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Abstract
A miter joint connects two beams, typically of the same cross section, at an angle such that the longitudinal beam
edges continue across the joint. When more than two beams meet in one point, like in a tree, we call this a branching
joint. In a branching miter joint, the beams’ longitudinal edges match up properly. We survey some principles of
branching miter joints. In particular, we treat joints where three beams with identical cross sections meet. These
ternary miter joints can be used to construct various branching structures. We present two works of art that involve
branching miter joints.

1 Introduction

The miter joint is a well-known way of connecting two beams of the same cross section at an angle. For a
regular1 miter joint, both beams are beveled at half the joint angle. In a properly executed miter joint, the
longitudinal edges continue nicely across the joint (see Figure 1). Whatever the first beam’s rotation about
its center line and whatever the intended joint angle, it is possible to choose the second beam’s longitudinal
rotation to make a regular miter joint. Thus, there are two independent, continuous degrees of freedom (you
can experience this with [2]). The shape of the cross section is also completely free.

Joint angle = 60.0°

intact beam beveled at 30◦ 60◦ miter joint

Joint angle = 120.0°intact beam (rolled 45◦) beveled at 60◦ 120◦ miter joint

Figure 1: Regular miter joints, showing two independent degrees of freedom: joint angle and roll angle

1In a regular miter joint, the cut face lies in the internal bisector plane of the joint angle, in contrast to a skew miter joint [1].
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Miter joints can be used to construct linear figures from beams. Closing such a figure into a loop can be
a challenge, since the longitudinal edges can fail to continue across the last joint [1]. In this article, we study
another challenge, which arises when connecting more than two beams in the same joint. The goal is again
to have longitudinal beam edges match nicely at the joint. We call them branching miter joints. These joints
are useful to construct more complicated objects, like stick polyhedra and trees.

Section 2 presents some general principles of regular branching miter joints, in particular where three
beams of the same cross section meet. We describe the impossible cuboid in Section 3. It involves eight
regular ternary miter joints. An object with five joints that each connect four beams is shown in Section 4.
Section 5 concludes the article.

2 General Principles for Ternary Miter Joints

Let us first investigate the regular ternary miter joint connecting three beams having the same cross section.
Three given line segments, labeled A, B, and C, meet in one point at fixed angles. We will describe the
direction of a line segment by its longitude and latitude. In our first examples, we have segment A at
0◦ longitude and 0◦ latitude (on the equator); segment B at 90◦ longitude West and 0◦ latitude; segment C at
45◦ longitude West, and 61◦ latitude North. Consequently, we have 6 AB = 90◦, the angle 6 AC = 6 BC≈ 70◦.

These line segments will be the center lines of three square beams to be connected by a branching miter
joint. In order to have the longitudinal beam edges meet up properly, each pair of beams needs to form a
proper binary miter joint when ignoring the other beam. There are three such pairs.

We start with a square beam that has segment A as center line. It can still be freely rotated, but any rota-
tion of beam A will enforce a rotation of the beam along segment B, and similarly of beam C. However, also
the rotation of beam B will enforce a rotation of beam C. Thus, we may have two conflicting requirements
on beam C as illustrated in Figure 2.
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Figure 2: Binary miter joints derived from ternary meeting point: A forces B, A forces C, B forces C

This conflict is even more obvious if we superimpose the two rotations for beam C as enforced by beam A
and by beam B. Figure 3 shows the result.
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Figure 3: Superimposed binary miter joints derived from ternary meeting point, illustrating a mismatch
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If we rotate beam A clockwise, then this enforces counterclockwise rotations of beams B and C. But
this rotation of beam B will enforce its own clockwise rotation on beam C. Therefore, by suitably rotating
beam A, the mismatch between the two rotations imposed on beam C can be reconciled, since they rotate
in opposite directions. It turns out that there are two qualitatively different ways in which the miter joint
can be made to work. On the left in Figure 4, there is a point where three longitudinal beam edges meet (in
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Figure 4: The two ways in which a ternary miter joint can match properly

fact, two such points, but the other one is not visible). On the right in Figure 4, there are no such points; the
longitudinal beam edges meet pairwise. There is a ternary meeting point (in fact, there are two such points),
but it is a meeting of cut edges.

