 

matrix calculations we can then readily verify all the transformations depicted in Figure 9 [10]. 
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Figure 9:  Complete map of the effects of re-parameterizations on the different torus immersion classes. 

 

The double-headed arrows in Figure 9 indicate possible changes to the parameter grid on the surface of 

the torus. We can readily see that the four homotopy classes fall into two different universes: There are no 

arrows leading from Type 88 to any of the other three types. This means that when we ignore surface 

parameterization, there are still two different torus homotopy classes. The map also tells us that there are 

many different ways in which we can obtain a torus of Type 00; we might: 

 Evert a Type 00 torus (Fig.5). 

 Swap the parameterization of a Type 00 torus (Fig.10). 

 Add 360° of E-twist to a Type 80 torus (Fig.7).  

 Add 360° of M-twist to a Type 08 torus (Figs.6+7). 

To get a more intuitive feel of how these transformations work and the crucial role that twist plays in their 

characterization, let’s try to verify that applying an M-twist to Type 80 leaves the type unchanged. The 

addition of any M-twist does not change the geometry of the surface; it only slices the parameterization 

along one meridian and shears the parameterization grid on one side of this meridian through one or more 

±360° meridial periods. For Type 80 the turning number along this loop is zero; thus all the ribbons that 

end on this cut (the parallels and diagonals) and are being shifted around the whole meridial loop do not 

gain or lose any twist. The meridial ribbons do not experience any twist changes either. Thus the type 

remains indeed the same. 

Figure 9 gives us the full map of all transmutation operations between the four tori types. Now we 

would also like to know what specific homotopy-preserving transformation processes exist that 

correspond to the various arrows in this map. Most transformations can be synthesized by concatenating 

the operations that we have already discussed. In the following we are particularly interested in finding 

the most elegant transformations that turn a torus inside out or that swap its parameterization. 

 

5. More on Torus Eversions 

Just as there is more than one way to evert a sphere [6],[7],[8],[9], there are also several ways to do this 

for the torus. Here are some alternatives. 

All tori with a figure-8 profile can be seen as half-way points of a torus turning inside out, since the 

same amounts of both surface sides are exposed to the outside. Thus we can use Figures 6 and 7 to 

transform tori of Type 00 and Type 08 into this convenient halfway point, then flip the figure-8 profile 

through 180°, and reverse the transformation back to the original shape, but now with the surface turned 

inside out. Using Figure 7d as a conceptual halfway point for the eversion of a torus of Type 00, leads to 
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the streamlined process depicted in Figure 10. Here the chosen halfway point is shown with both tubular 

surfaces being bulged out in opposite directions (Fig.10c). For clarity we now show the torus wall as a 

double line; the gray side of the torus wall moves from the inside to the outside (Fig.10a  10e). 

Here is the actual eversion process: We introduce a ring-shaped triple-fold into the Type 00 torus 

(Fig.10a). We then pinch the main loop to the right of the triple-wall segment and flip it through 180° (b). 

In the step from (b) to (c) we also pull out the dashed segment towards the left.  In the step from (c) to (d) 

we now flip the dashed loop through 180° while shrinking the solid segment into a straight tube. The 

directions of the two flips can be chosen so that the resulting meridial twists cancel out and the resulting 

toroidal loop is twist-free (Fig.10e). Now we just need to remove the ring-shaped triple-fold on the right. 
 

 

Figure 10:  Another view of the process of turning a torus inside out. 

 

Looking at this sequence of transformation steps, we can see that it is in principle the same as the process 

described in Figure 5. Rather than letting the two Klein-bottle mouths travel around the toroidal loop, we 

now keep them more or less stationary, pointing in opposite directions, and we let the connecting tube 

segments carry out the necessary deformations and flips. As a side-benefit we obtain a nice, geometrically 

symmetrical half-way point (Fig.11a) for the torus eversion process. But fundamentally this is just a torus 

of Type 80 with 360° twist! If we are trying to minimize the total bending energy contained in this 

surface, the shape will assume the form of a surface of revolution similar to what is shown in Figure11b. 
 

 (a)     (b) 

Figure 11:  Half-way points for torus eversion: (a) based on Fig.10c; (b) minimum-energy form? 

 

For the sphere the energetically optimal eversion process [13] started from a suitably chosen half-way 

point. Could a similarly optimal torus-eversion process be found starting from the shape in Figure 11b?  

