

Programming for Artists with Processing

Zsófia Ruttkay

University of Twente, Dept. of Computer Science, Creative Technology
P.O. Box 217

7500 AE Enschede, The Netherlands
E-mail: z.m.ruttkay@ewi.utwente.nl

Abstract

Programming has not yet become a natural medium for artists. I see two, connected causes for this: to acquire
sufficient skill of computer programming and the essential algorithmic thinking is normally beyond the capacity of
artists, and, for many, it is not apparent what novel possibilities the computer offers for visual exploration and for
entirely new genres of experience. Processing – a recent open-source programming language made by artists for
artists – makes it feasible to break both of these forbidding arguments. The goal of the workshop is to let
participants – including artists who have never ever programmed before – get an insight into the programming
language and its environment, practice making visual sketches and control them by using the mouse, and get an
outlook on the potentials by browsing selected digital artworks. The workshop will be organized around a series of
algorithmic visual tasks, to illustrate the basic algorithmic concepts and language constructs. By the end of the
workshop the participants will have created some own digital sketches, and will have a basis to develop their
programming knowledge further. This outcome may enrich the arsenal of individual artists. It is also useful for
educators who seek a first, attractive programming language to be taught in the secondary school, or for non
computer science students.

1. Introduction

Programming has not yet become a natural medium for artists. Looking at research papers and artworks
where computer was used at earlier Bridges conferences, we hardly find such single-author artist
mastering programming who had no prior mathematics or engineering education before or parallel to
his/her art studies. In my opinion there are two causes for this situation:

• to acquire sufficient skill in ‘serious’ computer programming languages such as Java or C++, and
the essential algorithmic thinking is normally beyond the capacity of artists,

• for many artists, it is not apparent what novel means the computer offers for visual exploration
and, even more, for entirely new genres of experience.

Let’s look at the two causes, which are indeed interrelated. While there have been ‘easy to learn’
programming languages around (like the famous Logo [1], or DBN, Design By Numbers [2]), these by
nature offer a limited range of graphical output, as of complexity and aesthetical quality. They are good to
get the taste of algorithmic thinking, but for serious works, one has to switch to one of the ‘real’
programming languages. These are far too different, more complex and harder to use. Moreover, these
languages were not developed especially for creating graphical output, but for all kinds of professional
programming tasks. The beginner has to fight through a lot of technical and non-inspiring aspects of the
language till manages to create something visible on the screen.

In another category are the dedicated tools, e.g. to make tessellations of fractal art. With these the artists
can produce only the certain genre of graphical output the tools was made for (like Julia and Mandelbrot

Bridges 2010: Mathematics, Music, Art, Architecture, Culture

555

sets). Moreover, it requires long experimentation and (trial and error) learning to find one’s way to some
original and satisfactory outputs. Unless one has from somewhere else the insight into the underlying
mathematical phenomena, the usage of parameters and tweaking the sw remains a matter of exploration
with surprises, not a design-like process.

Thus no wonder that real programming is considered to be out of reach for artists, and that they are
disappointed by the limitations of the tools they are able to use. Hence, it is hardly experienced that a
free, general-purpose 3d modeling or programming environment may give wings to creativity, in several
ways:

• creating virtual models is usually cheaper, faster and easier than making physical prototypes –
thus the digital model allows an efficient exploration and design for some tangible final piece;

• if an abstract mathematical representation and parametric framework is set up for making a digital
model, it is possible to generate a lot of variants, also ones which were beyond the artists’ mental
imagination;

• last but not least: digital artifacts can change in time, opening the entirely new domain of
animation and interactive experience. Here it is the code which itself becomes the material of the
artist, and – just as when working with traditional tangible medium – challenges him to use it for
something new, surprising, never seen before. And heard before, as the visual output can be
combined with sound, or even with triggers for other senses like vibration. On the control side of
interaction, it may be the conscious act of a single person, or the overall unconscious movement
of by-passers in a public space, or urban traffic, or changes in environmental data which are the
ultimate input parameters for some artistic visual or multimodal effects. Thus programming is an
unique medium per se.

Processing – a recently developed open-source programming language “made by artists for artists” –
makes it possible to break through these forbidding arguments, and offers the possibility for artists after a
friendly and relatively short learning period to try out their hands in the above domains . The main goal
of the workshop is to make novices familiar with the possibilities of Processing, as a tool which they can
learn and use for their own purposes.

During the workshop participants – including artists who have never ever programmed before – will get
insight into the programming language and its environment, will practice making visual sketches and how
to control them using light, sound or gesture, and get an outlook on the potentials by reviewing selected
digital artworks. It is impossible to learn any programming language in such a short time. But I expect
that participants’ prior concerns of programming will be washed off by intrigue and interest in
algorithmic art, and in using Processing for the making. As of the practical aspects, having seen the basics
and the rich learning resources of Processing, participants will leave the workshop with the confidence
that they can develop their programming knowledge further.

This outcome may enrich the arsenal of individual artists. It is also useful for educators who seek a first,
attractive programming language to be taught in the secondary school, or for non computer science
students.

2. The Processing Language

Processing grew out of the initiatives at MIT Aesthetics and Computation group led by John Maeda
between 1996 and 2003 [3]. The first public version of processing was published in Fall 2002, just after a
year Ben Fry and Casey Reas started development [4]. It got warm response and grew into an open
project, enriched by feedback, fascinating examples of usage and community-created libraries to share.

