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Abstract 
 

This paper examines the role that a modified Catmull-Clark subdivision process can have in the generation of 
complex geometrical forms. In a first step, this paper presents modifications to the subdivision process’ weighting 
schemes. In a second step, this paper outlines strategies for a spatial specification of these weights using both 
intrinsic attributes of the mesh and external parameters. Finally, the paper presents forms generated with this 
modified process and method.  

 
 

Introduction 
 
Subdivision processes have traditionally been used in computer graphics to generate smooth surfaces 
from a coarser polygonal mesh. They are currently used extensively in 3D modeling and in character 
animation. This paper focuses on the Catmull-Clark [1][2] process and explores to what extent it can be 
used more generally as design tool to generate complex geometrical form. In the first part of the paper, 
the process’ weighting scheme is parameterized to allow for a variable interpolation of vertices. In 
addition, vertex extrusion parameters are incorporated. The second part of the paper explores strategies 
for a differentiated spatial specification of weights. On the one hand, intrinsic attributes of the mesh such 
as its topology are considered. On the other hand the use of external environmental weights is outlined. 
The appendix presents forms that have been generated using this approach.  
  
 

Parameterization of the Weighting Rules 
  

Subdivision Explained. Subdivision processes take as an input a polygonal mesh. They recursively apply 
a subdivision scheme to this mesh to produce a denser, generally smoother, output mesh. Subdivision 
schemes can be understood by considering two parts: topological rules and weighting rules. The 
topological rules specify how to obtain the combinatorics of the refined mesh from the combinatorics of 
the input mesh by generating new vertices, edges and faces. The weighting rules specify how to calculate 
the positions of these new vertices based on interpolation between vertices of the input mesh.  
 

The Catmull-Clark process generates smooth and rounded forms when using the prescribed 
weighting rules. By introducing parameters to allow for variations in these weighting rules, non-rounded 
forms with highly diverse attributes can be produced. These parameters are henceforth referred to as 
weights. Using a simple hexahedron as an input mesh can yield forms with features as diverse as 
concavity and convexity, the appearance of branching, porosity, and fractalization – just to name a few. 
Traditionally the scheme’s weighting rules calculate the position of new vertices strictly as an 
interpolation of previous-generation vertices. These rules are amended to allow the extrusion of vertices 
along face, edge and vertex normals.  This extended scheme is described below.  
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Extended Catmull-Clark Scheme. The Catmull-Clark process generates k new quadrilateral faces for 
each face in the input mesh, where k is the number of vertices of the face. The following is a step-by-step 
explanation of the process using the example of a hexahedron as an input mesh: 

 
Figure 1:  Subdivided Catmull-Clark hexahedron: input mesh and first iteration mesh 

1. For each face, generate a new face point that is an average of the face’s vertices. This point can be 
extruded along the face’s normal vector nf using weight wf. 
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2. For each edge, generate an edge midpoint that is a weighted interpolation of the new face points 
adjacent to the edge with the edge’s endpoints. This edge midpoint can be extruded along the edge’s 
normal vector ne (defined as an average of the normal vectors of the attached faces) using weight we. 
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3. For each initial vertex of the mesh, generate a new vertex point that is a weighted interpolation of the 
average F of all i face points touching the vertex with the average E of all edge midpoints for edges 
touching the vertex. The original vertex P factors into the equation when i exceeds 3. This new vertex can 
be extruded along the previous vertex’s normal vector np using weight wp.  

  

! 

" V 
1

= (F(1+ w
2
) + 2E(1# w

2
/2) + (i # 3)P

1
) /i +

! 
n p $ wp

. (3) 

4. Each new face point is connected to the new edge points of edges that made up the original face. Each 
new vertex point is connected to the new edge points of the original edges incident on the original vertex. 
 