Since the presence of parametric twist is crucial in this context, and since we expect that the desired 

removal of that twist would force this shape to bulge out into a toroid, we clearly need a new surface 

energy model with a very strong penalty term for twist or for any shear in the parameterization grid.  

Interesting work lies ahead to see whether a suitable energy model can be developed. 

 

6. Parameter Swap 

Finding an elegant transformation to swap the parameterization in the ordinary torus of Type 00 is another 

challenging task. I have not yet found a fully satisfactory solution. Perhaps this is related to the fact that it 
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is not intuitively obvious that one can indeed turn the parameterization grid of an ordinary torus by 90° so 

that meridians become parallels and vice versa, and do this in a continuous smooth transformation that 

preserves the regular homotopy class! 

We start again by looking for an appropriate half-way point. Inspiration may come from two tightly 

interlinked tori (Fig.12a). Each of the two circles along which they touch serves as a meridian in one torus 

and as an equatorial in the other. The inner part of this configuration forms a handle/tunnel shape that can 

also be obtained by bending the rectangular fundamental domain into an extreme saddle and merging the 

midsections of opposite edge pairs (Fig.12b). Figure 12c is a close-up view of the resulting geometry. To 

form a complete torus, the square boundary of the depicted geometry has to be closed with an additional 

surface patch. We can do this in two different ways: We can close it with a surface that passes around the 

viewer and thus puts the viewer inside this structure. In this case the sweep path of the torus would be the 

horizontal loop shown in white, and the corresponding parallels would also be horizontal. Alternatively, 

we can close the torus domain away from the viewer, behind the image plane; this would yield an outside 

view of this (deformed) torus. Now the sweep path would be a vertical circle looping away from the 

viewer, and horizontal cuts through this structure would produce meridians. Thus going from one type of 

closure to the other swaps the parameterization and also turns the torus inside out. Figure 12d gives an 

external view of this situation. If we use the lower bowl-shaped closure shown as a magenta wire-frame, 

we obtain one state of the torus; if instead we use the yellow dome-shaped closure, we obtain the other 

state. We can get rid of the unwanted surface eversion with the process depicted in Figure 5, and thus we 

could obtain the desired pure parameter swap – if we could legally switch from bowl closure to dome 

closure.  

 c   d  

Figure 12:  (a) Two interlinked tori.  (b) Domain to be glued into a partial torus.  (c) Resulting handle-

tunnel shape.  (d) Conceptual half-way model for parameter-swap with two alternative “closures.” 

 

However, this is not so straight-forward: Simply pushing the bowl surface through the equatorial plane to 

become the dome surface will produce some pinch-off points. The half-way point itself (Fig.13c) is not 

legal: It has four pinch-off points in the shape of Whitney umbrellas [15] associated with the corners of 

the square boundary of the domain that needs to be closed off. As the equatorial membrane is pushed 

downward (Fig.13b) or upward (Fig.13d) the Whitney umbrellas (marked by white arrows) merge pair-

wise and annihilate one another. The two end-states (Fig.13a and 13e) are then clean and legal 

immersions. Unfortunately we are not allowed to move through this illegal half-way point associated with 

our simple conceptual process. 

For the moment, we ignore the detailed the handle/tunnel geometry depicted in Figure 12c and just 

consider the square patch and one of the two bowl- or dome-shaped closure surfaces. We then obtain two 

states of a topological sphere, one being an everted version of the other. Thus we can rely on a classical 

sphere eversion process to accomplish the needed switch from bowl-closure to dome-closure. For a 

particularly nice visualization, we stitch the patch containing the handle/tunnel geometry into a small 

circular hole at the north pole of an ordinary sphere (Fig.13f) and then apply the “Outside-In” eversion 

process [6]. In this case the polar region is simply shifted to the other pole along the globe’s axis. At the 

same time the closing surface moves from lying below it to lying above it and thus accomplishes the 
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desired parameter swap combined with a surface eversion. Following this with the simple torus eversion 

process depicted in Figure 5, we can then obtain a pure parameter swap in a torus of Type 00. 
 

    f  

Figure 13:  Parameter swap:  (ae) Conceptual – using non-immersive intermediate steps.  (f) A valid 

but cumbersome approach making use of the classical “Outside-In” sphere eversion process [6].   

 

This process seems lengthy and cumbersome. I am still hoping to find a better, more direct way! Ideally I 

am looking for a process, which I might call “Torus OptiSwap,” that has the fewest topological events 

and also encounters the lowest maximum bending energy along the whole transformation.  
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