BRIDGES PÉCS

MATHEMATICS, MUSIC, ART, ARCHITECTURE, CULTURE

ART EXHIBITION CATALOG

MATHEMATICS, MUSIC, ART, ARCHITECTURE, CULTURE

Bridges: Mathematical Connections in Art, Music, and Science

Pécs 2010 European Capital of Culture

)ninetamineme
ministry MINISTRY
OF EDUCATION
AND CULTURE
nka
$\underset{\text { jest }}{\substack{\text { ETPAN } \\ \text { fest }}}$
ART EXHIBITION CATALOG 2010
Robert Fathauer and Nathan Selikoff, Editors Tessellations Publishing

BRIDGES PÉCS

SCIENTIFIC ORGANIZERS

George W. Hart	Reza Sarhangi
Department of Computer Science Stony Brook University New York, USA	Department of Mathematics Towson University
Kristóf Fenyvesi	Towson, Maryland, USA

PÉCS CULTURAL CENTER ORGANIZERS, PÉCS, HUNGARY
Andrea Lakner Brückler, Zoltan Rózsa, Jolán Somlyay, Éva Gergely, Edit Lajtai
Bernadett Dékány Kónya, Edith Kiss, Katalin Judit Gerdei, Zsófia Stiller, Dávid Barkóczi Gabriella Kollár, Balâzs Kajor, Péter Molnár, Béla Fenyvesi, András Bodó Ibolya Kovács, Róbert Lovas, László Guth

REGIONAL ORGANIZERS

Slavik Jablan Mathematical Institu
Belgrade, Serbia

Ferhan Kiziltepe
Yildı Teknik Üniversites
Yildız Teknik Universites
Istanbul, Turkey Museum Foundation, Hungary

BRIDGES WORKSHOPS: CREATIVITY AND LEARNING

Mara Alagic	Paul Gailiunas
Wichita State University	Newcastle, England
Wichita, Kansas, USA	

Wichita, Kansas, USA
Newcastle, Englan

BRIDGES VISUAL ART EXHIBITION

Anne Burns (Juror)	Robert W. Fathauer (Curator)	Nat Friedman (Juror)
Long Island University New York, USA	Tessellations Company	University at Albany
Phoenix, Arizona, USA	New York, Albany, USA	
István Orosz (Juror)	Nathan Selikoff (Webmaster)	
West Hungarian University, Sopron	Digital Awakening Studios	
Budakeszi, Hungary	Orlando, Florida, USA	

CONFERENCE WEBSITE AND ELECTRONIC CORRESPONDENCE

George W. Hart	Craig Kaplan	Nathan Selikoff
Stony Brook University	University of Waterloo	Digital Awakening Studios
New York, USA	Canada	Orlando, Florida, USA

CONFERENCE ADVISORY BOARD

> Craig Kaplan David R.C Cheriton School of Computer Science. University o

Waterloo, Canada
Carlo H. Séquin
EECS, Computer Science
University of California

Berkeley, USA

ART EXHIBITION COMMITTEE

Ergun Akleman
Visualization Sciences Program
Department of Architectur
Texas A\&M University

Robert Fathauer (Chair)

Tessellations Compans
Phoenix, Arizona, USA
George W. Hart
Department of Computer Science
Stony Brook University
Stony Brook, New York, USA
Reza Sarhangi
Department of Mathematics
Towson University
Towson, Maryland, USA

Edith Kiss

Pécs Cultural Center
Pécs, Hungary

EDITORS

Robert W. Fathauer
Tessellations Company
Phoenix, Arizona, USA
Nathan Selikoff
Digital Awakening Studio
Orlando, Florida, USA

Bridges Pécs Conference Art Exhibition Catalog (http://www.bridgesmathart.org). All rights reserved. General permission is granted to the public for non-commercial reproduction, in limited quantities, of individual pages, provided authorization is vidual artworks and associated text in the 2010 Conference Art Exhibition Catalog remain under the control of the artists.

ISBN: 9780980219197
ISSN: 1099-6702
Printed by Reálszisztéma Dabas Printing House, Managing Director: Magdolna Vágó
Published in the framework of Pécs 2010 European Capital of Culture program organized by Hungarofest Nonprofit Ltd Managing Director: Rita Rubovszky

Published by Tessellations Publishing, Phoenix, Arizona, USA (©2010 Tessellations)
Distributed by MATHARTFUN.COM (http://mathartfun.com) and Tarquin Books (www.tarquinbooks.com).

Cover Artworks: Krystyna Burczyk, Francesco De Comité, Bjarne Jespersen, Antal Kelle, Mohammad Yavari Rad, Sean Stewart, and Suman Vaze

Cover Design: Ergun Akleman
CD-ROM Production: Craig S. Kaplan

TABLE OF CONTENTS

Attractors 2
Expression 1, Coming together
Expression 2, Spreading
Briony Thomas ...
Reidun \#1
Reidun \#2
м
Udovico Einaudi-Con inostri piu cari saluti, with Symmorphmetry Study 1 graphic
Krystyna Burcz
Just squares
Rectangles $\begin{array}{r} \\ \text { s square }\end{array}$
Red in white
Metamorphosis: Butterflies
Mike Field
terflies

Iterations 2006

ButIsItArt
ClowningAround
ExplodingFracta
Doug Dunham........................
Smoothly Colored Squares 45
Randomly Colored Squares 46
Randomly Colored Circles 46
Hexagons with Three Colors
Elaine Krajenke Ellison...
Mathematical Harmony
Mathematical Harmony
Tiled Torus
Dániel Erdély.........................
Sphidron deformation of a disc
Sphidron deformation of a disc 1
Hexnut
Lattice I
House

Slot Canyon Abstraction No. 2
Francesco De Comité
Following the edges of Archimedean............................
A compound of five hamiltonian circuits on a rhombicosido-decahedron
Stones Spirals
Felicity Wood..
Cubes wrapped on the skew [with one, two and three bands]
Olivier Perriquet \& Lou Galopa. ALPHA
Paul Gailiunas
Anglesey Arrows 2
Anglesey Arrows 3
Gary Greenfield....
Robot Drawing \#21091
Robot Drawing \#21550
Robot Drawing \#22298
Robot Drawing \#22992

Henry Segerman...
Sphere Autologlyph
Torus Autologlyph
Ian Sammis............
Exponential Mo.......
Möbius Peano

OdraNoel redivivus
dYEAR
dBORDER
ChessForever with Vasarely
Jacques Beck ... 48
Coquillage (multisculpture)
Christopher Carlson....
\qquad
Cuboid Warcus..
Cuboid
The Wall III
Arch
Trident
Conformal map
Conformal map \#15
Batik construct
The origin of Time
The jeweler loupe
Circuitous Glow (Yellow on White)
Circuitous Glow (Yellow on Yellow)
Root Intervals (Yellow)
Root Intervals (Red-Orange)
Minimal Flower 3
Minimal Flower 3
Minimal Flower 4
\qquad
Untitled: 107
Untitled: 10
Cubed 18

Chrome 163
$\ldots60$
Jonathan McCabe ..
Kaz Maslank
Salvation
Whispers

face 3
moiré 6
5 p
3 p 1
Laura M Shea ... 66
Starburst
In or Out
High Noon

Mosaic 1
Sport Pub

Sport Publication 2
Mosaic 2
Louise Mabbs....
Borromean Rings 3 (pur/gre/tur)
Borromean Rings 3 (pur/gre/t
Chain Link 1 (Yel/GrelPur)
Magnus Wenninger
School of Fish Geodesic
Marcel Tünnissen
Sectified 24-cell
RUHR Metropole 2010,4
RUHR Metropole 2010,
RUHR Metropole 2010,
RUHR Metropole 2010, 3
Zsofia Ruttkay..

Piotr Pawlikowski..
Triangles and Squares
Squares and Triangles I
Squares and Triangles

Margaret Kepner .

17 Book
Quilt 100 Book
Quilt 100 Book
Hex Study with Circles
Hex Study with Cir
Perm Mod 4 Exp
Reza Sarhangi....
Calm
. .92

Trinity
Samuel Verbiese.. $9 M^{-}$
${ }^{\text {Fractal' }}$ Molden Pyramid .
Sean R Stewart...
Algebraic Blister
Colourful Myopia

Immaterial Transit
Poly-dimensional Black Square
Star Poly-D
Carlo H. Séquin
Knot 5.2
Regular Map R3.2_\{3,8\} on a Tetrus
Tiffany Lamp Based on Regular Map R3.2_\{3,8\}
Suman Vaze
Sacred Cut
Sacred Cut
The Pascal Lin
Three Fish on a Plate-Common Chords
Pedal Triangle II
Teja Krasek.......
2 in 1 Variation
The Pascal Line
TwinStar
TwinStar
Heartwork No. 1
Hideki Tsuiki.
Imaginary Cubes
Imaginary Cube Sculpture
(Sierpinski Tetrahedron layou)
Imaginary Cube Sculpture (Cuboctahedron-like layout)
Imaginary Cube Sculpture (Cuboctahedron-like layout, Wood)
U
....................
A Surface of Revolution
Expressive Math
Rectifying the Circle
Xavier De Clippeleir
Transforming Cube
Transforming Cubic Lattice
Transforming Triacontahedron

Bridges 2010, in Pécs, Hungary promises to offer another exciting and inspiring installment of the annual series of math and art conferences that have been held since 1998. After visiting the USA (several times), Canada (twice), Spain (twice), Britain, and the Netherlands, we are very pleased to be in Eastern Europe for the first time, in the beautiful city of Pécs, Hungary. Pécs has long been a center of learning, as the home of the largest and oldest university in Hungary, dating back to 1367. The city has a long history of Roman, Ottoman, Turkish, and Hungarian culture since its founding in the early second century. Remains of its early history are recognized as a UNESCO World Heritage Site. For 2010, Pécs is being recognized by the European Union as a Capital City of Culture, and the Bridges Conference is proud to be part of this celebration of its cultural life and development

Hungary is the home of many great mathematicians and artists who will be celebrated in various ways during the Bridges Conference. For example, the artist Victor Vasarely, the designer Marcel Breuer, and the mathematician János Bolyai will each be discussed in presentations during a special Hungarian Day at the conference. The inventor and professor of architecture Ernő Rubik will lead a special discussion about Rubik's Cube and other puzzles he has designed. And the international award winning Hungarian mathematician, László Lovász, will open the Bridges Conference with a plenary talk about the beauty of mathematics.

The Bridges Pécs conference has received enormous support from the Pécs Cultural Center. We thank its director Andrea Lakner Brückler and staff members, especially Kristof Fenyvesi, for all the local arrangements they have organized. In preparation for the arrival of Bridges, they have been holding an annual art-math conference series, entitled Pécs - Ars
GEometrica (PAGE), since 2007 and running a mathematics education program, entitled Experience Workshop, since 2008. In addition, we thank György Darvas for making many local arrangements and invitations.

Pécs is the home of the world famous Zsolnay Porcelain Manufactory, a center for historical and contemporary ceramics and porcelain. To celebrate the arrival of Bridges in Pécs, Dániel Erdély curated and organized the ScienTile Exhibition at the Zsolnay Cultural Center. A panel of judges reviewed and selected the entries. We would like to thank him, his jurors, Simon erbly, Andras Foda this exhibition to reality.

The proceedings book has grown in both size and quality. For the first time in the history of Bridges, the number of accepted articles published in the proceedings has surpassed one hundred! This jump is due to an overall increase in the number of submitted articles. The program committee that oversaw the reviewing process spent many hours studying and discussing the articles, with input from an army of external reviewers. To limit the proceedings to a single volume, many submissions were restricted in length. Fortunately the EasyChair system worked well to streamline the process. We are grateful to the University of Manchester, England, for providing this service.

The growth of the community interested in mathematics and art and other connecting fields also shows itself in the large draw of the Art Exhibition, which this year hosts seventy-four artists from all over the world. This important component
works in color photographs. We are very grateful to Robert Fathauer along with Anne Burns, Nat Friedman, and István Orosz for organizing this event and for jurying the many submissions. We also thank Edith Kiss of the Pécs Cultural Center for helping with logistical challenges and the hanging of the exhibition in Pécs. We thank Ergun Akleman for designing the Proceedings cover and Art Exhibition Catalog cover using artwork selected from the exhibition. Nathan Selikoff is especially thanked for creating a new online system for Exhibition submissions and automatic catalog generation, and for taking over general maintenance of the extensive Bridges website.

The conference also keeps growing in several other directions due to the creativity and special effort of many dedicated individuals. This is most visible in the special Bridges Nights program:
-For our Theater Night this year, the Bridges Conference will present The Secret Life of Squares. Karl Schaffer and Erik stern, both college professors, along with company dancer Saki, show the connections among disciplines through their ighly physical, engaging choreography using humor and entertaining audience interactions. Their art addresses symmetry, number sense, the history of ideas and, ultimately, how we think.