Each of the extrusion vectors in the formulas above is scaled by the dimensions of the incident faces. 
After one iteration of this subdivision algorithm, vertices produced can be distinguished as deriving from 
face midpoints, edge midpoints, or previous vertices. Thus additional weights can be added to equation 
(1) to control the placement of subsequent midpoints: 
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Weights introduced in equations (1) to (4) can be integrated into weighting stencils: 

 
Figure 2: Catmull-Clark stencils for face points, edge points, and vertex points with the  

Introduced weights. The rightmost figure is the face point stencil for use after the first iteration. 
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Spatial Specification of Weights 
 
The previous section presented modifications to the Catmull-Clark subdivision scheme, primarily though 
the introduction of weighting parameters. These weighting parameter do not need to be constant for the 
mesh, but can be differentiated spatially. This differentiation greatly increases the scope of possible 
forms, and allows a high degree of control.  

 The concept of non-stationary weights implies that weights can assume distinct values at each 
iteration of the subdivision process.  Non-uniform weights imply using distinct values at different parts of 
the input mesh within one subdivision iteration. Three approaches to specifying non-uniform weights are 
considered: 

1. Variation based on the mesh’s intrinsic attributes 
2. Variation based on extrinsic parameters 
3. Variation based on tagging vertices and faces  

 
Variation Based on the Mesh’s Intrinsic Attributes. Each mesh at each iteration has a variety of 
attributes that allow for a discriminatory specification of weights. One of these attributes is the mesh’s 
topology as described by the graph of the mesh.  Specifically one can regard the vertex valence and the 
number of faces that a vertex is part of. Based on either one of these factors, or a combination of the two, 
one can assign attractor/deflector values to each vertex that will influence the placement of subsequently 
generated vertices. Alternatively, these attractor/deflector values can be assigned to specific face/edge 
configurations and to motives commonly found in the input mesh or to those that are produced during the 
subdivision iterations. 

 
Figure 3: Sample face/edge motives. Note that the fourth and the seventh figure 

from the left both have 3 faces and 4 edges, yet depict different topologies. 

The assigned attractor/deflector values can be incorporated in the Catmull-Clark subdivision 
equations. They can be combined with two new weights to influence the placement of face points and 
edge points. The two equations below are applied in the subdivision process after equations (1) and (2). U 
is the attractor/deflector value of a point based on its classification, and n is the number of points of a 
face.   
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By default, the Catmull-Clark process usually produces only two motives which are not necessarily 
contained in the input mesh. These two motives are the second and third examples from the left in Figure 
3, corresponding to the edge points and face points that are generated. However, further motives can be 
generated depending on the mesh model – and specifically the vertex representation - used in the 
subdivision application. Specifically, if two vertices produced in the exact same position are treated as a 
single vertex, then the topology of the mesh changes as this single vertex obtains the edges from both 
vertices that are in its place. Using this type of mesh model, the subdivision process can produce new 
motives that were not present in the input mesh, and for which additional attractor/deflector values can be 
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specified. These constellations can be intentionally invoked by specifying a minimum distance beneath 
which two close vertices are joined. Using these joined vertices introduces a type of non-linearity into the 
subdivision process: small changes in the subdivision weights can lead to seemingly abrupt changes in 
output as the mesh’s topology is altered.    

In addition to specifying weights based on the mesh’s motives, one can incorporate measures such as 
a subdivided face’s distance to an original edge or an original point. For each weight in equations (1) to 
(4), one can, for instance, specify two sub-values (one that corresponds to the minimum distance, one for 
the maximum distance) and interpolate between them depending on each face’s distance. Alternatively, 
weights can be assigned to reflect whether faces are derived from midpoints of corner points.  

 
Figure 4: Left and center figures are third-generation subdivisions of a quad showing the distance of 

each face to the original edges and original vertices respectively. Right figure is a fifth-generation 
subdivision of quad with shading to differentiate whether faces are derived from vertex or corner points.  

Beyond regarding the mesh’s topology, it is possible to specify weights based on the mesh’s local 
curvatures. One possible measure of curvature is the planarity of each quad of the surface. This can be 
expressed as the distance of a point from the plane that is defined by the remaining three points. This 
distance is divided by the perimeter of the remaining three points to arrive at a scaled planarity parameter. 
The planarity parameter can be used to amplify or attenuate both the vertex weights in equations (1) to 
(4), or alternatively one can specify sub-values and interpolate between them using the local planarity 
parameter. Curvature mappings shown in figure 5 can be used to monitor where each sub-value is applied.   

