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Abstract 
 

In this paper, we weave Borromean Rings to create interesting objects with large crossing number while retaining 

the characteristic property of the Borromean Rings. Borromean Rings are interesting because they consist of three 

rings linked together and yet when any single ring is removed the other two rings become unlinked. The first 

weaving applies an iterative self-similar technique to produce an artistically interesting weaving of three rings into a 

fractal pattern. The second weaving uses an iterative Peano Curve technique to produce a tight weaving over the 

surface of a sphere. The third weaving produces a tight weaving of four rings over the surface of a torus. All three 

weavings can produce links with an arbitrarily large crossing number. The first two procedures produce Brunnian 

Links which are links that retain the characteristic property of the Borromean Rings. The third produces a link that 

retains some of the characteristics Borromean Rings when perceived from the surface of a torus.   

 

 

1. Borromean Rings and Brunnian Links 

 
Our goal is to create interesting Brunnian Weavings with an arbitrarily large crossing number. The 

thought in this paper is that Borromean Rings become more interesting as they become more intertwined. 

Borromean Rings consist of three rings linked together and yet when any single ring is removed the other 

two rings become unlinked. Figure 1.1 shows the most common representation of the Borromean Rings. 

This name comes from their use in the Borromeos’ family crest in the fifteenth century. Although Peter 

Tait, in 1876, was the first mathematician to study these rings, the name Borromean Rings was not used 

until 1962 in a paper by Ralph Fox. See [5] for an excellent discussion on the history of Borromean 

Rings, which, not surprisingly, includes examples that precede their use by the Borromeo family. 

 

The Borromean Rings consist of three linked rings which are 

pair-wise unlinked. We can see that  they are pair-wise unlinked 

by noting that the light gray curve always crosses over the medium 

gray curve, the medium gray curve always crosses over the dark 

gray and the dark gray curve always crosses over the light gray. 

The Borromean Rings is the simplest example of a Brunnian Link. 

A Brunnian Link is a collection of loops linked together such 

than if any one loop is cut and removed the other loops separate 

into unknotted components.  

 

Throughout this paper, we make sure that at each step of our 

process our links retain this Brunnian Property by following two 

guiding rules of construction that we observe in Figure 1.1. The 

first rule restricts how loops cross each other. The second rule Figure 1.1: Borromean Rings 
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restricts how loops cross themselves. Three threads can cross each other in six different over/under 

combinations as shown in Figure 1.2. Our first rule of construction is to only allow different loops to 

cross over each other according to the crossings on the left of Figure 1.2. That is: 

light gray  >  medium gray  >  dark gray  >  light gray 

where “>” means crosses above. Second, we require that each individual component of the link, when 

ignoring the other components, remains unknotted. Notice that the crossing ordering is non-transitive. 

Note that non-transitivity is expected since knowledge about two crossings ordinarily does not imply 

anything about the adjacent crossings. Our first construction in this paper will remain consistent with the 

second rule by only adding simple twists. For the other two 

constructions we remain consistent with this rule by not having 

any self-intersections. Note that for both rules the concept of 

crossings is only valid when the link is projected onto some 

two-dimensional surface. For our first construction, we project 

onto the plane. For our second, we project onto the sphere. For 

the third, we project onto the torus. The first two projections are 

topologically equivalent but the third case is not.  

 

 

2. A Self-Similar Weaving of the Borromean Rings 

  
In this section we weave the standard planar projection of the 

Borromean Rings by cutting and pasting small copies of the Borromean 

Rings into a larger Borromean Ring. This construction was inspired by 

Robert Fathauer’s graphic design Infinity[4] presented in his paper 

Fractal Knots Created by Iterative Substitution[3]. The Borromean 

Rings in Figure 2.1 contain seven regions consisting of three distinct 

types: A, B, and C. In this paper we shall place small copies of the 

Borromean Rings into all of the regions of type A. We shall then place 

tiny Borromean Rings into all the regions of type A in the small rings. 

This process can be continued an arbitrary number of times. Applying 

this process to region B is less interesting. It turns out that this process 

fails when applied to regions of type C. 