- Dmitri Tymoczko, a music professor at Princeton University, is the curator of Music Night, a public concert of acce sible music inspired by mathematical themes. It will feature composers such as Fernando Benadon, Clifton Callender, introduction about their mathematical connections. We would like to thank the performers of the musical pieces, the Avéd-Fenyvesi Quartet, the Handbell Choir of the ANK Primary School of Pécs, and Katalin Gál Poór. We also thank Vi Hart for organizing a separate informal session of music by conference participants.
- More artists and educators than ever are using movies, videos, and animations for different purposes ranging from education, industry, and art. An important objective of the Bridges Organization is to introduce participants to innovative and integrative techniques that promote interdisciplinary work in the fields of mathematics and art. The Math/ Art One-Night Film Fest is a new feature of the conference and a new venue for talented and creative minds around
the world.

The authors, the artists, and others who come to learn and enjoy the conference through many venues of talks and exhibitions are visiting this year from about thirty different countries around the world. Many others who would have loved to, but could not attend, will still be reached by conference products such as the Proceedings, the Art Exhibition Catalog, and It work, and photographs taken by participants. Thus, in virtual way those who miss these exciting days in Pécs will art work, and photographs taken by participants. Thus, in a virtual way, those w
still be connected and those who do attend can revisit their memories repeatedly.

The Bridges Organization Board of Directors
http://www.BridgesMath Art.org

STATEMENT

Invented and patented the "Haronograph of Moscovich", an analog computer which was one of the key Serendipity" art exhibition in 1968, at I.C.A. in London.
The "Harmonograms of Mosovich", the unique original creations of the harmonograph were exhibited the $60^{\prime \prime}$ s and $70{ }^{\prime}$ sat dozens of exh all around the world.

HARMONOGRAMS OF MOSCOVICH
nalog computer originals. 24×24 inches. 1968.
Creations of the patented "Harmonograph of Moscovich" one of the key exhibits at the "Cybernetic Serendipity" milestone art exhibition, held at the I.C.A. in London in 1968, acclaimed as the best math art of the time.

MIKE NAYLOR

STATEMENT
My artwork currently focuses on imagining and expressing mathematical forms and ideas with the human body

MELT INTO YOU
Digital Prints. 4frames, $12^{" x} \times 12^{" e a c h . ~} 20$ depicting the mathematical voyage of two figures which blend into one. The work is an example of the Droste effect, a recursive artistic effect in which a picture contains a smaller version of itself. It is named for late product that in 1900 featured on its packaging a picture of nurse hold-
ing a package of the cocoa, which has ing a package of the cocoa, which
a picture of the nurse holding a pack age of cocoa, and so on. "Melt into you" starts with an image of 2 people, which is transformed by a uniform radial scaling of the image and then joined to a similar copy of itself. The
effect is then enhanced by effect is then en trace by applying sively surreal effects.

STATEMENT

The objects of my art are paper polyhedron models, most preferable uni form ones. The nets are constructed paper of $80 \mathrm{~g} / \mathrm{m} 2$. They are cut out with scissors and knives and assembled with glue. My initial motivatio came from pictures of M. C. Escher

SNUB DODECADODECAHEDRON
Xerographic paper. 380 mm Diameter. 2008.
The Snub Dodecadodecahedron (Wenninger Number 111) is made of 12 penta gons (yellow), 12 pentagrams (red) and 60 triangles (each twelve in light green blue and light grey). So seven colours were needed. The model was created with Stella 4D. It consists of 924 facelets.

STATEMENT

A new method by using Structural Cloning Method (SCM) and Leaping lerated Function System (LIFS) to xplore chaotic patterns in Landscape Paintings is presented. SCM is a visuinterface to define different comband LIFS is an improved version
of Iterated Function System (IFS) within SCM. Instead of exponen ral growing loading while iterating, IFS takes only constant computing esources. SCM and LIFS together and aesthetic, and they mathemaic fractals more tractable. Supported by
mathematics and digital technology it is already a breakthrough to draw visual elements. However, it is much more challenge to convey a natural eeling in such a painting without the feeling of mathematics.

CHAOTIC LANDSCAPE PAINTING

Structural Cloning Method (SCM) is a visual interface to define different combinations of geometry transformations and Leaping Iterated Func-
tion System (LIFS) is an improved version of Iterated Function System. Instead of exponential growing loading while iterating; LIFS takes only constant computing resources. From the viewpoint of visual design, SCM and LIFS together build a bridge between mathematic and aesthetic,
and they then make fractals more tractable. In this artwork, all the visual elements, including mountains, rock, tree, grasses, ripples, fog, etc., are designed by multiple generators in LIFS in a few leaping iterations, following by a sequence of manual geometrical transformations. Some chaotic patterns can be adapted from
others, for example, ripples can be others, for example, ripples can be
adapted from mountain and cloud. However, it is much more challenge to convey a natural feeling in such a painting without the feeling of mathematics.

ANNE BURNS

Almost all of my computer-generated art is a result of a recursive process. I am fascinated by recursion and the complexity that can be achieved by repeatedly applying a simple transformation to an initial object and
changing the parameters at each stage. My Bridges 2010 entries are all variations on the same theme, an iterated function system, but with different parameters and different color assignments.

CIRCLES-FIVE
Digital Print. $13^{\prime \prime} \times 19^{\prime \prime}$. 2009. An Iterated function system with five-fold symmetry.

CIRCLES-EIGHT

CIRCLES-SIX
Digital Print. $13^{" x} \times 19^{\prime \prime}$. 2009. An iterated function system with six-fold symmetry

ANDREIA HALL \& PRUDÊNCIA LEITE

University of Aveir
Aveiro, Portugal

STATEMENT

We are interested in linking Math ematics with Art using different mediums. Presently we are using patchwork
to reproduce mathematical elements. to reprodace mathematicalerno dia-
For instance, we used Voronoi grams, fractals and symmetry to create patchwork patterns. The present work explores Voronoi diagrams resembling floral designs.

FLORAL VORONOI I

Vintage fabrics, sewing threads and accessories. $55 \times 55 \mathrm{~cm} .2010$

FLORAL VORONOI II

Vintage fabrics, sewing threads and accessories. 55×55 cm. 2010

This work uses patchwork and quilting techniques and is based on a
Voronoi diagram which was built in Voronoi diagram which was built in such a way that it resembles a floral
picture with two big flowers. Voronoi diagrams are a special kind of decomposition of the plane into regions (cells) determined by the smallest
distance to a specified discrete set of distants (called the Voronoi sites). In points (called the Voron sites are cre-
this work, the Vorol atively explored through sewing and application of other material such as lace and felt.

ANDREIA HALL \& DULCE ABREU
University of Aveiro/Jardim Infância da Chave - Gafanha da Nazaré
Aveiro, Gafanha Nazaré, Portugal
dulcepnabreu@gmail.com

STATEMENT

The Department of Mathematics of the University of Aveiro hosts a
project on non-formal teaching of project on non-formal teaching of
Mathematics which is developed in interaction with the surrounding interaction with the sulr onding
community, in particular primary and pre-schools. In this project we create stories concerning certain mathematical concepts and we invite children to participate in the elaboration of the scenarios for the stories.
One of the stories concerns geometric solids. Several children were asked to create platonic solids which become sculptures in an invented city, made up of many three dimensional shaped buildings. In addition they also recreated the existing music hall of Oporto, Casa da Música,
intended for the imaginary city The present work results from a joint colpresent work results from a joint col-
laboration with the Pre-school Chave of Gafanha da Nazaré.
CASA DA MÚSICA, OPORTO, PORTUGAL

(top) Mixed medium and painted card

 board. $35 \mathrm{~cm} \times 25 \mathrm{~cm} \times 23 \mathrm{~cm} .2010$. This work is a small scale plastic recreation, performed by 5 and 6 years old children, from Pre-school Chave of Gafanha da Nazare, Portugal, ofthe existing music hall of Oporto, the existing music hall of Oporto, Casa da Musica. The buiding istalar
outstand example of an irregular polyhedron. on irregula

PLATONIC SOLIDS

(bottom) Mixed medium on card board. $50 \times 50 \times 15 \mathrm{~cm} .2010$.
This is a set of Platonic solids, created by 3 to 6 years old children, from Preschool Chave of Gafanha da Nazaré, Portugal. The set is intended for an imaginary city where each building solids represent sculptures which stand in a main public square.

ANNA VIRÁGVÖLGYI

STATEMENT

I intended to make elements wear on itself the features of the entire set
which include them. To find these which include them. To find these state. The marked state here is a cylinder striped by various colours. Elements are congruent squares (they may be considered words, codes, propositions, concepts, cells, etc. as well). There are ornaments on cylinder include each combinatorial pos-
sible square with the same number of stripes continuously. In consequence

of its origins certain elements can cohere (fit together) and others do no the squares various constraints of coherence of elements are accepted or rejected. So the shape and inner structure of the resulting pattern visualise coherency. (Coherency is examining like the criteria of beauty and truth.)

48 DIFFERENT SQUARES

 Digital print on canvas. $18^{\prime \prime} \times 18^{\prime \prime} .2008$.This is a pattern of 48 different squares. Albeit the arrangement of the squares is not regular, since all the elements are different, the whole surface is symmetrical. There are several inner pattern with identical outer form. Other changes in the neighborhoods of the elements engender different outer shapes. Ther the plane and on surfaces of solid figures as well.

PILIS
Digital prit 12" x 15". 2010

This is a special picture of our favourite place of excursion. The level lines of the tourist-map were vectorized and shaded according to the scale of height. Coauthor Szécsi József

A UNIVERSAL CYCLE Digital print. 6" $\times 18^{\prime \prime}, 2008$

A picture of an unwrapped cylinder. The universal cycle "abcabababc bcbcabcabcbcacbacabacbc acacababcacabcb" includes all possible words of length six from the lphabet ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) in which no letters of the alphabet are paired. The pic-
ture is created by substituting stripes for letters of the universal cycle. Due of the nature of universal cycles all possible diagonal striped square tiles with six stripes-each differ from its neighbour) can be found in this picture.

STATEMENT
I create my geometrical objects on the one hand with traditional sculpture making methods and on the other hand with high technology that allows for interactivity and animation. I work with "everyday" geometrical solids and constructions, but I take parts of them and deforn and project them. I make several
new movable objects which are then new movable objects which are then
transformed from abstract forms to organic forms and vice versa.

INDIAN DESIRE

This is a model of an 80 foot tall moving steel tower to be built in
Ahmedabad, India. The shape of the Ahmedabad, India. The shape ortion
column came from the traditional Hindu temples and Muslim mosques (such as Cutab Minar). I combined and abstracted these forms into a non-regular prism, cutting it into six pieces. The moving steel sculpture will twist, change shapes, and change colours, controlled by the observer
(with the help of sophisticated powered robotic motors and special soft ware).

Painted wood. $50 \times 25 \times 25 \mathrm{~cm}$ (3D work). 2000
kREABAU

This object is a set of basic geometrical solids combined with each other. They are deformed spheres, cylinders and cubes. They have individual properties, such as direction. There are many possibilities for building cubist sculptures.

Helix Interactive Composition 3D is made up of two similar parts. Both of made up of two similar parts. Both of up of 10 flexible segments. The starting forms were simple sections of deformed cones. The segments were arranged consecutively, adjoining each other along boundaries. The segments are movable and the boundar-

RAYMOND ASCHHEIM

STATEMENT

As one of a few Hypersculptors, I'm using mathematics, computer science, and rapid prototyping technologies, to produce sculptures of
high dimensional objects. To exhaust gh dimensional objects. To exhaus . netically levitate and freely floatin in ourly levitate and freely floatig link to the earth. My hyper sculptures illustrates my NKS-E8 Theor of Everything, It says that the void is
an hypercrystal made of a trivalent network From Set theory topole gives a data structure, which gives a geometry. Then data defaults creates forces and matter following Lisis's E8 model. I exposed in intersculpt bien nale since 2003, and in Grand Palai express what the universe is on its express what the universe is on its
fundamental level, searching for the Truth, and luckily, finding Beauty.

BRAINVERSE

umide, magnets. $16^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$. 2010 . rainVerse is a minimal model of universe. It's a trivalent network of 2 neurons. Each neuron has a triple structure and holds 24 internal and 24 external bits. The externals are connected to other neurons. This NKS set--theoretically network offers E8 symmetry and encodes all par3 family of 64 fermions.

HYPERDIAMOND

Transparent Act
$8^{\prime \prime} \times 8^{\prime \prime} .2010$.

Mn μ оu touc кúк入ouc tápatt\& (DO NOT DISTURB MY CIRCLES)

HyperDiamond is a four dimensional attice with F4 symmetry, composed 125 cubes. Two intertwining net nd the other of all odds coordinates, re mixed so that each cube is linked 024 first order neighbours and 24 second order neighbours. Neighbor hoods have the symmetry of the cell regular polytope, and its dual, iself rotated and scaled by square root of two. This space-time crystal
build a manifold compatible with eneral relativity when curvature is added. Internal dimensions, inside the cubes, by replacing the 48 va
lence by a trivalent internal network hold naturally E8 symmetry encoding standard model with 3 fermion amilies and massive neutrinos + ravity. Curvature comes from internal defects in the cubes and defines frmions and bosons, and their dyfermio
namic.