 
Figure 5: Sixth-generation subdivisions of a tetrahedron, hexahedron, and dodecahedron displaying their 

curvature as expressed by the planarity of the surfaces. 

Variation Based on Extrinsic Parameters. If one understands the mesh as being located in an 
environment, then one can place points that represent sets of subdivision weights in this environment, 
either at locations directly on a mesh or in its proximity. For each face, the distances to these sets are 
calculated to determine the sets’ levels of influence. These levels of influence are themselves weighted 
values. The subdivision weights contained in each set are then weighted according to the sets’ levels of 
influence at each face. This concept is shown in figure 6. 
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Figure 6:  2D example showing the effect of four weight on one face of the mesh. The curved lines 

represent the weight sets’ level of influence c, with the bold lines indicating a weighted value of 0.9.  

The level of influence weight ca of a set a is calculated as shown in equation (8), where the dist 
function represents the distance between a set and the face, h is the strength of the set, n is the total 
number of sets, t is a ‘tightness’ control exponent greater than 1, and the maximum possible distance of 
two points is assumed to be 1. The subsequent calculation of a weighting value wx based on values 
contained in the sets wx,a and the sets’ level of influence weights c is shown in equation (9). 
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In a simplified version of this scheme, one can assign two sets of weights to positions along an x, y, 
or z axis. Values are interpolated linearly if the face’s corresponding coordinate falls between the sets, 
and otherwise the value of the closest set is used. In addition to these linear gradients, radial and spherical 
gradients with two or more weight sets can be applied. In all cases, translation, scaling and rotation of the 
input mesh or the environment modifies the position of vertices relative to the weight sets and thus leads 
to changes in output.  

  
Variation Based on Tagging Vertices and Faces. A further method to incorporate non-uniform weights 
is through tagging of vertices and faces in the input mesh. Each vertex can be assigned to a vertex group, 
or alternatively each face can be assigned to a face group. Sets of subdivision weights can then be 
specified per group. This approach enables the locking of certain parts of the input mesh, by fixing the 
positions of vertices belonging to a certain group for one or multiple iterations of the subdivision process. 
This allows for the generation of hard edges, creases, and spikes. It also affords a degree of control over 
curvature. A similar scheme was used in the animated film Geri’s Game [3].  

 
Figure 7:  Seventh-generation subdivision of a hexahedron with the bottom right edge of its input 
mesh locked, where Le specifies the number of iterations during which the edge remains locked. 
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Conclusion 

By adding degrees of freedom to both the subdivision weighting schemes and to how the schemes are 
applied, the scope of forms that can be generated increases greatly. The attached illustrations always take 
the simplest input meshes – the platonic solids – yet generate forms that exhibit and astounding 
complexity. Unlike forms generated through typical additive processes, these form are not explicable 
through reductionism. It is, on the contrary, often difficult to discern the source of the forms, much less 
the exact nature and parameters of the processes applied.  
 
It is beyond the scope of this paper to describe the correlations between individual settings and the 
geometric attributes these generate. Yet the processes behave mostly linearly, so that small changes in 
weighting values lead to gradual, traceable changes in output. Though they are not entirely predictable, 
the processes are deterministic and they are reproducible. Rather than simply providing a mechanism to 
smoothen a mesh, these expanded subdivision processes can be used as a design tool to generate an 
astounding enrichment of and complexity in these meshes.  
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Illustrations 

 

        
 
Figure 8:  Two eighth-generation subdivisions of a hexahedron using only the modified Catmull-Clark  
process. Weights are non-stationary but uniform. The figure on the right relies heavily on the use of 
extrusion of the face midpoints and corner points.   

 

        
 

Figure 9:  Two ninth-generation subdivisions of a hexahedron. Weights are non-stationary and non-
uniform, employing extrinsic environmental parameters to create spherical gradient. The figure on the 
left uses edge locking, which is employed after the 8th iteration.  
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Figure 10: Two subdivisions of three vertically stacked hexahedra. Forms are in their tenth generation 
and have up to 16 million faces. Weights are non-stationary and non-uniform, employing intrinsic and 
extrinsic parameters.   

Further images can be viewed at:  
http://www.michael-hansmeyer.com/html/solids/p0.html 
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