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Abstract 

 
If we are asked to visualize a Möbius band, we do not think first of its symmetry. However, if we make a model of a Möbius band 
with a computer program (for example, with Maple) and examine its boundary from different points of view, we get various 
interesting, symmetrical figures. A model of a Möbius band can be constructed by joining the ends of a strip (long rectangle) of 
paper with a single half-twist. It is interesting to observe how the resulting band transforms as we vary the ratio between the long 
and short sides of the rectangle. When will the surface intersect itself? We shall analyse these problems with multiply-twisted 
strips. The second part of this article deals with the connection between the Möbius band and frieze patterns. 

 
Rosette Groups and the Möbius Band 

 
A discrete group of congruence transformations of the plane without translation symmetries is called  a 
rosette group. Rosette groups fall into two distinct families, according to whether they consist of rotations 
only (cyclic groups Cn), or also include reflections (dihedral groups Dn of order 2n, and Cn is a subgroup 
Dn). The boundary of a multiply-twisted band can be rendered as an attractive rosette in the plane. 

  
Figure 1 Boundary of the 4-twist Möbius band  

 
Figure 2 Boundary of the 5- and 7-twist band 

 
Frieze Patterns and The Möbius Band 

 
A frieze pattern is generated under the action of a discrete group of congruences, in which all translations 
are parallel to a single axis. A mathematical analysis reveals that there are seven different possible frieze 
patterns, in which one basic motif is repeated an infinite number of times. To illustrate frieze patterns we 
can use various designs such as alphabetics [2] and folk art design [4]. In this article I consider patterns 
whose motifs are projections of the boundary of a Möbius band and of a sometimes twisted band.  
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The Relationship Between Frieze Patterns and the Möbius Band 

We now consider the relationship between the Möbius band, the cylinder, and the frieze groups. What 
does this mean graphically? We can make two-way joins of two opposite edges of a rectangle, as shown in 
Figure 3. In the first case we get a cylinder, in the second case a Möbius band. 

    

Figure 3 Cylinder and Möbius band from a rectangle 

Consider, for example, the pattern p112. Draw it into the first rectangle of Figure 3, then copy it by the  
arrows, as shown in Figure 4. Since the motif permits a halfturn, i.e., a twofold rotation about its midpoint, 
a second halfturn will also occur about a point between the two motifs, so that we obtain translation, 
according to the arrows. 
 
The type p1a1 refers to the case where an asymmetric motif is inscribed into a Möbius rectangle and 
repeated using the oppositely-oriented arrows, i.e., by glide reflection (as indicated by the letter ‘a’ in the 
name). This latter transformation is nothing but a reflection followed by a translation along the reflection 
line (optionally applied in the opposite order). The composition characterizes the Möbius band. The glide 
reflection above can be produced also by a composition of a vertical reflection and of a halfturn, where the 
rotational centre does not lie on the mirror line. Then we can repeat the vertical reflection and halfturn 
along the horizontal line through the twofold centres as the pattern of type pma2 shows. One can then 
imagine that horizontal reflection or glide reflection in a pattern may involve the existence of a horizontal 
glide reflection in the pattern, and a Möbius band rectangle to the motif, with or without self-symmetry. 
Such a Möbius rectangle is possible with patterns p1m1, p1a1, pmm2, and pma2. With the other pattern 
types, only the cylinder rectangle can be used. Of course, two Möbius band rectangles together provide a 
cylinder. 
 

 
 

 

Figure 4 Cylinder, Möbius band and patterns p112, p1a1, p1m1, respectively 

In some patterns, the motif itself is symmetrical. The name of the pattern type encodes this fact as well. 
We can choose a smaller asymmetric domain of the motif, in such a way that the symmetry operations 
already acting on this domain will produce the whole pattern. Such a smallest domain is called a 
fundamental domain (it is not unique, in general). This characterizes also the so-called quotient space or 
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orbit space, since a fundamental domain (in its interior) contains only one point from each orbit. The first 
pattern is the single one, which has only one type of symmetry, namely a  basic translation to generate the 
frieze group. The orbit space of this first pattern is just a cylinder. 
 

 

Figure 5 The quotient space or orbit space of the frieze group p111, the parallel arrows, glued together, 
yield a cylinder. 

In the second pattern we assigned two halfturns, denoted by the green rhombs. In Figure 6 we glued 
together the image points on the edges of rectangle BCDE under the halfturns in such a way to become 
two cone surfaces to form an “open pillowcase”. 

 

Figure 6 The quotient space of the frieze group p112 

The third pattern contains a reflection in a horizontal mirror line. The surface will be a cylinder where the 
reflection mirror forms a boundary at the bottom.  
 

 
Figure 7 The quotient space of the frieze group p1m1 

The following pattern (Figure 8)—as mentioned above—is produced by one motif that is repeated by a 
glide reflection, yielding the Möbius band as the quotient space. We can notice analogous features in the 
last pattern (Figure 9). But interestingly, the motif of this pattern has a reflection symmetry in a vertical 
mirror, and a centre of twofold rotation as well. 

 

Figure 8 The quotient spaces of the frieze groups p1a1 and pma2 

The fifth and sixth patterns contain only additional reflections, thus both quotient spaces are rectangles, 
though the horizontal reflection in pmm2 leads to an additional boundary segment. 
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Figure 9 The quotient spaces of the frieze groups pm11 and pmm2 

 

Figure 10 The quotient space of the frieze group pma2 

Finally, we have a curiosity: Rotating the boundary of a Möbius band, a typical motif of Hungarian string-
decorations appears. 

 
 

Figure 11 
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