In summary, if three segments meet in a point with given relationships (the mutual angles), then there
is only a discrete set of longitudinal rotations that works. To make a regular ternary miter joint work, you
cannot independently vary both the angles and the rotations. One will restrict the other. Alternatively, if we
start with a binary miter joint to connect beams A and B, then there is only a limited set of directions from
which a third beam C can join this pair and form a proper ternary miter joint.

Figures 5 and 6 concern a pair of square beams A and B mitered at 90◦ and lying in the horizontal plane.
Figure 5 shows the five ways in which a third square beam C can be join them when restricted to the upper
half of the bisector plane between beams A and B.
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Figure 5: Given a binary miter joint connecting square beams A and B, there are five directions for beam C
to make a proper ternary miter joint, if it is restricted to the upper-half of the angle bisector plane

Figure 6 shows from which directions, in general, beam C can meet the mitered pair to make a proper
ternary miter joint, i.e., when beam C is not restricted to the bisector plane. The end of beam C away from
the joint moves on a sphere. The thick lines correspond to directions where the rotational mismatch (i.e.,
difference in rotation of the cross sections of beam C as induced by beams A and B) is a multiple of 90◦. On
the equator the rotational difference is 0◦. Taking the direction of beam C equal to either beam A or beam B
produces a singularity.

From this figure, it appears that the locus of end points C, such that the ternary miter joint matches, lies
in four discrete planes (one of them the horizontal plane, which contains two ‘branches’). All these planes
contain the end points A and B of beams A and B. We have not proved this, and offer it as a conjecture.
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Figure 6: Plot of the rotational mismatch at beam C when square beams A and B are mitered at 90◦; the
direction of beam C is determined by its endpoint on the sphere; mismatches of 90◦ and 180◦ have been
marked; on the equator the mismatch is 0◦.

In general, the ternary miter joint will match if the amount of rotational mismatch is a symmetry of the
beam’s cross section. In case of a square beam, this corresponds to multiples of 90◦. For equi-triangular
beams, the rotational difference needs to be a multiple of 120◦.

Note that if the cross section is not mirror symmetric, then a matching ternary miter joint is impossible,
because beams A and B induce cross sections at beam C that are mirror images. This is illustrated in Figure 7.
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Figure 7: A ternary miter joint is impossible when the cross section is not mirror symmetric.

A different way of understanding all this, is to imagine a closed linear structure following the path C, O,
A, O, B, O, C, where O is the central meeting point, and A, B, and C are the endpoints of beams A, B, and C
respectively. At A, B, and C we imagine regular fold joints [1] at an angle of 180◦, and at O there are three
regular (binary) miter joints. This closed six-beam figure is self-intersecting; in fact, on OA the two beams
coincide, as well as on OB. However, the two beams on OC need not coincide, depending on the rotational
difference of their cross section. In [1], this difference is called the total torsion along the path. Observe
that the number of fold joints involved is three, which is an odd number. Hence, according to the Odd Fold
Matching Theorem [1], there are two rotations of the cross section that create a matching joint at C. These
two proper closures correspond to the two properly matched ternary miter joints mentioned earlier.
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3 The Impossible Cuboid

Next to the stairs in Escher’s lithograph Belvedere, sits a man holding an impossible cuboid, while looking
at the drawing of a Necker cube (Figure 8). This inspired Dick Baas Becking to try and design a real object
that would look like the impossible cuboid from an appropriate viewpoint, without resorting to interrupted
edges. The Foundation Ars et Mathesis commissioned Popke Bakker, an artist known for his use of miter
joints, to realize Dick’s idea.

Figure 8: An impossible cuboid in Escher’s litho Belvedere (only a fragment shown)

This design involves eight ternary miter joints. It turned out to be far from obvious how to tune the
details of Dick’s initial idea so that all ternary miter joints match properly. The second author was then
asked to complete the design. He started with two interlocking squares connected by four cross beams. This
still leaves a lot of freedom. For each configuration, the total amount of mismatch can be calculated. He
wrote a computer program that iteratively searches for a suitable configuration by successively adjusting the
parameters to minimize the total mismatch. After some experimentation, the program surprisingly found a
feasible solution: see Figures 9 and 10.
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Figure 9: Tubualar version of The Impossible Cuboid, viewed from two different angles
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The final design shown in Figure 10 consists of twelve square beams connected by eight regular ternary
miter joints. Six of these joints are of the first type as shown on the left in Figure 4; the other two have the
second type (these two are clearly recognizable toward the center in Figure 10). The design is completely
characterized as follows (see Figure 9, left). The six ‘faces’ of this ‘cuboid’ are two congruent squares
(AA′D′D and BB′C′C, with angles of 90◦), two congruent parallelograms (AA′B′B and CC′D′D with 6 BAA′ =
6 A′B′B = 45◦ and 6 AA′B′= 6 B′BA = 135◦), and two congruent non-planar quadrangles (ABCD and A′B′C′D′

with 6 ABC = 6 CDA = 60◦, and 6 DAB = 6 BCD = 90◦). The beam lengths satisfy AB : BC = 1 : 1+1/
√