 

Since we glue rings of like colors, once we shrink the original image, we will need to flip the image 

so that points P1, P2 and P3, in Figure 2.2, on a small copy of the rings line up with points Q1, Q2 and Q3 

on a large copy of the rings. To have the rings smoothly transition from the large to the small, we need to 

have the ring thinner at all of the Q’s and thicker at all of the P’s.  For this particular overlap of rings, we 

need to shrink the rings by a factor of 

1/5 and so the initial ring needs to be 

5 times thicker at the P’s than at the 

Q’s as shown in Figure 2.3. We are 

now ready to cut three small copies 

of Figure 2.3 at the P’s and cut a 

large copy of Figure 2.3 at the Q’s 

and carefully paste together as shown 

in Figure 2.4. Although this process 

can be repeated indefinitely, only one 

or two more iterations are practical. 

Figure 2.5 shows a perspective view 

of the rings after two iterations.  

Valid Crossings      Invalid Crossings 
 

Figure 1.2: The Six Crossing Types  

Figure 2.3: 

 Adjusted for Thickness 
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P1 
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Figure 2.2:  
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Figure 2.1: Regions 
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The rings shown in these 

Figures 2.4 and 2.5 are Brunnian 

Links since they follow the two 

rules listed above. When any one 

ring is cut and removed, the other 

two rings separate into two distinct 

layers due to the crossing rule in Figure 1.2. Once these two rings separate into layers, we can repeatedly 

untwist the smallest rings in each component until each ring is unknotted.  

 

Now observe that if we tried to apply a similar procedure in region C then point P1 on the smaller 

copy would attach to point P1 on the larger copy. With careful distortions of the rings, this could be 

accomplished. However, the next iteration must also attach at the same point. Thus, if the top left side of 

the top ring was attached to the top right side of the medium size ring then medium ring would attach to a 

tiny ring. But then this tiny ring would have to reattach back to the top right of the large ring! In general, 

any point, such as the P’s, that is used to attach to a larger ring can not be used to attach to a smaller ring. 

This prevents an iterative replace procedure of the Borromean Rings in region C for this projection.  

 

   

3. A Spherical Brunnian Weaving with Three Threads 
 

In this section we increase the level of complexity by creating a dense weaving 

which retains the Brunnian Property. Since our construction will look more 

like weaving with yarn we shall call each component a thread instead of a ring. 

Our goal is to create a tight weave meaning that we can apriori set a size so 

that any region of this “small” size contains all three threads. To achieve this 

we use a technique similar to Peano Curves to iteratively replace each region 

with a more complex region so that each segment of thread is replaced by a 

longer and thinner segment of thread that intertwines with threads on its right 

and intertwines with threads on its left. Unlike Peano Curves, we do not take 

this to the limit. The projection of the Borromean Rings in Figure 1.1 has a 

boundary which presents an extra level of difficulty. To avoid a boundary we 

rearrange the Borromean Rings to encompass a sphere, as shown in Figure 3.1.  

 

Before we begin replacing regions, let us observe three properties of the initial configuration. First, 

observe that by projecting the threads of Figure 3.1 onto the enclosed sphere, so that “down” means 

towards the center of the sphere, we retain the crossing rules from Figure 1.2 that the dark gray thread is 

Figure 3.1: 

 Borromean Rings 

Encompassing a Sphere 

Figure 2.5: A Planar Brunnian Weaving 

Figure 2.4: First Iteration 
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Figure 3.2: Triangle Substitution 
Initial Triangle  Triangular Weaving 

A B 

C 

m 
B A 

C 

m

above the light gray thread which is above the medium gray thread which is above the dark gray. Second, 

observe that the rings partition the surface of the sphere into eight triangular regions. Third, notice that 

when we allow one color to be mapped onto another, we have rotational symmetry about any diameter 

line which passes through the center of any opposite pair of triangles. Finally, notice that relative to the 

projection onto the sphere, none of the rings have self-crossings. 

 

A Triangular Weaving. Our first substitution rule is to replace every triangle of the form ABC, shown in 

the left side of Figure 3.2, with the weaving shown on the right side of Figure 3.2. Notice that the dark 

thread along side AB on the original triangle is 

replaced by a dark thread that starts at B but 

exits the object at the midpoint m of side AB. 

Looking at the midpoint is a simple way to 

determine the correct coloring of the threads. 

Notice that both the triangle on the left and the 

weaving on the right use only the valid 

crossing stated in Figure 1.2: light gray 

crossing above medium gray crossing above 

dark gray crossing above light gray. This is the 

simplest weaving that satisfies our crossing 

property. 