Polychrome Resin, Mag
fellds. $7^{\prime \prime} \times 6^{\prime \prime} \times 6^{\circ}, 2009$.

not disurb nave tápatte, " ast sentence of Archimede. This art piece is in his honor. It has the shape of the most known Archimedean solid, the truncated icosahedron, also used as a soccer ball, and also realized in nanotechnology as a C60 molecule, the buckyball, one of the But it is made only of circles, of twe different sizes, 12 for the pentagonal
faces, and 20 for the hexagons. The bottom circle includes a magnet. All he sculpture is in metastable electronating around a vertical axis. The 32 circles are conceptual views of the 32 neurons in a minimal 4 dimensional heckerboard lattice brainverse on S3. It encompasses 24-cell symmetry, he code for a Theory of Everything.

AURORA

STATEMENT

I focus on depicting the energetic building blocks of the universe, the grid upon which the molecules
the physical world are arranged. recurring patterns and use of the colors of the rainbow are intentional and significant as they are the "grammar" of the universal language which is expressed in every aspect of nature. None of my work is computer generated, and this is important because my is to embody these sacred geometrie is to embody these sacred geometries
and then express those forms through the movement of my physical body.

CHILDREN OF TRUE HUMANITY

Acrylic paint on wood. $48^{\prime \prime} \times 48^{\prime \prime}$ (or digital print 24×36, or digital projec tion if possible). 2010.

This painting is all about the intersection of the abstract human energ field and the anthropomorphic (twoarmed, two-legged, one-headed) human form. Unlike other paintings fres use more literal translation (and spheres appear as flat overlap ping circles) "Children" uses tricks of perspective and subtle uses of color to create the illusion of rounded
spheres and volumetric vortexes and their various intersections. In term of math, "Children.." explores th and proportion as it applies to light waves. There is an inner consistency to each painting, where a circle of particular diameter is always associated with a particular color, and the colors are always arranged accord ing to ROYGBIV (the rainbow). Th lobe-like shapes in the painting arise tion, a recurring theme in all of thes paintings.

Acrylic paint on wood. $48^{\prime \prime} \times 48^{\prime \prime}$ original
$\left(24^{\prime} \times 244^{\prime \prime}\right.$ print.). 2009.

QUANTUM FROTH

Quantum Froth" explores a series internally-consistent rules. In thi Ill lines are circles, and there are endpoints. No lines may cross. Each circle's diameter is associated with a particular color, and the diameters elate to each other proportionally. Red is always the largest circle, as red the longest wavelength, with ornge being $\frac{1 / 2}{}$ of red, yellow $1 / 3$, down re consistent on every scale (red will lways be the largest, violet always $1 / 7^{\mathrm{th}}$ of red)

Acrylic paint on wood. $24^{\prime \prime} \times 24$ ". 2009.

"Large Quantum Froth" depicts the relationship of light wavelengths and how they interact. This piece also explores a pattern of circle packing and how it relates to a Mobius transformation-inspired impossible grid. (The grid is impossible because, although it does not look so to our This painting is built upon a set of rules. There are no straight lines, and all lines are circles. In some areas, no
ines may cross, in others, lines may cross but circles may only overlap or nest next to one another as described by the Mobius transformation. Each ircle's diameter is associated with a particular color of the rainbow, and portional relationship to same pro portional relationship to one another
at every level of scale throughout the image. This pattern of bubbles within bubbles mimics the arrangement of matter down to its smallest level.

BEATIFIC
"Beatific" is another painting built pon a set of internally-consistent traight lines All lines are circles. Lines may cross. Circles are only alowed to overlap as an expression of the Mobius transformation. All circles must be tangential to other circles. The recurring themes of color, shape, and proportion are preasted here (as in "Quantum Frotis) elationship of light waves to one another.

STATEMENT

I use creative geometry to bring new life to old traditions of "magic woodcarving", ie. the art of carving a piece
of wood into parts that are loose, of wood into parts that are loose,
but cannot be separated. Traditional examples are wooden chains and balls in cages, as seen in such items as Welsh love spoons and European wool winders.

PUZZLE BALL

Wood (beach) $58 \times 58 \times 58 \mathrm{~mm} .1995$.

People often mistake my magic balls for puzzles. This gave me the idea to make one that really looked like a puzzle. The six familiarly shaped pieces correspond to the surfaces of metry of the cube has been broken

DOUBLE STAR

Wood (pear). $45 \times 45 \times 45 \mathrm{~mm}$. 1974 .
Two cubic edge frames are tied together with a half twist to each pair of edges, then reshaped to resemb
Keplar's Stelle Octangula, the well known compound of two regular te rahedra

MEMENTO MOR

Wood (briar). $50 \times 50 \times 71 \mathrm{~mm} .1981$.
The traditional ball in cage theme is combined with a classical motif from renaissance art and inspiration cage is a rhombic dodecahedral edge frame.

GREAT TETRAKNOT

Wood (elm). $95 \times 95 \times 95$ mm. 2002 A compound of four trefoil knots ori ented as the faces of a tetrahedron. Its smm frame a rhombic dodecahedral edge
leaving only twofold and threefold axes. Some of the mirror planes of the cube are also missing. All cuts meet at the centre, causing the pieces to separate, yet, because of their con-
ic shape they do not fall apart. Some people find this hard to understand.

STATEMENT

Since 1968 I have been exploring connections and intersections among 3-D geometric shapes. At the beginning I divided a cube along its diagonal into three identical shapes
and started building. From that block and started building. From that block rhombic dodecahedron, the rhombic hexahedron, and many, many variations up and down the continuum. Recently, I've been examining the way cubic and hexahedral lattices intersect, fill space and expand to infinity.

BRUCESTAR

Poplar: $8^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} .1975$.
This piece begins an exploration of the intersection of hexahedral and cubic solids within a tetrahedral frame

HEXNUT
Wood. $24^{\prime \prime} \times 24^{\prime \prime} \times 24^{\prime \prime} .1992$
This is what happens when a bunch of rhombic hexahedra get together and decide to go for a walkabout.

LATTICE I

Pine. $12^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}, 2002$.
This expansion of the rhombic dodecahedron will grow infinitely hrough space, assuming there are enough trees on the planet to keep it going.

FULL HOUSE

Pine, Cedar: $18^{\prime \prime} \times 18^{\prime \prime} \times 18^{\prime \prime}, 2006$
Two lattices converge and fill all space, leaving no room for the rest f us. Luckily, I've only cut enough pieces to fill the shop.

STATEMENT

My interest in geometry stems from a lifetime spent in the cabinet making industry. Initially I worked as a hands on craftsman and later in a supervisory position which comprised of interpreting designer/architectural tical and beautiful pieces. After my retirement, I turned my interest in geometry into a hobby using wood as a medium. My investigation and interpretation of the platonic solids has
been influenced by Johannes Kepler Luca Pacioli, Leonardo Da Vinci, M.C. Escher and later by Buckminter Fuller and Donald Coxeter. After exhibiting some of my work at the Fields Institute, I was invited to share
space in Donald's Coxeter's showcase in the department of Mathematics at the University of Toronto. Using a lathe as my primary tool gives me a more individualistic approach to the study and presentation of polyhedra.

FUN WITH POLYHEDRA
(top) Wood. Originally 4"to9" spheres. 2010 All of these polyhedra were originally spheres and lathe turned using hand held turning tools. They were held in a cup chuck and each face in turn was faceted then hollowed out to a precise depth leaving the
centre spike in place. When all faces have been addressed in this manner the centre core which replicates the outer surface, is released and has in dependent movement. The five platonic solids and icosidodecahedron shown here are: - Tetrahedron: made of Becote from a 4 " diameter sphere Hexahedron: made of Babinga fro made of Cocabola from a 4" diame ter sphere \bullet Dodecahedron: made of Cocabola from a 4 " diameter sphere - Icosahedron: made from a Thura burl from a $5^{\prime \prime}$ diameter sphere Icosidodecahedron: made of Mapl from a 9 " diameter sphere

AN EASTER ISLAND

 CONFERENCE(bottom) Wood. Originally 4" to 5"
spheres. 2010.
These are second generation strepto hedrons and express a hollowed out choosing to give them the generic name of incurve streptohedrons. They have been hand tuned in two pairs of two as curved funnel shapes then split apart and reassembled in their current form. From left to right they are: - White maple with black Brazilian rosewood -3 3/4" diameter - Satinwood - 5 " diameter

STATEMENT

am a physician and my specialty is Physical Medicine and Rehabilitaor over 20 years. I am interested in over 20 years. I am interested in patterns, movements and light in our nvironment and try to capture the elements.

ATTRACTORS 1
Photography. 12"x 12 ". 2000
This pattern, created by by polhrough and around some objects shows some strange attractors.

ATTRACTORS 2
Photography. $12^{\prime \prime} \times 12^{\prime \prime}$. 2000
his pattern, created by pollens and low movement of water, shows an attractor.

EXPRESSION 1, COMING TOGETHER Photography. 12"x 12 ". 2005
This mosaic picture, using mirror images (reflexion) of tree branches, expresses the sense of closeness and inclusiveness.

EXPRESSION 2

 SPREADINGPhotography. 12"x 12". 2005
This mosaic picture, using rotated pictures of the same tree branches ranged in a different way, expresses the sense of spreading.

STATEMENT

STATEMENT

As a designer, with a background in textiles, I am fascinated by the funits application in the creation of patits application in the creation of pat-
terns. This recent work explores the possibilities of patterns repeating in three-dimensions, around the faces of mathematical solids.

REIDUN \#1

(top) Painted and etched wood compill. $170 \times 160 \times 155 \mathrm{~mm} .2010$ Inspired by a novel approach to the
description of viral capsid assembly description of viral capsid assembly this rhombic triacontahedron are tessellated with kites, darts and rhombs. The Islamic-inspired design used on the two types of face tiles was also inspired by biological imagery adapted Islamic interlace patterns.

REIDUN \#2

(bottom) Painted and etched hardboard. $367 \times 300 \mathrm{~mm} .2010$. This piece was created through manipulation of the virology-inspired
tiling used in Reidun \#1. The tiling has been manipulated in the plane to form a p 6 m repeating design.

Trying to express: Peace Love and Happiness, PLH; Only One Earth, OOE (consider the alternatives)
Aesthetic: Indigenous "New World" abstract art; Symmetry; Motion
Techniques: Symmorphmetry Study 1-Microsoft F\# (hybrid functional language), .NET WPF Poster-Adobe Illustrator, Photoshop
Exploring and pushing the creative envelope of eXtreme manycore architectures
UDOVICO EINAUDI-CON I NOSTRI PIU CARI SALUTI, WITH SYMMORPHMETRY STUDY 1 GRAPHIC
Archival Inkjet Print. 18×12.2010.
Ludivico Einaudi Concert Poster with Symmorphmetry Study 1 Penrose Rhomb Image

STATEMENT

I graduated from Jagiellonian University in Krakow, Poland in 1983 in pure mathematics. I am a math teacher with more than 20 years ex-
perience.
I started my interest in origami in 1995. My mathematical background pushed me towards geometric models. A mathematical structure of oriwell as relation of origami to mathematics have been in the center of my interest from that time. I am also interested in educational applications of origami and I promote origami as

JUST SQUARES

a powerful tool for maths' teaching. I had lectures and workshop on this gami in Therapy and Education), Poland and Didaktik des Papierfalten in Freiburg, Germany.
I am an author of five origami books and several booklets. I participated in the large interof Origami" in Salzburg 2005 and OF Origami in Salzburg 2005 and placed by Nick Robinson in his book The Encyclopedia of Origami and by Origami USA in its calendar.
(below) Origami, 210 pieces of square paper. $21 \mathrm{~cm} \times 21 \mathrm{~cm} \times 21 \mathrm{~cm} .2009$. Mathematically this model is a snub dodecahedron, one of Archimedean solids. The model resulted from looking for the simplest model (measured by number of crease lines). It is a minimal model as it contains no
crease lina crease line.

RECTANGLES \& SQUARES
Origami , paper, 150 red squares and 60
white e ectangles. $20 \mathrm{~cm} \times 20 \mathrm{~cm} \times 20 \mathrm{~cm}$ white
2009.
This model is based on the snub dodecahedron structure. It is one of the resalts of a study on how different shapes of paper influence final models.

RED IN WHITE

Origami, paper, 24 red squares and 24
white rectangles, no glue. $15 \mathrm{~cm} x \quad 15 \mathrm{~cm}$ white rectangles,
$\times 15 \mathrm{~cm} .2010$.
his model is based on a rhombic cubooctahedron. One of the recent sults of a study on minimal number of creases) origami models.

METAMORPHOSIS: BUTTERFLIES
Origami paper, 30 squares for each object,
no glue. $15 \mathrm{~cm} \times 35 \mathrm{~cm} \times 35 \mathrm{~cm} .2009$. These models are based on the shedron structure. This set is one of the results of a study of how small changes of a single crease position nfluence the shapes of the final models.

MIKE FIELD

STATEMENT

In my efforts in computer art, graphics and design, I work with chaot ic-non-deterministic-dynamical metry metry.

Athough the time evolution of haphazard, long-term time averages often reveal complex and intricate symmetric structure that can lead to a harmonious and beautiful design.
images.