2≈
7 : 12. The beams are rotated arctan(

√
2− 1) = 22.5◦. Initially, we were amazed that his design involves

only such ‘nice’ angles. In hindsight it can be understood why this design works, without resorting to
computer programs. In fact, there is another solution by rotating the beams over 45◦. All ternary miter joints
than change their type. Popke Bakker realized the resulting design in various sizes and materials. A large
stainless steel version (see Figure 10) is located on the Art Route at Erasmus University Rotterdam [3].

Figure 10: The Impossible Cuboid (1988, stainless steel, location: Erasumus University Rotterdam [3])
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4 Miter Joints with More Than Three Branches

When four beams of the same cross section meet in a point, the situation becomes even more complicated.
In this case, there are 6 pairs of binary miter joints to consider. Alternatively, one can first join three beams
by a ternary miter joint and then try to fit in the fourth beam. This fourth beam needs to form matching
miter joints with each of the three other beams. In general, this cannot be made to work by rotating the cross
section appropriately (as was possible for the ternary miter joints). The cross section and the joint angles
need to agree ‘intimately’.

In [4], the fish-like state graph of Figure 11 (top left) appears. It describes the possible behaviors of a
delay-insensitive system with two input ports a and b and two output ports d and e. The system starts in
the center state labeled 0, and each arrow corresponds to an event on the corresponding port. The two states
labeled 1 are actually a single state.
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Figure 11: ‘Fish’ state graph (top left) and sculpture (three views) involving regular quaternary miter joints

The second author rendered this graph in 3D to avoid arrow crossings. The design is shown in Figure 11
and Figure 12 presents two wooden sculptures. Each of these sculptures consists of sixteen beams, having
an equi-triangular cross section. They enjoy the 24 symmetries of the group S4, which is also the symmetry
group of the tetrahedron. There are six places where two beams meet and five places where four beams meet
in regular quaternary miter joints. The design would not work with a square beam.

5 Conclusion

We have characterized the conditions to construct branching miter joints that connect multiple beams having
the same cross section, in such a way that their longitudinal beam edges match at the joint. In contrast to the
binary miter joint (connecting two beams), the branching miter joint imposes restrictions on the combination
of joint angles and longitudinal rotation of the cross section. These branching miter joints can be applied in
artwork, as we have illustrated.
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Figure 12: Fish sculptures (1994, wood, two versions, with beams rotated over 60◦)

Note that the fractal trees designed by the second author do not involve ternary miter joints as treated in
this paper. In those fractal trees, the cut faces do not contain the point where the center lines of the beams
meet. Rather, the thicker branch is treated as a pair of thinner parallel beams, each connecting to a thinner
branch through a binary skew miter joint. This will be presented in a future paper.

Acknowledgments All artwork and pictures were made by the second author. The illustrations were
made with Mathematica and Xfig.

References

[1] Tom Verhoeff, Koos Verhoeff. “The Mathematics of Mitering and Its Artful Application”, Bridges
Leeuwarden: Mathematical Connections in Art, Music, and Science, Proceedings of the Eleventh Annual
Bridges Conference, in The Netherlands, pp. 225–234, July 2008.

[2] Tom Verhoeff. “Miter Joint and Fold Joint”. From The Wolfram Demonstrations Project,
http://demonstrations.wolfram.com/MiterJointAndFoldJoint/ (accessed 26 January 2010).

[3] Erasmus University Rotterdam. Art Route. http://www.eur.nl/english/art/artroute/ (accessed
31 January 2010)

[4] Tom Verhoeff. A Theory of Delay-Insensitive Systems. Dissertation, Eindhoven University of Technol-
ogy, Department of Mathematics and Computer Science, 1994. ISBN 90-386-0353-3.

Verhoeff and Verhoeff

34