 

Now let us consider a pair of triangles attached along side AB. If we rotate Figure 3.2b about point m 

then the dark thread would align correctly, but the colors would be off at B. In the original triangle, B is 

the intersection of the dark and light threads, but by rotating this weaving, the medium gray is now 

attaching to point B. On the other hand, if we flip the weaving as a mirror image across the line AB, then 

the dark thread starts at B and loops right back to B. Of these, we cannot have a thread looping back. 

Thus, we must rotate the object and then recolor in the opposite color pattern changing from dark-light-

medium to dark-medium-light when reading counterclockwise. We must also flip the crossing on the new 

triangle to remain consistent with our crossing rules.  

 
To check the validity of this substitution, 

we apply it to the pair of triangles shown on 

the left of Figure 3.3. We can now see that 

the dark thread starts at A and ends at B after 

weaving throughout both triangles. In 

general, when tracing a thread in either 

direction, the thread weaves first into the 

triangle on the threads right-hand side and 

then into the triangle on its left-hand side. We 

can call the top triangle an over triangle and 

the bottom triangle an under triangle reading 

the weavings in a counterclockwise fashion. 

Since every vertex of a weaving has degree four, we can always color all of the faces of any weaving with 

two colors in a checkerboard fashion. Here we can call these “colors” over and under. This demonstrates 

that the pair wise replacement pattern is valid for the entire object since every adjacent pair of triangles 

contains both an over triangle and an under triangle. 

 

The First Iteration.  Applying this substitution step to the eight triangles in the Borromean Rings in 

Figure 3.1, we obtain the weaving shown in Figure 3.4a. All four views in Figures 3.4 and 3.5 are from 

the center of a triangle in the “Northern Hemisphere”. As can be seen in Figure 3.4b, the removal of the 

B A 

C 

D 

B A 

C 

D 
Figure 3.3: Substitution for a Pair of Triangles 
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dark gray thread unlinks the light gray thread from the 

medium gray thread so that the light gray could be 

expanded outwards to be “above” or outside a sphere 

which contains the medium gray. Moreover, by 

construction and as can be seen in Figure 3.5, each 

individual thread has no self-crossing relative to the 

sphere and so each thread is unknotted. Similarly, the 

other threads are unlinked when a thread is removed 

demonstrating that this weaving is a Brunnian Link.  

 

Symmetry. Since Figure 3.1 has rotational symmetry 

about the center of any triangle, and since Figure 3.2 

has rotational symmetry about its center, so does the 

final Spherical Weaving in Figure 3.4a. A rotation of 

120
o
 along the axis of the viewpoint rotates each 

thread onto the next color. We can see this rotation 

best by comparing Figures 3.5a, the equatorial thread 

that weaves up and down into the Northern and 

Southern Hemisphere, and Figure 3.5b, the thread that 

loops over the North and South Pole. 

 

A Hexagonal Weaving. To extend 

the weaving to the next level we must 

create a replacement procedure for 

hexagons that is consistent with our 

crossing rules and is consistent with 

the triangular weaving. Figure 3.6 

shows an outside hexagon (thin) with 

a replacement weaving (thick). 

Consistent with triangles, each thread 

first weaves into the face on its right 

side, returns at the midpoint of the 

side and then weaves into the face on its left side. We see in Figure 3.7 that the triangles and the hexagons 

have the same half hexagon pattern along the edges. Thus, this hexagon substitution is consistent with the 

triangle substitution given in Figure 3.2 verifying that this hexagon weaving will join with another 

hexagon weaving or with a triangle weaving and form a pair of hexagons along the common edge as in 

Figure 3.3. The author conjectures that this is the minimal weaving which will satisfy our requirements. 

 

The Second Iteration. Applying the hexagon replacement rule and the triangle replacement rule to the 

triangles and all the hexagons in Figure 3.4a we get the Spherical Brunnian Weaving in Figure 3.8. As 

before, this view is the same view as in Figures 3.4 and 3.5. In Figure 3.9, we see a single thread and a 

pair of threads as viewed from the North Pole. Observe that a single strand has four-fold symmetry. The 

weaving only has two-fold symmetry about the North Pole. The complete weaving does not have four-

fold symmetry because if we allow the light and the dark to switch then every crossing will be backwards. 

We can see that a quarter rotation in Figure 3.1 switches the crossings. We can also see that to exchange 

two colors in our crossing rule causes all of the crossing orders to reverse. 