CLOWNINGAROUND

Digital print on canvas. $26^{\prime \prime} \times 24^{\prime \prime} .2010$ A repeating two-color pattern of type pm1/p3 created using a determins ic torus map and lifted to the plane effect of this images gets lost in low res/small image file.

EXPLODINGFRACTAL
Digital print on canvas. 24 x 24 . 2010 .
A complex fractal object with an underlying 12 -fold symmetry. The image was colored using algorithms related to type of coloring I use for 2 -color quilt patterns. Note: Pretty well most of the detail and interest in-
this picture gets lost in a low resolution image...

STATEMENT

The goal of my art is to create aesthetically pleasing repeating patterns in the hyperbolic plane. These patterns are drawn in the Poincare circle model of hyperbolic geometry, which has two useful properties: (1) it shows the entire hyperbolic plane mal i.e angles have their Euclidean measure, so that copies of a motif retain their same approximate shape as they get smaller toward the bounding circle. Most of the patterns I create exhibit characteristics of Escher's patterns: thev tile the plane without
gaps or overlaps, they are colored symmetrically, and they adhere to the map-coloring principle that no adjacent copies of the motif are the same color. These patterns are designed using an interactive drawing program and then rendered by a color printer. The two major challenges in creating these patterns are (1) to
design appealing motifs and (2) to design appealing motifs and (2) to
write programs that facilitate such design and replicate the complete pattern.

SMOOTHLY COLORED SQUARES 45
Color printer. 11 by 11 inches. 2010.
This is a hyperbolic pattern of bor dered squares, in the style of Victo
Vasarely's square grid patterns. is basaredys on the regular patterns. $\{4,5\}$ of the hyperbolic plane, with five squares meeting at each vertex Vasarely's square grid patterns were based on the familiar $\{4,4\}$ tiling of the Euclidean plane.

RANDOMLY COLORED

 SQUARES 46Color printer. 11 by 11 inches. 2010 .
This is a hyperbolic pattern of randomly colored bordered squares, in the style of some of Victor Vasarely's randomly colored square patterns. It is based on the regular tessellation $\{4,6\}$ of the hyperbolic plane, with six squares meeting at each vertex. Some
of Vasarely's related patterns were based on the distorted $\{4,4\}$ Euclidean grids.

RANDOMLY COLORED CIRCLES 46

Color printer. 11 by 11 inches. 2010.
This is a hyperbolic pattern of ran domly colored circles within ranoomly colored squares, in the style the Euclidean plane It is based on the regular tessellation $\{4,6\}$ of the hyperbolic plane, with six squares meeting at each vertex. Vasarely's related patterns were based on the familiar $\{4,4\}$ tiling of the Euclidean plane.

HEXAGONS WITH THREE COLORS

Color printer. 11 by 11 inches. 2010.
This is a hyperbolic pattern of hexagons filled with three quadrilaterals of different colors, in the style of one of Victor Vasarely's hexagonal patterns. It is based on the regular tessellation $\{6,4\}$ of the hyperbolic plane, with four hexagons meeting at each vertex. The quadrilaterals are
shaded according to which one of hree "light sources" they most directly face.

ELAINE KRAJENKE ELLISON

 hat. Druns through my mathematica art. Drawing, bronze, painting, glas and photography were mediumshad investigated prior to 1980 . In the early 1980 's, I settled on fabric to tell my mathematical stories. Mathemat
ical quilt topics range from 2000 B.C to the mathematics of the present time. I have quilted over 45 math-
ematical quilts! Most of the quilts are ematical quilts! Most of the quilts are
small, as I travel with them. Many small, as travel with them. Many
ideas for quilting were discovered at Bridges Conferences. Thank you Bridges!

MATHEMATICAL
HARMONY
Fabric quilt, dye, paint. 30.5 " $\times 45.5$ ".
Inspired by Dmitri Tymoczkos work
Inspired by Dmitri Tymoczkos work on mathematics and music, this work
of art was generated to bring the relaof art was generated to bring the rela-
tionships of music and mathematics to the forefront. Music, like mathematics, has an abstract notation that is used to represent abstract structures. Pythagoras 570 B.C.E.- 490 B.C.E. is said to have discovered the harmonic progressions in the notes this discovery was made with a string that was stretched and then half the string length was stretched. Both strings were plucked. The shorter string sounded exactly one octave lower than the longest string. The Pythagoreans investigated other string
relationships, always finding who relationships, always finding who
number relationships between the number relationships between the
notes. This reinforced their thought that "number is everything."

Fabric quilt, thread painting. $36^{\prime \prime} \times 36^{\prime \prime} .2009$.

TILED TORUS
Tiled Torus was inspired by the work
iled Torus was inspired by the work of John Sharp, Craig S. Kaplan, M.
C. Escher, and Huff. Each of these individuals are interested in tiles that morph from one tile to another. found I became intrigued with parquet deformations and began to work on designs that could be quilted. quickly turned into a quilt that was
to be appliqued. In order to get the polygons to look sharp, the applique polygons to look sharp, the applique
technique had to be used. Quite by accident, this tiling turned out to be a torus that could be cut and laid flat. The left and the right sides of the pattern complete to comprise a cylinder, s do the top and the bottom of the design.

DÁNIEL ERDÉLY

STATEMENT \quad My task is to research and develop a geometrical basis of thinking, establish human communities, link art and science.

SPHIDRON DEFORMATION OF A DISC 1
Pastel on paper. $240 \times 320 \mathrm{~mm} .2010$.

I have found the only possible 3D deformation of the Euclidean plane whichregarding of the 9 vertices of the basic shapes of the Pythagorean Theorem, like the triangle and the squares-is preserving the validity of the theorem. The triangle in the 2D plane is rotating and shrinking, but its proportions and angles don't change. I tried to make some drawings to demonstrate this interesting swirling deformation.

HEXNUT

Computer graphic. $240 \times 320 \mathrm{~mm} .2010$.
This work of art is a joint effort of Mr. János Erdôs and me. János made excellent animations of the deforming sphidron discs. You can read more about our investigations he
spacecollective.org

LATTICE I

Pastel on paper. $240 \times 320 \mathrm{~mm} .2010$.
The arms of the Sphidron disc are roThe arms of the Sphidron disc are ro-
tating around themselves. The longer distance from the center increases the measure of the rotation. Here the
change of the rotation is continuous change of the rotation is continuous
while in the case of Spidrons it is discrete. All of he spiral arms remain on their own plane, but these planes on which they lie on can be lifted up and pushed down alternately. This way

surfaces.

FULL HOUSE

Pastel on paper. $240 \times 320 \mathrm{~mm} .2010$.
To make this deformation possible, you have to change your previous imaginations on the plane. It is a little
more complicated, as the elements of more complicated, as the elements of
the plane are not points with 0 dithe plane are not points with 0 di-
mension, but they do have dimensions, what make possible their rotation and sliding. I call them "spoint", While two of the adjacent "spoints" remain neighbours, the rest of them can be changed. Just like in the case of a simple pearl-string where every
bounce has only and maximum two permanent neighbors.

STATEMENT

Robert Fathauer makes limited-edition prints inspired by tiling, fractals, and knots. He employs mathematics in his art to express his fascination with certain aspects of our world, such as symmetry, complexity, chaos,
and infinity. His artworks are created on a Macintosh computer

SLOT CANYON

ABSTRACTION NO. 2

Digital print. $12^{\prime \prime} \times 16^{\prime \prime}$. 2009.
his image was created by reflecting and overlapping four copies of a pho ograph of Lower Antelope Cany Arizona. Working in Photoshop, the levels of each color channel were ad justed separately in different regions of the image to heighten the value and color contrasts.

SELF-SIMILAR KNOT

NO. 2

(left) Digital print $13^{\prime \prime} \times 13^{\prime \prime} 2009$ This starting knot had nine crossing and was configured as a trefoil knot Six iterations were carried out in ot der to achieve the knot shown here.

SELF-SIMILAR KNOT NO. 1
(above) Digital print. $13^{\prime \prime} \times 16^{\prime \prime} .2009$
A starting knot was created that pos sessed sufficient geometric regularity to allow iterative replacement of a portion of the knot with a scaled down copy of the knot. Three such the knot shown here. The path of the strand, specified as a series of Cartesian coordinates, was smoothed out so that strand in the final knot curves gracefully, as opposed to being a series of straight line segments that change angle abruptly. The knot
was constructed using the program KnotPlot and then exported to Photoshop for touching up.

FRACTAL TREE NO. 10

Digital print. $13^{\prime \prime} \times 15^{\prime \prime}$. 2010.
This fractal tree was constructed by graphically iterating an arrangement a composite photograph of a small egion of a tree. Multiple photo graphs of the region were required in ut. The original photographs wer digitally altered to achieve the de ired shape and to allow smooth oining of the different photographs he resulting composite photograp
fractal tree. With each iteration three copies of the current tree were scaled down, rotated by varying degrees, and joined seamlessly to the tarting composite photograph. Lightening of the earlier generations was carried out to provide a sense of depth. A sufficiently large number of iterations was performed so that the
image is virtually indistinguishable from the image that would result after an infinite number of iterations.

FRANCESCO DE COMITÉ

University of Sciences and Technology of Lille (France)
Mouscron, Belgium
francesco.de-comite@univ--illel.fr
www.flickr.com/photos/fdecomite

STATEMENT

1 am interested in visual representa tion of mathematical concepts, esof) algorithmic and programmin efforts. I have no 3D intuition, hence to understand geometric concepts, need to get a representation of them, either using rendering (PovRay),
or by building models, mainly with paper: my copy of Wenninger's Polyhedron mode and notes.
George Hart is a great source of Gspration, and trying to redo his works is a great motivation.

FOLLOWING THE EDGES OF CATALAN SOLIDS
Digital photo on paper. 24" x 36". 2009, Virtual slide-together objects, using napolitan playing cards. Each card is lowing an edge of the polyhedron. Each slide-together corresponds to he information gathered during the enss one could be able to deter ine the place and length of the cuts eading to real world models...

FOLLOWING
THE EDGES OF ARCHIMEDEAN SOLIDS

Digital photo on paper. $24^{\prime \prime} \times 36^{\prime \prime}$. 2009 .

Virtual slide-together objects, using napolitan playing cards. Each card is fol lowing an edge of the polyhedron. Each slide-together corresponds to one the 13 Archimedean solids. Using the information gathered during the process one could be able to determine the place and length of the cuts leading to real world models.

A COMPOUND OF FIVE HAMILTONIAN CIRCUITS ON A RHOMBICOSIDODECAHEDRON
Digital photo on paper. $24^{\prime \prime} \times 36^{\prime \prime}$. 2009 . compound of five Hamiltonian cir uits on a rhombicosidodecahedro

STONES SPIRALS

igital photo on paper $24^{\prime \prime} \times 36^{\prime \prime} 2008$ Doyles spiral followed by a circle inversion. Rendered with PovRay.

STATEMENT

1 started by exploring cubes made from paper strips woven on the skew However, weaving a cube is quite creasingly intrigued by the symmetry and other characteristics of these cubes, I decided to take a short cut by making cubes from nets printed onto card. What would have been the weaving elements are shown as continuous bands, as if wrapped around
the cube at that particular angle of skew. Seen as a group, I think these cubes are visually pleasing and invite further exploration by turning in the hand.

CUBES WRAPPED

 ON THE SKEW [WITH ONE, TWO AND
THREE BANDS]

Inkjet printed paper, cut, folded and slued. Three cubes, each 50 mm $50 \mathrm{~mm} \times 50 \mathrm{~mm} .2010$
My paper for Bridges $2007 \mathrm{http}: / /$ www.felicitywood.co.uk outlined the way in which cubes woven
the skew fall into several groups each with its own characteristics. The three cubes constructed for 2010 are made from printed nets - as if they are wrapped by coloured bands. Each band is a continuous loop of the same length. In the case of a cube wrapped with bands at a slope of 3 in $4(3,4$ cube), three bands are required
to cover the cube. The cubes have rotational symmetry. With any face on top, if they are rotated 180 degrees, the pattern is the same. Other cubes falling into this same category are the 2,3 cube, the 1,4 and the 2,5 . Photographs of further examples, a copy of
the original paper, and a summary of results may be seen in an accompanying file.

OLIVIER PERRIQUET \& LOU GALOPA
EENTRIA and GRLMC, None
Spain, Portugal
cesium-133.net

STATEMENT

/// After an initial training in pure nathematics, computational biology and visual art, Olivier Perriquet is bio-informatics and computation linguistics, and also exhibits and lectures as a media artist. His artistic work is inspired by the scientific ap techniques such as expanded cine na, video or interactive installation/ performances, addressing question elated to game/play, language omplexity. //// Lou Galopa's artistic work has a connection with Fluxu we humor, the utopias and the end relations, interconnections, doubl mages and word plays have an im-
portant role in her works. They often have a humoristic, ironic or sarcastic tagic notions. Lou Galopa lives in Strasbourg and Paris. She studied at Ecole supérieure des arts décoratifs Strasbourg and is a member of the

ALPHA

The artistic purpose of our work dwells not in the object itself but in the relations that it creates within the public and in the resulting expework by their active participation. In combinatorial abstract games, such
as Chess or Go, the player's posture has something similar to the posture of a mathematician demonstrating theorem, such games are indeed f thought, resulting internally in a similar experience and, externally, to a physical altitude characteristic of activity. Beyond the solitary experience involved in pure abstract thinking, the framework imposed by a two-player game is also a mise-en-scene of an agonistic (but nonetheless playful) « relation in thoughts » between two persons. The specific game we propose is the
award winning combinatorial game « Alpha » inspired from non-Euclidean geometry, created in 2008 by GaalN.

