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Abstract

This paper introduces a notation for describing a reguléygom tile decorated with arcs. Given a tile decorated
with a number of arcs having endpoints uniformly spacedrddhbe polygon, the number of possible decorated tiles
is given, including the special case where no arcs inter3dw tiles decorated in this manner provide an enormous
number of patterns.

1 Introduction

Tiles comprised of regular polygons (regular tiles) forma thasis of many two-dimensional patterns, such
as the Archimedean and more gendeainiform tilings. Tiles can also be decorated with a simpletim

to produce more intricate patterns. For example, TrucHedXflored the patterns obtainable from a single
square tile that was bisected along a diagonal between ipp@stices. Browne [2] investigated patterns
on regular polygons using arcs connecting midpoints ofgatysides. Reimann [3] investigated motifs on
regular polygons where each side was subdivided into anl eguaber of segments and connected using
Bézier curves. Making the divisions equal in length all@awss from adjacent tiles in a tessellation to form
continuous segments.

This paper introduces a notation for describing a reguadecorated with arcs as in [3]. An expression
for the number of tiles is developed for polygons withides andl divisions per side. In a minority of cases,
a decoration will consists of arcs that do not cross. A sépangression is given for computing the number
of patterns where there are no arc crossings.

2 Methods and Results

Given a regular polygon with sides andl divisions per side. The produod must be even to allow the
uniqueness condition on the endpoints so that each arc ctentwe distinct endpoints. Each vertex can be
assigned a unigue integerl)...n— 1 in a clockwise fashion starting at the top of the trianglékelvise,
each endpoint can be assigned a unique integer Ond — 1 starting with the first side clockwise from the
first vertex. Figure 1 shows an example of this with a square 4) that containgl = 1 divisions per side.

A specific decoration can be fully described using the follmnotation:

(‘LB‘V’&E,Z"”)

wherea, B, y,... represent the endpoint number. There are exactlynd/2 pairs of endpoints representing
a single arc separated using thiecharacter all enclosed by parentheses. For a triangte 8) with two
endpoints per sided(= 2), the possibilities including rotationally equivalergabrations are shown along
with the corresponding decoration in Figure 2. Note theeel&r possible decorations for this configuration
with 10 containing crossings and 5 with no crossings.
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Figure1: The collection of all 3 possible decorations of a square Wittivision per side. The notation
for each decorated square is described in the text. Notethgr two unique geometric tiles.

Since the arc endpoints lie along the perimeter of the palyfuese points and corresponding arcs can
be mapped onto a circle, resulting in a chord diagram ageacigith the decoration. Riordan [4] states the
number of distinct chord diagrams witharcs is given by

~ (2m)!
Fm) = Zom
which is the Sloane sequence A001147 [5].

This result can be obtained using the following reasoningickvis the basis for generating all possible
decorations. For each pair, u representing an arc, list the points in increasing ordehabX < u. Fur-
thermore, list then pairs so that the first components of all pairs are incredsingder. The first number of
the first pair must be 0, withd — 1 choices for the second number. In the second pair, the tirsber is the
smallest remaining value, leavimgl — 3 choices for the second number. The values in last pairiadixed
because of ordering. FOF = 2m = nd endpoints, this results in

N! N! (2m)!

f(N) = (N_l)(N_3)(N_5)'”(1) = N(N—Z)(N'—4)"'(2) - (N/Z)!ZN/2 = 2mml -

The number of chord diagrams where there are no crossinggeis by Errara [6] as

!
o = e
which is just the Catalan numbers. Algorithmically, one eanfy a decoration is crossing free by con-
sidering the relationship between endpoints of the arasehapairs of endpoints should nest. A recursive
procedure can be used to construct a crossing free deaorationg the fact that an arc will partition the set
of endpoints into two distinct subsets. If each subset tost@n even number of points, the subset can then
be recursively split until the subset contains only two ends. Values for the function§ andg are given
in Table 1. Similar logic can be used to see that all tiles tited in this manner are all 2-colorable.