 

Euler Characteristic. The substitution step introduced hexagonal regions. We can use Euler’s Formula 

to demonstrate that introducing polygons of higher order is necessary. Euler’s Formula states that the 

number of Faces – number of Edges + number of Vertices = 2 for a sphere. Using an idea from Conway’s 

Figure 3.4:  

A Spherical Weaving      Light above Medium 

Figure 3.5: Rotational Symmetry 

The Equatorial Thread      A North Pole Thread 

Figure 3.7: 

 Triangle Edge      Hexagon Edge  

Figure 3.6: 

A Hexagon Weaving  
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book The Symmetries of Things [2], we can 

calculate the characteristic of an individual face. 

Every edge of the face has a value of  since the 

edge is shared between two faces. Every vertex is 

of degree four since it represents a crossing of two 

threads. Thus, every vertex is shared by four faces 

and has a value of . Thus, our triangular faces 

have a characteristic of 1 – 3·  + 3·  = . Since a 

sphere has characteristic of 2, any weaving using 

only triangles must consist of exactly 8 triangles. 

As we add extra triangles, we must compensate by 

adding polygons with negative characteristic. A 

Brunnian weaving must alternate the strands of 

thread forcing each polygon to be either an over or 

an under orientation of the crossings. Therefore, 

our three colors must cycle around the edge of 

every face. Thus, the number of edges of every 

polygon must be a multiple of 3. Here we use 

triangles and hexagons. It may be possible to use 

polygons of higher order. Since hexagons have 

characteristic 1 – 6·  + 6·  = - , for every pair of 

extra triangles we must compensate with one 

hexagon. In general, for any weaving with 

hexagons and triangles on the 

sphere or on the plane: 

#Triangles  =  2 · #Hexagons  +  8. 

 

Counting Faces. Looking back at 

Figure 3.3, we see that the 

triangular weaving produces a pair 

of hexagons along edge AB. Thus, 

we can count the faces in the 

weaving in Figure 3.2 as nine 

triangles, one hexagon, and six half 

hexagons. In general, every triangle 

is replaced by 9 triangles and 4 

hexagons. Thus, the Borromean 

Weaving in Figure 3.4a consists of eight times this number: 72 triangles and 32 hexagons. Counting the 

faces in Figure 3.6, we see that every hexagon is replaced by 13 hexagons and 24 triangles. Repeatedly 

applying these formulas counts the number of triangles and hexagons in each iteration of this weaving 

process. The values are listed in Table 3.10.  

 

The Crossing Number. The crossing number 

for a link is defined as the minimum number of 

crossing for all possible projections of this link 

onto a plane. Determining the crossing number 

is often difficult. In our case, we may use a 

theorem conjectured by Tait in 1876 and proved 

in 1987 by Thistlethwaite, Kauffman, and 

Murasugi: If a projection of a link onto the 

plane is reduced and if the crossings alternate 

Weaving 

Level 

Number of 

Triangles 

Number of 

Hexagons 

Crossing 

Number 

0 8 0 6 

1 72 32 102 

2 1,416 704 2,118 

3 29,640 14,816 44,454 
 

Figure 3.10: 

Crossing Numbers for Spherical Borromean Weaving 

Figure 3.9: Views from the North Pole 

The Equatorial Thread  Light Gray above the Medium Gray 

Figure 3.8: 

 A Three-Thread Spherical Brunnian 
Weaving with Crossing Number 2,118 
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then the crossing number of the link is the crossing number of this particular projection of the link. 

Although we projected these weavings onto the sphere, topologically this is equivalent to projecting onto 

the plane. That is, we may enlarge any one face in our weaving, peal the weaving off the sphere and lay it 

flat while preserving the crossings. Thus, the crossing number of each weaving is simply the number of 

vertices. To count the vertices we again use Euler’s Formula. Since every vertex is attached to four edges 

and since every edge has two vertices, there must be twice as many edges as vertices. Substituting this 

into Euler’s Formula: 

Crossing Number  =  #Vertices  =  #Faces  –  2  =  #Triangles  +  #Hexagons  –  2. 

 

A Tight Weave. Let us assume that we have three Borromean Rings circling the Earth. By looking at the 

two replacement weavings, we see that at each stage the diameter of each polygon shrinks by at least a 

half at each iteration where diameter means the maximum distance between any pair of vertices in the 

polygon. After 36 iterations, the diameter of every face in the weaving would be less than 1/200
th

 of an 

inch. This would be comparable to high quality 400 thread-count linen. 