STATEMENT

I am interested in all types of math ematical art, and have attended evsubmitting work for the exhibition since 2007 . I work in both 2-D and 3-D, although often the three-dimensional ideas exist only as electronic images. My creative thinking seems to gravitate towards tilings and polyhedra, with a preference for images and
objects that allow multiple interpretations, typically figure/ground relationships, although that is not
an exclusive interest. For example Bridges in 2008 I presented a family of visually interesting surfaces relatto the lemniscate.
Bookbinding tak cant amount of my time and I pre sented some bindings based on knot designs at Bridges London in 2006, and I exhibited my binding of an ed tion of The Hunting of the Snark at Leeuwarden in 2008. Other examples at www.societyofbookbinders.com

ANGLESEY ARROWS 2
(opposite) Digital print. $12^{\prime \prime} \times 12^{\prime \prime} .2010$. The design is based on a thousand year-old cross base found on the sland of Anglesey, Wales. The underlying structure is related to the Cesaro fractal and the box fractal. In heads original Celtic design the arrow hapes for the pattern to work, but by sing square approximations to loga have a single shape of arrow-head.

ANGLESEY ARROWS 3

above) Digital print. $12^{\prime \prime} \times 12^{\prime \prime} .2010$.
e underlying structure of the An glesey Arrow images allows recur ion to any depth. This image is gen rated by carrying out one furthe teration beyond that implied by the Celtic original.

GARY GREENFIELD

STATEMENT

Many of my computer generated algorithmic art works are based
on simulations that are inspired by mathematitical models of physical and biological processes. In exploring the space of parameters that govern the attention on the complexity underlying such processes.

ROBOT DRAWING \#21091

int 5 " $x 7^{\prime \prime}$ (unframed). 2010.
This series of drawings uses 48 (sim-
ulated) drawing robots that each $\quad \begin{aligned} & \text { in color try to sweep down then up } \\ & \text { but remain within the top half of the }\end{aligned}$ have the capability of drawing peri- but remain within the top half of the odic curvilinear paths while travel- canvas. Placed in pairs onpos avor, thanks to collision avoid ing in a straight line. The periods ance and variations in speeds, draw Half the robed by the robots speed. ing distances, turning patterns and half draw in color. Those drawing an organized composition emerge in black try to sweep up then down that exhibits an interesting aesthetic but remain within the bottom half with respect to mark making dynam of the canvas while those drawing
ics and detail.

ROBOT DRAWING \#21550
Digital Print. 5 " $x 7^{"}$ (unframed). 2010.

ROBOT DRAWING \#22298

HENRY SEGERMAN

Department of Mathematics and Statistics, University of Melbourne
Melbourne, Australia
henry@segerman.org
www.segerman.org

STATEMENT

Henry Segerman is a postdoctoral mathematician. His mathematical research is in 3 dimensional geometry and topology, and concepts from those areas often appear in his work. Other artistic interests involve procedural generation, self reference, ambigrams and puzzles.

SPHERE

AUTOLOGLYPH
PA 2200 Plastic Selective-Laser-Sintered
$10.4 \mathrm{~cm} \times 10.4 \mathrm{~cm} \times 10.4 \mathrm{~cm} .2009$.
The surface of this self-referential
The surface of this self-referential sphere is tessellated with 20 copies
of the word "SPHERE". The design was sketched on paper (at Bridges 2009), then a single copy of the word recreated in Adobe Illustrator and imported into Rhinoceros 3D. The flat design was then projected onto a sphere, modified to account for the
curvature of the sphere, then copied to form the tessellation. Finally, pipes were constructed around the curves, converted to a mesh and then the mesh sent to Shapeways.com for 3D printing.

TORUS

AUTOLOGLYPH

PA 2200 Plastic, Selective-Laser-Sintered.
$10.1 \mathrm{~cm} \times 10.1 \mathrm{~cm} \times 3.5 \mathrm{~cm} 2009$
$10.1 \mathrm{~cm} \times 10.1 \mathrm{~cm} \times 3.5 \mathrm{~cm} .2009$.
The surface of this self-referential torus is tessellated with 16 copies of the word "TORUS". The design was origwith a flat Euclidean metric. However, that design, made from curves in Adobe Illustrator and imported into Rhinoceros 3D, was projected onto the usual embedding of a torus in 3 dimensional space, using Rhinoceros 3D's "Sporph" command. Finally, pipes were constructed around the
curves, converted to a mesh and then the mesh sent to Shapeways.com for 3D printing.

IAN SAMMIS

UC Davis
Davis, California, USA
isammis@math.ucdavis.edu

STATEMENT

Translating mathematics into art, and making that art as aesthetically pleasing as possible, seems to be the best way to for me understand the mathematics itself. The process of trying to make the art look the way I intend forces me to think in me understand the mathematics itself. The process of
very different ways about the underlying mathematics.

EXPONENTIAL

mOORE
Digital print on canvas. $24^{\prime \prime} \times 24^{\prime \prime}$. 2010
The Moore curve is a closed spacefilling curve. By placing an infinite line of Moore curves on the complex plane and applying $\exp (z)$, one fills a series of annuli. This work illustrates
the effect for one of the curves in the the effect for one of the curves in the
sequence whose limit is the Moore sequenc. I have colored the interior of
curn each curve by angle from the curve's center, to make the effect of $\exp (z)$ more obvious.

MÖBIUS PEANO

Digital print. $11^{\prime \prime} \times 14$ ". 2010. This Peano Curve, unlike the Moore curve, does not close on itself. By placing along a Möbius strip, though, one can make the final point fall ad jacent to the initial point, forming a single closed loop.

STATEMENT

If Architecture is the art of proportions in 3D (but it says is frozen Music), and the Music is the art of the permutation of time in 4 D , then sa red Geometry is the art of Time and Space via multidimensionality. These
three disciplines form a quantic trithree disciplines form a quantic tri-
angle, a living hyperplane whereat my two dimensional artistic bein exists non-linear as a little self-simi lar scale independent spatiotemporal fractal... ;-

DYEAR

Digital print on canvas. 24×24.2004.
OPART style-black and white art work with a composite optical illu ion effect based on the following Hoffmann grid + proximity/con ectedness/similarity/continuity perceptual organization-grouping principles + checker-shadow illusion. fom the 2 D plane via incommensu rability

DBORDER

igital print on canvas. $24^{\prime \prime} \times 24^{\prime \prime} .2000$ OPART style-composite effect based on the so called Hoffman grid ffect + White effect + peripheral erception effect. Between the horiontal color bars are flashing (un?) existing black (discrete) material evertheless the back is white.

CHESSFOREVER WITH VASARELY

JACQUES BECK

STATEMENT

The multisculpture that could be thought of as built by a generating point moving around into lines, surfaces and volumes must by essence ited on its multiple sides during the creation process. This ensures that more original views take shape from a collection of features available to the artist such as concavity, convexity, equilibrium and stability, material

texture, color. an be mathematically situless analysed and developed before real-world materialization. In a nutshell: a single sculpture that contains shell: a single sculpture that contains
many. A central point explodes and radiates out. The interior gives way to the exterior and vice versa.

COQUILLAGE

 (MULTISCULPTURE)Bronze. 300 X $250 \times 150 \mathrm{~mm} .2009$ This is an example of my multisculp ture concept. The image presents four
views of the five different position when the work is placed on a horizontal planar surface. There could be other positions when the work is placed on a different kind of surface (see text of the presentation).

JAN W. MARCUS

 www.janmarcus.nl
STATEMENT

During my professional life as a Same computer-models used in civil engineer I became interested in tensegrities. Also M.C. Escher's impossible figures did have my interest. Combining tensegrities and impossibe figures makes "impossible strucstrength and stiffness of these solid structures, computers essential.

FEM-computer programs, can als be used to create Cylinder Anamorphosis. By translating and/or rotating these 3D models in a developed computer program, "impossible
structures" become visible into the reflecting cylinder.

CUBOID
Inkjet print / reflecting cylinder. 200 x $300 \times 210 \mathrm{~mm} .2010$.
In the reflecting cylinder the impos sible cuboid becomes visible.

THE WALL III

Inkjet print / refecting cylinder: 200×300
In the reflecting cylinder Istvan Oro sis's The Wall II becomes visible.

ARCH

Inkjet print/ reflecting cylinder: 200×300 210 mm .2010
In the reflecting cylinder an impossible arch becomes visible

TRIDENT
Inkjet print/ reflecting cylinder. 200×300
$x 210 \mathrm{~mm} .2010$
n the reflecting cylinder the impossible trident becomes visible

STATEMENT

Mathematics represent for visual artists universal the expression of abstract intelligence at its best. It is the fertile ground that inspires me to celebrate both our collective intellectual achievements and the unsurpassed more tangible environment.

CONFORMAL MAP \#15
Mixed media on canvas. 18"x18". 2009.
Conformal maps are invaluable for solving problems in engineering and physics and are expressed in term of functions of a complex variable.
This visualization is part of a series reflecting on this phenomenon. The reflecting on this phenomenon. The
series was created with R. Palais 3D XplorMath software and is available at: http://www.hermay.org jconstant/ dconfmap/

THE ORIGIN OF TIME

THE JEWELER LOUPE
Wixed media on canvas. $18^{\prime \prime} \times 18^{\prime \prime} .2007$.
Part of a series on hyperboles from he original templates of Bernie Freidin and created for a lecture at the anta Fe Contemporary Art Center. Reflection on the nature of mathThis template revisits European high middle-age jewelry and stained glass window techniques. The 12 plates series is available at: http://www.hermay.org/jconstant/hyperboles

JAMES MAI

STATEMENT

My work follows two primary direc tions: color-relativity functions and relativity work examines the structures of simultaneous color contrast illusions, whereby a constituent color appears to change its identity in different color contexts. Although this is a purely subjective perceptual ex the illusions function are objectively definable, and therefore manipulable by the artist. The geometric order
of much of my work is built upon golden section relationships. Usually I work within a square format and divide that square by phi. Golden section divisions of the square permit me to compose my abstract paintings with similar shape relationships operating at different scales, proportions, and symmetries. Geometry in general, and golden section geome-
try in particular, is to my visual work what rhythm is to music or meter is to poetry.

CIRCUITOUS GLOW (YELLOW ON WHITE)
Digital print. $14^{" x} \times 14$ ". 2009.
The loop in this composition is composed of quarter-circle arcs and quarter-ellipses of golden (phi) pro portion. The overall square format is
divided by phi divisions into smaller olden rectangles and squares, which etermine the placement of the loop ocher loop is physically the sam ocher loop is physically the same
color throughout, but changes its color in response to the varied colors surrounding it.

CIRCUITOUS GLOW

 (YELLOW ON YELLOW)Digital print. 14 "x 14 ". 2009.
The loop in this composition is composed of quarter-circle arcs and quarter-ellipses of golden (phi) proportion. The overall square format is golden rectangles and squares, which golden rectangles and squares, which
determine the placement of the loop and its components. The yellowocher loop is physically the same color as the background, but changes its color in response to the varied colors surrounding it.

ROOT INTERVALS (YELLOW)
Digital print. 14 " x 14". 2009 .
The colored 1×2 rectangles are separated by exactly the same distances as ng a large tilted square. Each shor colored line has been "extracted" from the 1×2 rectangle of the corresponding color. The white axis de nes a bilateral symmetry of the lines within the larger square. The yelloware physically the same color as the background, but the colored rectanles force those yellow-ocher lines to appear to change their color.

ROOT INTERVALS

 (RED-ORANGE)Digital print. $14^{\prime \prime} \times 14$ ". 2009.
The smaller colored squares are sepaated by exactly the same distances as le length of their diagonals, forming a large tilted square. Each short,
olored line has been "extracted" lored line has been extracted color. The white axis defines a bilateral symmetry of the lines within the arger square. The red-orange lines
within the rectangles are physically the same color as the background, but the colored rectangles force those ed-orange lines to appear to change their color

My art is an outgrowth of my work as a mathematician. My research studies curves and surfaces whose shape is determined by optimization principles or minimization of energy. A classi-
cal example is a soap bubble which is cal example is a soap bubble which is
round because it minimizes its area while enclosing a fixed volume.

Like most research mathematicians, I find beauty in the elegant structure of mathematical proofs, and
I feel that this elegance is discoered Ifeel that this elegance is discovered, nate that my own work also leads to visually appealing shapes, which can present a kind of beauty more accessible to the public.