Note the number of tiles is the same for any combinationmadircs. For example triangles with 4
divisions, squares with 3 divisions, hexagons with twoslams, and dodecagons with 1 division will have
the same number of tile possibilities becanse- 6 for each of these situations. However, the number of
geometrically unique tiles is different because the unyilagl symmetries are different as shown far= 3
in Figures 2 and 3 and fan= 4 in Figures 4 and 5.

all possible tiles geometrically unique tiles
f(m) | g(m) crossings crossings

nid|mj| total O| 2| 2| 3|4|5|6||numberf0|1]23|4|5]|6
411 2 3 20 1 21111

312| 3 15 5/ 6] 3| 1 7132|111

61| 3 15 5/ 6] 3|1 5121111 |1

42| 4| 105 141281282194 |1 30|6|7(6|6[|2]2|1
81| 4| 105 141281282194 |1 17131433211

Table 1: Number of decorated tiles with m total arcs.
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32 32 32 32
(0,5|1,4/2,3) (0,4]1,5]2,3) (0,5]1,3]2,4) (0,4]1,3|2,5)

Figure 2: The collection of all 15 decorations of a triangle with 2 drans per side. The top row con-
tains all geometrically unique tiles arranged from left ight by increasing number of arc crossings.
Columns contain geometric equivalence classes. Note #nerg total decorations (3 unique) without
crossing arcs and 10 decorations containing crossings (que).
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4 2 4 2 4 2 4 2 4 2
3 3 3 3 3
(0,112,345  (0,1]2,5|3,4) (0,1]2,4/3,5) (0,2]11,43,5)  (0,3]1,4/2,5)
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4 2 4 2 4 2 4 2 4 2 4 2
3 3 3 3 3 3
(0,5]1,2|3,4) (0,3]1,2|4,5) (0,2]1,3|4,5) (0,2]1,5|3,4) (0,4]1,5|2,3) (0,3]1,5|2,4)
0 0 0 0
5 1 5 1 5 1 5 1
4 2 4 2 4 2 4 2
3 3 3 3
(0,5]1,4|2,3) (0,4]1,2|3,5) (0,5]1,3|2,4) (0,4]1,3|2,5)

Figure 3: The collection of all 15 decorations of a hexagon with 1 daviger side. The top row con-
tains all geometrically unique tiles arranged from left ight by increasing number of arc crossings.
Columns contain the 5 geometric equivalence classes. Qemptn patterns in Figure 2.

3 Discussion

As seen in Table 1, the number of different decorated tilesegses exponentially with the number of
divisions and polygon sides. This provides an enormous eurmmbpatterns from the same family that can
be used to provide a statistically uniform, yet varying édlssed pattern. Givem arcs, the total number of
tiles withk crossings remains constant, however the number of unigsdricreases asdecreases due to the
interplay between symmetries in the crossing patternstadrderlying polygons. While the large number
might be daunting to produce, the number of unique indiMidues is actually very limited, especially when
one considers reflection and rotation. The importance aftifyéng patterns where there are no crossings
is in creating patterns where regions between arcs are ¥illdda color or other distinctive pattern. Future
work includes understanding which patterns form rotatiod eflection classes.
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(0,1/2,7/3,4/5,6) (0,1/2,7/3,5/4,6) (0,1/2,7/3,6/4,5) (0,21,3/4,6/5,7) (0,21,3/4,7|5,6) (0,21,413,6/5,7) (0,21,413,7|5,6) (0,21,53,6/4,7)
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54 54 54 54 54 54 54 54
(0,2|11,53,7|4,6) (0,2|1,6|3,4|5,7) (0,2|1,63,5|4,7) (0,2]1,7]3,4|5,6) (0,2]1,7]3,5|4,6) (0,31,2|4,7|5,6) (0,3|1,4/2,7|5,6) (0,3|1,5|2,6|4,7)
01 01 01 01 01 01
7 2 7 2 7 2 7 2 7 2 7 2
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54 54 54 54 54 54

(0,31,6[2,5|4,7) (0,41,2|3,7|5,6) (0,4|1,5|2,6|3,7) (0,4]1,5]2,7|3,6) (0,5]1,412,7|3,6) (0,711,2|3,4|5,6)
Figure 4: The collection of the 30 unique geometric decorations ofumsgwith 2 divisions per side.
There are 105 total possible decorated tiles.

(0,21,5|3,6|4,7) (0,21,5|3,7|4,6) (0,3|1,5|2,64,7) (0,3]1,6|2,5|4,7) (0,4]1,5|2,6|3,7)
Figure 5. The collection of the 17 unique geometric decorations of eiagpn with 1 division per
side. There are 105 total possible decorated tiles. Compadtie patterns in Figure 4.
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