 

 

4. A Tori-Brunnian Weaving with Four Threads 
 

Can we weave threads without using triangles? By Euler’s Characteristic, triangles are the only polygons 

with degree 4 vertices with positive characteristic. However, since 

squares have a characteristic of 0 and tori have characteristic 0, we can 

tile a torus with as many squares as we wish. But a square weave is just 

regular fabric! Let us consider the piece of fabric shown in Figure 4.1. 

Notice that crossings of the thread colors follow the ordering: 
Light gray  >  Medium gray  > Dark gray  > Black  >  Light gray 

where “>” means “crossing above”. This weaving has the property that 

when any one color is removed the other three colors separate into 

layers and each layer contains parallel threads of the same color. In 

Figure 4.2, the dark gray thread has been removed. The weaving now 

separates into a top layer of black threads, a middle layer of light gray 

threads, and a bottom layer of medium gray threads. 

 

 We now want to apply the standard process of identifying opposite edges of Figure 4.1 to roll this 

piece of fabric into a torus. First, roll the top edge down to meet the bottom edge to form a tube. When we 

do this, the dark gray threads connect to form a single thread spiraling around our tube. Likewise, the 

light gray threads connect to form a parallel thread spiraling around our tube. Next, we can pull the two 

ends of our tube around and connect them to form a torus as shown in Figure 4.3. When we do this, the 

two loose ends of the dark gray threads join and the two 

ends of the light gray threads join to each form single loop 

with no self-intersections relative to the surface of the torus. 

Likewise, the black thread and the medium gray thread wrap 

around the torus passing through the hole of the torus once 

and join to form a second pair of parallel loops of threads. 

Thus, this weaving is now a link consisting of four 

components, the different colored threads. Any loop on the 

surface of a torus with no self-crossings is called a torus 

knot. Thus, each of the four threads are torus-knots. The first 

two are called (m, 1) since they pass through the hole of the 

torus m times while making a singe revolution around the 

torus. The second two threads are called (1, n) since they 

pass through the center once while revolving n times.  

Figure 4.1:  A Fabric Piece 

with Four Thread Colors 

Figure 4.2:  Three Colors  

Forming Three Layers 

Figure 4.3:  A Tori-Brunnian Weaving 

using Four Threads 
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 We project this weaving onto an enclosed torus so that our 

sense of up and down, and hence of “crossing over,” is relative to 

the local region of the surface. Since every local region of the torus 

is equivalent to the piece of fabric shown in Figure 4.1, our crossing 

rules remain valid. Thus, as we see in Figure 4.4, when any one 

thread is removed the other three threads are tori-splittable, they can 

be separated into layers over the torus. In Figure 4.4, the black 

thread has been removed and the medium gray thread forms a layer 

between the other two threads with the light gray thread above and 

the dark gray thread below. Since each layer is a torus knot, we see 

that the original link is tori-Brunnian in the sense that when any one 

thread is cut and removed, the remaining threads are tori-splittable into three torus knots. 

 

 

5. Future Considerations  
 

There are a variety of paths for future consideration. First, one could embed successively smaller 

Borromean Rings into the center region of a Borromean Ring. The result might not have a fractal look, 

but perhaps the center will provide an illusion of disappearing off to infinity. Second, a reviewer noted 

that hybrid objects that combine the first two procedures could be explored. In particular, the final image 

from Section could be embedded into the eight triangular regions in Figure 3.1. Third, it would be 

interesting to physically construct the spherical and the torus weavings. Notice that the mathematical 

challenge for the threads to separate into layers when any one thread is removed seems at first a very bad 

idea for fabric. Isn’t Brunnian weaving opposite to the concept of “rip-stop”? Sometimes “yes”. See [1] 

for an extreme case of Brunnian Clothes which rapidly unravel! And sometimes “no”. When a thread 

breaks in fabric, one does not just remove it! In this paper, if a thread breaks and is not removed, the 

result might not be much different than from regular fabric. A broken thread on the Tori-Brunnian 

weaving is equivalent to a broken thread on regular fabric since locally they are equivalent. Returning to 

the idea of physically constructing these weavings, one notices that this ability to separate into layers 

provides a mechanism for the construction. The threads could be placed into position, on either a sphere 

or a torus, one at a time. Then, due to the Brunnian Property, only the last thread needs to be woven 

through all of the previous threads! The ability to create fabric that is not planar could have practical 

applications. Most likely it would be more useful to be able to weave a hemisphere rather than a sphere. 

Weavings with a boundary add an extra level of complication that was intentionally avoided in this paper. 

If you are interested in exploring these weaving, contact the author for the Mathematica code. 
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