MINIMAL FLOWER 3

(opposite) Sculpture (3D FDM print). $3^{3} x$
$4^{*} x x^{2} \times w 2001$.
"Minimal Flower 3" shows a nonorientable minimal surface spanning (like a soap film) a certain knotted boundary curve. The surface, like he knotted boundary itself, has 322 symmetry, meaning three-fold and two-fold rotational symmetry but no
mirrors. The mathematical surface is thickened into a three-dimensional sculpture by simulating the process of blowing a bit of air in between two parallel sheets of soap film. To create a more pleasing result, the surfaces are actually modeled in 3D hyperbolic space. This sculpture is an homage to
Brent Collins, whose "Atomic Flower II" has the same topology.

MINIMAL FLOWER 4

(above) Sculpture (3D FDM print). $3^{\prime \prime} x$
$5^{\prime \prime} \times 5^{\prime \prime} \cdot 2010$.
Minimal Flower 4 " shows a nonor entable minimal surface spanning (like a soap film) a certain knotted boundary curve. The surface, like he knotted boundary itself, has 422 ymmetry, meaning four-fold and two-fold rotational symmetry axes
but no mirrors. The mathematical surface is thickened into a threedimensional sculpture by simulating the process of blowing a bit of air in between two parallel sheets of soap film. To create a more pleasing result, he surfaces are actual modeled in 3D hyperbolic space.

STATEMENT

work in a wide range of media an dimensions which includes painting work in series with associated works, but beyond that the subject matter of my work varies significantly. The two works I am show in this show come from two very divergent series. 'Cubed 18 ' is a paintings that corresponds to four installations. Ontitled 107 is part of a large series about frogs. Within the content, both paintings have underlying structure and imagery of mathematical themes which are expressed though visual metaphors

UNTITLED: 107
Oil paint. 24 " 3 36". 2006
Both frogs and Gothic architecture share the unique attribute of an extended linear structure. Gothi arches are an extension, both mathe matically and aesthetically, of Roma arches. They where created to test the
limits of physics and the potential of beauty, spaces and light. In a poetic fashion, a frogs structure amplifie this same dynamic-an extreme em bellishment of common structure. In this painting I have correlated thes structures and forms.

CUBED 18
Oil paint. 22"x24". 2010.
il painting which is part of a series
about the life of cubes.

JOHN HIIGLI

Jardin a OUuest/Jardin Galeri
ew York City, New York, USA
john@ardingalerie.
ohnahiigli.com

STATEMENT

am a geometric painter; I paint with transparent paint. I am interested in promoting the study of geometric art as I believe it has broad significance as we
move from a culture where much of our energy and most of our natural resources are wasted to one in which our energy and our resources are conserved. In my paintings I am trying to express the "light of the heavens" DRON: TOP VIEW TETRANET SE RIES. 2002-05. Transparent Oil on Canvas, 56 X 64 in ($142 \times 183 \mathrm{~cm}$)

STATEMENT

am interested in spontaneous patern formation in the natural world and the application of its "algo rithms to generative mathematica computer art. At the moment 1 am vestigating the Turing Instability images and to pimace bio-mimelic somewhat like electron microscop mages of diatoms. I am attempting to understand by imitation the math matical processes which produce the world.

DIATOMACEOUS ONE, TWO, THREE AND FOUR
Archival Inkjet Prints. $20^{\prime \prime} \times 20^{\prime \prime}, 2010$ Multiple Turing Instabilities of dif fering scale with cyclical symmetry re combined, to produce images under the electron microscope.

KAZ MASLANKA

forms equations for uses other than
scientific by freeing equations from the boundaries of denotation and opens up a new world in the realms of connotation. Mixing poetics in the structure of mathematic equations enables me to blend the aesthetics of poetry, science and mathematics.
With phrases embedded in the mathWith phrases embedded in the math-
ematic equations, one can construct ematic equations, one can construct
relationships between the phrases that can bring a linguistic richness to subjects that normally not use mathematics as a language, e.g. cultura spiritual, etc."

SALVATION

Digital print on paper. 11×14.2009.
This work is titled Salvation and is an example of what I call a "Proportional Poem". All proportional poems are in the form of "a is to b" as "d is to e". In addition, one of the variables is chosen to be solved and the poem is displayed as a result. The visual images within this polyaes-
thetic work serve synergistically in thetic work serve synergistically i
the conflation of the mathematica the conflation of the mathematical
and visual aesthetic experience. The two houses you see in the image are bath houses just outside the temple bridge at Songgwangsa temple in Korea. These bath houses are used to bathe the ghosts of our ancestors as a requirement before they are allowed into the temple.

WHISPERS

Digital print on paper. 12×12 2009.

This work is titled "Whispers "and is an example of what I call a "Proportional Poem". All proportional poems
on
in the form of "a is to b" as d is to . In addition, one of the variables is hosen to be solved and the poem is displayed as a result. The visual images within this polyaesthetic work of the mathematical and visual aesthetic experience.

MOIRÉ 6
Archival Inkjet Prints. $61 \mathrm{~cm} \times 61$
cm. 2009.

Two grids of black lines creating a
moiré moiré.

5P
Archival Inkjet Prints. $61 \mathrm{~cm} \times 61$ cm. 2010.

Two grids of reflective tubes creating a moiré.

3P 1
Archival Inkjet Prints. $61 \mathrm{~cm} \times 61$
cm. 2010.

Two grids of reflective tubes creating
a moiré.

STATEMENT

Laura Shea loves creating complex polyhedral structures from beads and thread. Her work explores classic geometric forms-whole and partial frame polyhedra, regular tilings and tessellations. She connects the
component forms at contiguous polygonal faces to create chains and complex polyhedral structures. The open networks of tilings and frame polyhedra provide a magical space for light to play with glass.

STARBURST

Swarovski crystal beads and mono-
filament. 3 " in diameter. 2009
Bead frame great rhombicosadodeca
hedron sprouting 30 rays of cubes.
hedron sprouting 30 rays of cubes.

IN OR OUT
Swarovshi cystal beads and mono filament. $11 / 8^{\prime \prime} \times 1 / s^{\prime \prime} \times 1 / \frac{1}{8}$ ". 2010. Bead framework polyhedron con sisting of beaded cubes.

HIGH NOON

Swarovki crystal beads and mono filament. $21 / 2^{\prime \prime} \times 2^{1 / 2 "} \times 1^{\prime \prime} .2009$.
Beadwork frame polyhedron-great rhombicosadodecahedron with 10 rays of alternating cube stack and 20

STATEMENT

I am interested in circular movement and when I design a logo, I try to inlegrate curves and symmetry

SPORT

 PUBLICATION 1(top left) Print. $12 \mathrm{~cm} \times 12 \mathrm{~cm} .2009$.
This logo is designed for a sport publication depicting a book and an athlete. I have used simple elements, several symmetr
tion and rotation

MOSAIC 1
(bottom left) Print. $50 \mathrm{~cm} \times 70 \mathrm{~cm} .2008$. This is a mosaic design, created from a single square with non-symmetric black and white pattern which is repeated. Based on the rotation of the created.

SPORT PUBLICATION 2
(top right) Print. $12 \mathrm{~cm} \times 12 \mathrm{~cm} .2009$. This logo is also designed for a sport publication depicting cross section of two books and an athlete. I have
used rotational symmetry to create the athlete's body from the books.

MOSAIC 2

(bottom right) Tile. $50 \mathrm{~cm} \times 70 \mathrm{~cm} .2008$. These are tiles made based on similar mosaic design, but actually three dimensional. Instead of black and white or different colors, different
thickens and depth were used to crethickens and deph were used to cre-
ate the shape. This is a photograph of the actual tiles.

BORROMEAN RINGS

3 (PUR/GRE/TUR)

(above) Cotton fabrics and thread, polyes-
ter inner. c $12^{\prime \prime} \times 12^{2}$, $300 \times 300 \mathrm{~mm}$ 2007. Third in a series of 3 dimensional textile sculptures, which show 2D ally represent. In the hope that nonmathematicians would understand them. Borromean Rings are three rings (zero knots) joined in such a way that each ring goes through both the others and if one was broken the whole pieces falls apart. One ring goes round the outside of another,
the third ring goes outside the outthe third ring goes outside the out-
er ring but inside the inner one, so they hold together. I normally work in a very graphic, solid colour way, but I challenged myself to be more creative by using my 'left over' project scraps. One ring has a straight a waving line. The ring ratio (1:4.5) is about right for me.

CHAIN LINK 1 (YEL/ GRE/PUR)
Cotton fabrics and thread, polyester inner.
$c 20^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}, 510 \times 2000 \times 100 \mathrm{~mm} .2007$. I was wondering if there were other I was wondering if there were other
ways of joining 3 ringst than in a Borways of joining 3 rings than in a Bor-
romean format. This piece has two romean format. This piece has two
links joined to one another to form a chain, while the third goes through the centre of both rings, hence the
'link 'link' in the title. What I hadn't realised is that whichever coloured ring you hold at the top, the other two rings slip into the same positions.
Made in my shaggy style with deliberately contrasting snippets.

STATEMENT

Lately I started building models of polychora. By using transparent material I try to show all faces. This is different from what I have seen before and it comes with some new challenges.
with all the imperfections can be seen. The tabs to glue the faces together can now be seen and they need to be as small as possible, as a result however the relative errors become bigger. Several layers of cells will lead to the fact that outer layers won't fit
anymore. This requires much more craftsmanship than building polyhedra.
Using
Using transparent colours influences how faces in lower layers are experienced. If you use layers of
analogous colours, it is hard to distinguish them, if you use layers of complementary colours, lower layers will loose their effect. One has to balance the colours carefully. Sometimes one has to break a mathematically correct colouring scheme to get a far more aesthetic result.

PROJECTION OF A
RECTIFIED 24-CELL
Chromolux paper and coloured transpar-
ent overhead sheets. 118 mm x 118 mmx ent overhead she
118 mm. 2009.
This is a model of the (4 dimensional) uniform polychoron called rectified 24 -cell. It consists of 24 cubes and 24
cuboctahedra. All cubes are transparent and 8 are light pink, 8 light yellow and 8 colourless. Bright white light is needed to be able to distinguish these colours. The cubes on the inside are a bit darker. The colours pink, blue and green are evenly di-
vided over the triangles. The colouring scheme of both the cubes and the triangles is such that a rotation around a symmetry axis transforms one set of colours into another. For the triangles this symmetry is partly broken by using transparent material for the triangles on the outside, while the model visibly more attractive.

STATEMENT

Let me present myself: I am a weaver, interested in weaving repetitive pat terns. For me weaving is character repeating forms which are composed by the use of (different) colors and special weaving-techniques.

I like to compose and than discover how the composition works out (material, technique, color). Furthermore I am a teacher and thought my woven products must enable everyone to use in and around the house. Than a good friend, Roland de Jong Orlando, told me my work has a real connection to art and especially to mathematical art. To work with that idea for me is a

RUHR METROPOLE 2010,4
Textile handwoven. $300 \times 400 \mathrm{~mm} .2010$.
My artwork on the loom: I used several colours in blue shades in the warp, inspired by the art of Victor Vasarely. Material: mercerized cotton $34 / 2$ (Venne Colcoton) 16 threads/ cm

RUHR METROPOLE

 2010, 1Textile handwoven, design 1,2,3,4. 300 x
400 mm. 2011 . 400 mm. 2010.
The technique I use in this artwork is a block twill (2/1) woven on 30 shafts. I' am fascinated by the work in my artwork. This for me is the link in my arthematics. In me is the the warp-threads are all threaded in the same way, built on the numbers of Fibonacci. I repeated the numbers to get two rapports. I made 8 examples (numbered 1-8): Four pairs of the examples are each treadled in the same way 1 and 5,2 and 6,3 and 7 ,
4 and 8 . An other difference is made 4 and 8 . An other difference is made,
between the examples $1,2,3,4$ and 5 , $6,7,8$. The difference lies in the fact how the shafts are tied up.

RUHR METROPOLE

2010, 2

Textile handwoven, design 5 5,6,7,8. $300 \times$ 0 mm 2010.
In the several examples made with help of a PC program the warpthreads are all threaded in the same
way, built on the numbers of Fi way, built on the numbers of $\mathrm{Fi}-$ $0,1,1,2,3,5,8$ and the sum of the following numbers, (13) 4, (21) 3, (34) $7,(55=10) 1,(89=17) 8,(144) 9$; then rapports. The reason of threading in rapports. The reason of threading in
this way is because I have 30 shafts and for a $2 / 1$ twill I need 3 shafts for each number. So my highest number is $9(0-9)$. I made 8 examples (numbered 1-8).

RUHR METROPOLE

2010, 3

Textile handwoven, design 6.300×400 mm. 2010.

This is the design to be woven for the exhibition

MANUEL DIAZ REGUEIRO

STATEMENT

I call my art 'Galician sculptures'. It's a very particular and special kind of three dimensional 1 -system, created with my own programs. At present I have a set of several hundred figures, most of them "wire sculptures" with axial symmetry ike tables, exotic dishes or jars. Some of them have a geometric profile with Isgoverning objects and beauty is one of my goals. Finding distinguished and / or spectacular copies, one of my hobbies.