Ruttkay

556

Today the official web site [5] offers the (free) 1.0.X alpha versions for GNU/Linux, Mac OS X, and
Windows. Unlike its predecessor, the above-mentioned DBN, it is a fully expressive programming
language. For advanced users, it is possible to use all the expressive power of the Java language. But for
the novice programmer, it is a language with a simple syntax and with a reasonably small set of language
vocabulary – which can be naturally extended with experience.

Processing was designed to make interactive graphics. Without writing a single instruction, a drawing
canvas appears. This canvas, by using dedicated language elements and a flexible color model, can be
populated (by writing text-based code) by 2d pixel-based or vector-based images and 3d models, which
can be explored using the built-in navigation and lighting engine. It tells much about the intended usage
of the language that programs are called ‘sketches’. The language allows making experiments,
investigations in a few lines of code. From these initial small sketches more elaborate ones may be
created, by re-using, extending or modifying them in an incremental way.

Besides the attractive graphical features, the language offers easy to use mouse- and keyboard-based
interaction. Beyond that, it allows network communication, control via camera and image processing, and
there are ready to use libraries for sound input and output, as well as for electronic microcontrollers. Thus
it can be used for a range of applications from creating artistic drawings, via driving interactive
installations or visual and acoustic effects in theaters to data visualization. Moreover, as Processing is a
simplified Java language, with all the essential constructs of it albeit in a simplifing ‘packing’, after
having learnt Processing it is easy to switch to other general languages like Java or C++, or ActionScript
for web applications or OpenGL for sophisticated computer graphics.

3. The Learning Environment

Processing is integrated in a rich yet friendly development environment, to facilitate a smooth and
incremental learning process for individuals. The major features, in a nutshell:

• the environment integrates the text editor for writing the code, the entire language reference in a
basic and a full set, and a single-button-click compiler to see the result;

• the language itself can be used on three levels:
o single-line commands can be typed in to try out shapes;
o procedures and objects can be defined (and re-used, also from dedicated libraries) to

make more complex, interactive behavior;
o advanced users may include usual Java code in Processing.

• the environment locally offers example sketches to illustrate the usage of language constructs as
well as special tasks and the usage of some libraries;

• the on-line repository offers especially made for novices, but conceptually sound learning
resources (e.g. tutorials);

• the by the day growing exhibition from submissions from the community is a feast and
inspiration. As in most cases the code is also included, a valuable insight on ‘how it was made’.

Finally, the low-key wordings but highly professional and ready to use content, trust-based sharing of
code and knowledge on the related web-sites, and above all, creativity and aesthetics as ultimate criteria
for community-based feedback make also the open philosophy of Processing unique among other
programming languages.

Programming for Artists with Processing

557

4. Organization of the Workshop

The workshop will start with a short introduction about the nature of the Processing language and a
showcase of works (sketches) made with it, followed by a demonstration of how to use the processing
programming and learning environment. Then in the rest of the workshop participants will be challenged
by a series of visual tasks, one after the other. Participants will be working on their own (may be in pairs),
and assisted individually. Some sketches will be looked at and discussed jointly.

Taking a visual task as a starting point has several benefits:

• it is familiar and motivating to artists;
• as the tasks are all somewhat open, not fully defined, it gives space to creativity and a variety of

interesting visual outputs;
• from a hand-drawn sketch an algorithmic production plan will be created in natural language,

which will give a natural context for introducing the language constructs necessary to program
the intention in Processing;

• by making a series of yet more complex variants of a visual task, these can be dealt with by re-
use and extension of previous pieces of code.

Below we give an illustration of such tasks, with the mathematical and algorithmic concepts and the
outlook to further variants and language constructs. Some sketches for the tasks may be seen on-line [6].

 The visual task Algorithmic concepts Outlook
1. make a composition of some

n lines in a regular way
variables, parameters,
repetition, loop, array, line

Other geometric primitives
Color

2. make a composition as above
which changes with time

(illusion of) motion
animation

kinematic and dynamic
motion

3. make a composition as above
which reacts to the mouse

Interaction, event,
input/output

light, motion, and sound
events as means of control

4. make an irregular composition
of n lines

Randomness, generating
random numbers

Perlin noise

As of technical needs: each participant has to have own laptop or PC (Mac or Windows). Internet access
would be good, but not a must.

References

[1] The LOGO Foundation http://el.media.mit.edu/Logo-foundation/logo/
[2] Design by Numbers, http://dbn.media.mit.edu/
[3] MIT Aesthetics and Computation Group http://acg.media.mit.edu/
[4] Casey Reas and Ben Fry, Processing: A Programming Handbook for Visual Designers and Artists,

MIT Press, 2007.
[4] Ira Greenberg, Processing: Creative Coding and Computational Art (Foundation), Friends of Ed.

2007.
[5] The Processing web site http://www.pocessing.org
[6] http://create.mome.hu/ruttkay/visualtasks/

The above links were visited on 22.04.2010.

Ruttkay

558

http://el.media.mit.edu/Logo-foundation/logo/
http://dbn.media.mit.edu/
http://acg.media.mit.edu/
http://www.pocessing.org/
http://create.mome.hu/ruttkay/visualtasks/