WIND

Wood. $10^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime \prime}$. 2010.
A woodwork. A figure with a joint system that allows the figure to make a constant twist while maintaining its structure giving it its own character.
However, the figure conceals its generation system as an L-system, a sim ple formula that with constants angles combined into a graceful figure.

SQUARED TRISKEL

Wire. 10x10x10 cm. 2010 A triskel is an ancient Galician symbol (500 BC) that is based on a division in six parts of the circle, i.e, it's simple particular view of a 3D figure with six squares. This, again, is an L-system that is away from the traditional idea of an L -system as a tree.

There are diverse types of knots and various ways of knotting in conworks of art I I found ay catching works of art. I found my own way of working with them. Basically, I protern of a few interwoven knots. Then, I put same groups of knots similarly on the vertices or faces of the polyhedron. All of the knots on different vertices or faces must be moved and adjusted altogether so that they provide a big chain of knots in the
form of an apparent sphere. Afterwards, we must find our desirable propriate symough which an apHere, in following works, I have exploited icosahedrons and trefoil knots of which different groups are placed on the vertices of the icosa-
hedra. Although, my initial 3D polyhedrons in all following works are icosahedra, due to the pentagonal arrangement of trefoil knots, they decahedra. decahedra.

KNOTS 2

Digital art print. $24^{\prime \prime} \times 24^{\prime \prime} .2010$
By staring at this five-fold rotational symmetric work, one can find different pentagons composed of ambient and particular parts of trefoil knots.
The big central circle surrounding the internal pentagons is the special property of this piece. It must be paid attention that the underlying knots, usually with darker colors, contributing in the symmetry, actually belong to the backside of the icosahedron and their distance to the
foreside ones is equal to the diameter of the big flat-looking medallion we

Digital art print. 24 " $\times 24$ ". 2009.
This work consists of two separated corps of red and golden knots. The golden knots similar to previous works display a pentagonal pattern n the front vertex of our icosahe used to tie all the pentagons, placed at basic icosahedron's vertices.

MERRILL LESSLEY AND PAUL BEALE

Department of Physics
Boulder, Colorado, USA
lessley@colorado.edu
lessley@colorado.edu
spot.colorado.edu/~essley

STATEMENT

In our interdisciplinary research and creative work, we create laser images in motion that represent specific mathematical curves (epicycloids, hypocycloids,
roses, epitrochoids, hypotrochoids, and other special sine/cosine cases). We roses, epitrochoids, hypotrochoids, and other special sine/cosine cases). We create these images by using a computer-controlled laser projection system that we have designed and built. Graphing such curves in multiple laser colors produces a wide variety of images that are really quite beautiful. Unlike drawing
them on paper, however, projecting such curves with a laser or several lasers them on paper, however, projecting such curves with a laser, or several lasers, a kind of "pencil" in light, it can only be used to generate a complete picture by moving its projected "dot" rapidly and repeatedly over a reflective surface. The images we create must be scanned at rates between 15 and 2000 times per second. Our primary goal is to create computerized tools that can be utilized by laser artists throughout the world.

LASER CORNUCOPIA

Dirital print of high reso.
frame. $12^{\prime \prime} \times 9.6^{\prime} .2010$.
"Laser Cornucopia" was constructed by applying mixtures of sine and cosine signals to a green laser programmed to scan rapidly and repeatedly in " X " and " Y " directions. Creating this art required a mathematical approach similar to the traditional
graphing of hypotrochoid curves. graphing of hypotrochoid curves.
However, since we use base and trace However, since we use base and trade
oscillators to form our images, traditional parametric equations are modified to accommodate the "dynamic" scanning process. Revised equations, therefore, consider the elements of both base and trace frequencies: $\mathrm{x}=$
$(\mathrm{a}-\mathrm{b}) \cos (\omega t)+\mathrm{h} \cos ((\mathrm{a}-\mathrm{b}) / \mathrm{b}) \omega t)$; $y=(a-b) \sin (\omega t)+h \sin (((a-b) / b)$ $\omega t)$. Also, $\omega=2 \pi f$, where the base frequency f is the number of times per second that the base oscillator completes a cycle. With this particular image, the fundamental hypotrochoid scan was modulated by a third cosine signal, which formed a pseudo dimensional quality of the image.

LASER HEART

Digital print of high resolution video
frame. $122^{\prime 2} \times{ }^{9}$. 2010 .
"Laser Heart" was constructed by ap"Laser Heart" was constructed by ap-
plying mixtures of sine and cosine signals to three lasers programmed to scan rapidly on " X " and " Y " axis lines moving rapidly and repeatedly in various directions. An image was extracted from a video and made transparent in Photoshop. Three copies were overlaid to gain the montage
effect. Creating the art started with effect. Creating the art started wo
a mathematical approach similar to a mathematical approach similar to
the graphing of any hypotrochoid curve. However, since we use base and trace oscillators to form images, traditional parametric equations were modified to accommodate the
"dynamic" scanning process Revised "dynamic" scanning process. Revised
equations considered both base and equations considered both base and
trace frequencies: $\mathrm{x}=(\mathrm{a}-\mathrm{b}) \cos (\omega \mathrm{t})+$ $h \cos (((a-b) / b) \omega t) ; y=(a-b) \sin (\omega t)$ $+\mathrm{h} \sin (((\mathrm{a}-\mathrm{b}) / \mathrm{b}) \omega \mathrm{t})$. Also, $\omega=2 \pi \mathrm{f}$, where the base frequency f is the number of times per second that the base oscillator completes a cycle. Since the Rose curve is a special
case of the hypotrochoid function, case of the hypotrochoid functio
$a=(2 n) h /(n+1), b=(n-1) /(n+1) h$ where n is the number of petals.

STATEMENT

I studied Computer Engineering at the University of Deusto, Bilbao (Spain) and made my PhD on Applied Mathematics. I am currently Basque Country at the School of Architecture in San Sebastián. The union of Computer Graphics, Applied Mathematics and Architecture for digital art. I have experimented with interactive video, geometric computer models, architectural simulations but I feel specially comfortable creating innovative fractal
mages. During the last five years I have been working with Benoit Mandelbrot in the arrangement of Fractal Art contests and exhibits, as well as
curses on Art and Mathematics all courses on Art
over the world.

CTHULHU MYTHOS

Bistal Print. 400×400 mm. 2009

The name Cthulhu Mythos is taken from a fantastic universe created in he 1920 s by American horror writer ge is inspired in the gothic terro and science fiction aesthetic that
lood his novels. From a technical point of view, the image is an attempt expanding its formula into 3D. After proved to be impossible to make that expansion, several programmers developed some tweaks in a non-strictly mathematical way. This is a variation of the Mandelbrot set formula raised quadratic $\left(z->z^{\wedge} 8+c\right)$. The final geometry and coloring techniques were carefully shaped to keep the gloomy and scary atmosphere described in Lovecraft's books.

STATEMENT

My inspirations are drawn from nature, mathematics and science. These inspirations are combined with my ating a union between what is seen, what is known and what is felt inter nally. As an artist, my goal is to create for the viewer, visually, the concept that art, mathematics and science display a fundamental connection conveying the idea that all three encompass more than what can just be
seen. I believe that art is an intrinsic seen. I believe that art is an intrinsic
aspect of all visual experiences and aspect of all visual experiences and
mathematics can provide a basis for understanding and recreating those same experiences.

HYPERBOLIC

 TWISTSLUGCrocheted Fiber Soft Sculpture
$9^{\prime \prime} \times 2^{\prime \prime} \times 13^{"}$
$9^{\prime \prime} \times 22^{\prime \prime}$
2009
This crocheted fiber soft sculpture is based on non-Euclidean geometry. It represents a variation of the hyperbolic plane ruffle effect. The piece was created using basic crochet stitches which were increased at a rate great enough to create exponential growth. Attention was into a form of varying volume, irregular shape and an integration of pattern and color. The end result is simultaneously geometric in its ba-

Altered Reality Photographic Prints ${ }_{2010}^{22^{\prime \prime}} \mathbf{2 8}$
sic nature and organic in its form This creation used over two pounds of fibers. The structure is malleable, merous shapes. The hyperbolic su nerous shapes. The hyperbolic sot sculpture is a further exploration of what forms can evolve in combining hard-edged geometric concepts with
the fluid, textural aspects of fiber and the fluid, textural aspects of fiber and
stitches. This combination creates a three-dimensional visual and mental juxtaposition of the interconnection of the two elements.

FRACTAL LATIN SQUARE

Original Ink Pen Drawing $8.5^{5} \times 1$
2009

Spirals are curves emanating from central points, progressively growing further away as they revolve around the point. This drawing is a unique, one of a kind rendition of spirals,
but created in reverse direction from outer edges into a central point. Some variations resembling Sinusoidal, Archimedean and Hyperbolic spirals and even an occasional pseudosphere are created. The drawings are created on a drawing board suspended from a pole with an attached arm holding
a pen. The board is set in motion by

A NATURAL FRACTAL SERVED NINE WAYS

Altered Reality Photographic Prints
$22^{\prime \prime} \times 28$
2010

As my inclusion of mathematical and scientific elements and concepts into by artwork grows, my interest in exso expands. Out of a fascination with fractals came a desire to explore the artistic nature of natural fractals, creations of nature. My goal, with this project, was to introduce an altering of the subject's surface. I didn't wish to totally disguise the object, but rather examine it from new perpectives, new perimeters of what the
surface structure might look like, as well as combining it with color shifts. wanted to make the viewer really hape, volume, line, surface and the repeating fractal patterns. My color hifts and surface alterations invite is seeing, not just broccoli florets, but actual living examples of the mathematical concept of fractals.
ematical manner, and the GraecoLatin Square suited this purpose perfectly. Each fractal was assigned a
capital letter, then each altered style/ color path was assigned a lower case letter. I then followed the simple Graeco-Latin Square layout as follows: $\mathrm{Aa} \mathrm{Bb} \mathrm{Cc}, \mathrm{Bc} \mathrm{Ca} \mathrm{Ab}, \mathrm{Cb} \mathrm{Ac} \mathrm{Ba}$ This arrangement allowed for an orderly manner in which to display the fractals and their alterations as well the alterations.

I make geodesic sculptures, lighting and shelters from recycled, reused and repurposed materials. My work explores the beauty of maths and plays with how everyday, mass-produced items can be tessellated. The pieces also make a statement about Unlike much mathematical which is often purely abstract and quite cold, I use recognisable household objects to make work that is accessible, real and fun. I hope by extension to make maths and geometry

COKE BOTTLES SPHERE 60 plastic Coke bottles. 48 cm spherical diameter. 2010.
similarly accessible to a lay audience. Sphere of 60 plastic Coke bottles
The largest of my Spheres to date $\begin{aligned} & \text { slotted and held together withou }\end{aligned}$ is To Live, a 2.4 metre diameter geo- glue by 180 hand-cut elliptical lockdesic shelter made from estate agent ing slots. The piece is intended to be 'to lee boards. I've also made a small- lit from within as a pendant lamper version, entitled To Play, as a play- shade. The tops of the bottles form house for children. I'm developing a
larger one as an inhabitable sertices of a truncated icosahe
ther larger one as an inhabitable shelter.
I've been inspired by Magnu Wenninger, Stewart Coffin, Buckminster Fuller and George Hart. Artistically, I draw inspiration from land artists Andy Goldsworthy, Richard Long and Jan Dibbets.
dron. The interlocking slots are cut
along the line of intersection be along the line of intersection be
tween each pair of cylinders, with zigzag cut to lock the pieces together. You can see more of my Spheres project at http://flickr.com/nicksayers sets/72157609022531531/detail

BRITISH RAIL TRAIN TICKETS SPHERE
120 self-service British Rail train tickets. 29 cm spherical diameter. 2010.
Sphere of 120 British Rail train tickets slotted together and held in place by their own tension. The structure is adapted from the IQ Light system by Holger Strom. The basis for each module in this system is the rhombic face of a triacontahedron, scaled more in one direction to
cause distortion and thus increase constructive tension. Whereas the IQ Light embellishes this with a pretty curved surrounding shape, my train ticket sphere takes things back to basics - just a train ticket with four slits cut by hand! You can see more of my Spheres project at http:///fickr.com/nicksayers/sets/72157609022531531/ detail

BICYCLE WHEEL REFLECTORS SPHERE / CHANDELIER

Plastic bicycle wheel reflectors, cable ties. 33 cm spherical diameter. 2008.
I developed this as a low-cost alternative to a crystal glass chandelier. It's made from 60 bicycle wheel reflectors sourced from a local bike shop. The parts were drilled and joined together with 120 clear nylon cable ties. The reflectors, and the holes between them, respectively form the faces and edges of a distorted rhombicosidohttp://flickr.com/nicksayers/sets/72157609022531531/ detail

‘LIVING IT LARGE’ MAQUETTE

Plasticard mini nuts bolts and washers. 31 cm diameter $x 16 \mathrm{~cm}$ high. 2009.
Maquette for a shelter dome to be constructed from 60 estate agent (realtor) 'to let' or 'for sale' sign boards. It's a development of a previous design, entiled To Live, ration. To Live has been exhibited as an art installation but has the potential to be used as a disaster relief shelter or event kiosk. The structure is based on a truncated icosahedron, triangulated to form a diamond pattern in which the standard board size is angled to fit. You can see more of my Spheres project at http://flickr.com/ nicksayers/sets/72157609022531531/detail

STATEMENT

Themes of the natural sciences, especially of geometry and optics appear
in most of my works. They are often in most of my works. They are often
related to postmodernism by archaic forms, art historical references, stylistic quotations and playful self-reflection. I like to experiment with the extremes, paradoxes of the representation of the perspective to create the illusion of space. I also experiment to renew the techniques of anamorpho-
sis when I distort the pictures in such sis when I distort the pictures in such
a way that it can only be seen from a way that it can only be seen from that its new layer of meaning only reveals by the interposition of reflective surfaces.

ÆXPLORATION

(AESTHETIC EXPLORATION)
Real-time Video Projection. Variable. 2009 Æxploration (Aesthetic Exploration) is a real-time, interactive video projection. This custom software visualsional strange attractors, allowing the viewer to control the coefficients, the viewer to control the coefficients,
color, and translation of the attractor. Until recently, my goal has been to generate high quality still images of strange a ttractors, and my interactive software has been geared towards that
purpose alone-an artist's tool that is purpose alone-an artist's tool that is
a by-product of the process, viewable only by myself. But recently, in the course of a single day, I made some changes to my code that completely revolutionized what I was seeing on the screen while using my software, and I am excited to share the results. The image above is a screen capture.
Video is available at http://nathanse-likoff.com/251/strange-attractors/ aesthetic-exploration
relation. The structures of the images are built up by opposites and parallels in which the movements of the figure and the space are strongly related.
István Orosz Hungarian graphic artist's mathematically inspired works with forced perspectives and optical illusions gave me the idea to transplant this kind of graphic world into photography. M. C. Escher's similar works to that of István Orosz and the fitting of the figures on the face-card
had also effects on this visual world. My aim is to create a world similar to the graphical inspirations mentioned above, which is also an experiment of how these artificial perspectives act in photography.

STRUCTURES OF TWO NO. 2
Photograph (inkjet pigment print). $433 \times 600 \mathrm{~mm} .2009$.

In the series "Structures of Two" my aim is to create a mathematical structure based on symmetry and rotation, which can express the relation beshows two different versions of a rela tion. The structures of the images are built up by opposites and parallels in which the movements of the figures and the space are strongly related. István Orosz Hungarian graphic artist's mathematically inspired works with forced perspectives and optical plant this kind of graphic world into photography. M. C. Escher's similar works to that of István Orosz and the fitting of the figures on the face-card had also effects on this visual world. My aim is to create a world similar to the graphical inspirations mentioned
above, which is also an experiment of how these artificial perspectives act in photography.

STATEMENT

I am interested in interactive structures: visual patterns that change as response to external stimuli. This
general definition allows changes with time (evolving images, animations), changes to urban stimuli (sound level, weather or pollution
conditions, traffic parameters) and conditions, traffic parameters) and
unintentional or intentional, but natural action of people in front of the (projected) image, by making sounds, walking around, gesturing or touching. Such interactive tasks are challenging in educational situations, especially to invite art students
to study underlying mathematical to study underlying mathematical
principles (L-systems, symmetry principles (L-systems, symmetry
transformations) and to acquire skills in computer graphics and programming. Interactive applications simulated on a computer screen can serve on large-scale displays or projections as urban decorations, novel data visualization or serious games to make citizens move, connect and smile.

NTERACTIVE WALL

Interactive installation, to behind the screen). 2009 .

The Interactive Wall is an installation o explore different tessellation, both considering the ornament on the formation of tiles. The initial display is defined by choosing a tile design from a set prepared by art students, and arranging examples in one of 6 patterns, or in a random way. The surface is sensitive for touches by the visitors. Each touch results in a transformation (rotation or mirroring) on
the affected tile. The display reflects
the exploratory or goal-directed ac tion of the visitors, who may also get intrigued to find out the underlying mathematical principles. Equipment.
canvas, with computer, camera and projector behind $(1-4 \mathrm{~m})$. The Interactive Wall could be displayed in an alley or cut-off corner of some public space at Bridges, or in a door (to an unused room). The size of the canvas may be as big as the max size of would do better for interaction

PIOTR PAWLIKOWSKI
Adam Mickiewicz
Kluczbork, Poland
piotr.pawlikowski@inetia.pl

STATEMENT

For many years I have been making polyhedron models. I use different techniques, but the best results
I get in cardboard and glue. For a few years I have been using computer software (mainly Great Stella) for creating nets. At first, I did not recognize my hobby as an art. I was just adding new models to my collection. Once a manager of our local
museum encouraged me to organize an exhibition of my models in Kluczbork's museum. It attracted many
visitors and it was a moment when I started to think about my activity
as some kind of mathematical art. In polyhedra (especially in their compounds) simple shapes - triangles, squares, pentagons etc. form highly complex and tricky structures. In my models one can see the harmony and the beauty of mathematics. Looking
at them one can also feel some tenat them one can also feel some ten-
sion between simplicity and complexity. Both turn out to be the two sides of the same coin.

SQUARES AND TRIANGLES I

Glued cardboard (160g/m2). $13.5 \times 13.5 \times 13.5$ inches. 2004.

SQUARES AND TRIANGLES II

Glued cardboard (160g/m2). $22 \times 22 \times 22$ inches. 2007

90 squares and 40 triangles arranged in the other way than in Squares and Triangles I^{\prime} form this wonderful shape. These polygons cut one another in so incredible way that the whole structure consists of 3540 facelets. But it is not only complex, but it
is fully symmetrical too is fully symmetrical too. Mathemati-
cally this is a uniform compound cally this is a uniform compound
of 5 great rhombicuboctahedra (M. Wenninger number 85) and this is the most complex of all uniform compounds of uniform polyhedra. This is a true example of extreme connections between simplicity and derived from the Great Stella software.

80 triangles and 60 squares form this highly complex and beautiful struchighly complex and beautiful struc-
ture. From the mathematical point ture. From the mathematical point
of view this is a uniform compound of 20 tetrahemixahedra (THH). Its constituent is interesting because it is the simplest non-convex uniform polyhedron and the only uniform polyhedron with an odd number of faces ($7-4$ triangles and 3 squares). Compound of 20 THH is intriguing because it is the only uniform com-
pound of uniform polyhedra which cannot be obtained by adding symmetry to a group in which the basic polyhedron is uniform. The faces of each THH are so intricately facetted that the whole model consists of 1620 rived from the Great Stella software.

Glued cardboard ($160 \mathrm{~g} / \mathrm{m} 2$). $14 \times 14 \times 14$ inches. 2003.

TRIANGLES AND SQUARES

This highly symmetrical structure is built from 90 squares and 40 triangles. This is a uniform compound of
5 small rhombicuboctahedra. Its constituent is one of the Archimedean solids. It is a remarkable polyhedron because there exists a "twin brother" of it which is not uniform. The compound is interesting too. Most of the Archimedean solids do not form any
uniform compounds. This one is the uniform compounn.
most complex uniform compound most complex uniformedan solids,
of not only the Archimedean but also of all convex uniform polyhedra with non-prismatic symmetry (the whole model has 1080 external parts). Nets for the model were derived from the Great Stella soffware. squares and triangles.

MARGARET KEPNER

MEK Visysuals
Washington, DC, USA
renpek1010@yahoo.com

STATEMENT

I enjoy exploring the possibilities for expressing ideas in new ways, pri-
marily visually. I have a backgroun in mathematics, which provides me with a wealth of subject matter. My lifelong interest in art gives me a vocabulary to utilize in my work. I particularly like to combine ideas from seemingly different areas and try to years I ago I coined the term "visysuals" to describe what I do, meaning the "visual expression of systems" through attributes such as color, geo-
metric forms, and patterns. Topics that I have explored include: tesselations, symmetry patterns, combinatorics, edge-matching, group theory,
dissections, magic squares, modular systems, knots, fractals, and number theory. For the most part, I use inkjet printing to produce my artwork. I have also experimented with screen
printing, textile constructions, digiprinting, textile constructions, digi-
tal printing on fabric, and book making in order to produce pieces at a larger scale and/or with more physical variety.

17 BOOK

 $x 13.875^{\prime \prime}$
2007

Folded paper, inkjet print Flat: 24" $\times 24^{\prime \prime}$;oldedi $2.24^{\prime \prime} \times 2.4^{\prime \prime} \times 1.6^{\prime \prime}$.

QUILT 100 BOOK

"Quilt 100 " is an accordion-fold "Qok with 100 pages. The books sub10 columns, composed of pairs of nested squares filled with 10 different colors. The structure and coloring of he quilt is based on a pair of Mutually Orthogonal Latin Squares of order 10. Such pairs were once thought form ($4 \mathrm{k}+2$) based on a 1782 conjec ture by Euler. Although it was prov en that the order 6 case (36 Officer Puzzle) has no solution, examples
f MOLS of orders 10,14 , etc. were found in 1959. They were dubbed to the properties of MOLS, each color occurs in the outer squares exactly once in each row and column, and similarly for the inner squares. All 100 possible color combinations occur. To make the 2D quilt into a 3D
book, a system of cuts and accordion folds is used. The two double-squares not on the quilt's main diagonal are given special "bookend" roles in the folded book.

HEX STUDY WITH CIRCLES

"Hex Study with Circles" is derived from a shape-packing problem. The
35 small shapes in each circle are 35 small shapes in each circle are called "hexominoes." They represent
all the shapes that can be formed from six squares joined along their edges, neglecting rotations and flips. Mathematicians have explored ways to pack these shapes efficiently inside various envelopes. This design is based on a tight packing of the
hexominoes into a circle. The packing has been exploded slightly, creating space around the original "packed"

PERM MOD 4 EXP

"Perm Mod 4 Exp" is part of a series of 6 prints based on operation tables
under modulus 4 arithmetic. Each print is an expression of an operation $(+,-, x$, etc.) using 4 symbols: the 90 -degree rotations of an isosceles
right triangle. The operation in this right triangle. The operation in this eration table is a 4×4 array, where the entry in row a and col bis (a ${ }^{\wedge} b$ mod 4). A particular choice of the 4 triangle symbols to represent the numbers 1 through 4 yields a 4×4 mini- table of 16 triangles. Since there are 24 per-
pieces. Small random rotations have been added to loosen up the design and suggest motion. The patterns in the two circles are reflections of each other. One might imagine that the black pieces in the upper circle are expanding outward, escaping from a
smaller, tightly packed circle. Perhaps the white ones in the lower circle are moving in the opposite direction, condensing inward. Tensions are created in this design between white and black, rectilinear and round, expansion and contraction.
of the 2D symmetry groups exation of the 2D symmetry groups-the so-
called "wallpaper" groups. These 17 groups have interesting mathematical properties, and the associated patterns are widely used in the decorative arts. A symmetry pattern can be transformed by (1 or more) of the
motions of translation, reflection, rotation, or glide-reflection, while still preserving the overall pattern. For preserving the overall pattern. For
this book, the same "seed" shape, a $30-60-90$ triangle, is used for all patterns. There is a page for each symmetry group, with a large square containing a representative pattern for that group. Smaller squares on the page show other variations, achieved
due to the effect of using different initial orientations of the seed shape, plus variations in spacing and coloring. In the lower right-hand corner, each group's name is shown according to a commonly used system: pl, pgg, p3m1, etc. Graphic index pages The book uses the Japanese Stab Binding method.

Archival inkjet print
$144^{2} \times 11$
2008

STATEMENT

I am interested in Persian geometric art and its historical methods of construction, which I explore using the computer software Geometer's Sketchpad. I then create digital artworks from these geometric con puter software PaintShopPro

CALM
Digital Print. $16^{\prime \prime} \times 20^{\prime \prime} .2008$
"Calm" is an artwork based on the Modularity" concept presented in an article by Reza Sarhangi, Modules and Modularity in Mosaic Patterns, the Journal of the Symmetrion (Symmetry: Culture and Science), Volum
19, Numbers 2-3, 2008. Another article in this regard would be Sarhangi, R., S. Jablan, and R. Sazdanovic Modularity in Medieval Persian Mosaics: Textual, Empirical, Analytical, and Theoretical Considerations, 2004 Bridges Proceedings. The set of modules with extra cuts used to crefigure to the right.

STATEMENT

My research interest is in the application of CAD/CAM methodologies to sculptural form.
My work is abstract, geometric and minimalist. I am interested in Platonistic Idealism and the notion of the sublime and the relationship
between mathematics and art. I am between mathematics and art. I am
also interested in the changing notion of the sculptor in (or out of) the studio and the implication for that of digital and sculptural practice.

TRINITY
Cast Acrylic. 75mm x $320 \mathrm{~mm} \times 330 \mathrm{~mm} .2010$

The submission is a sculpture based on three conjoined forms derived from variations of the Versica Piscis lens shape. Where the classical Versica Piscis has two equal circles such the circumference of the other those in circumference of the other, those
in themitted piece are spaced such that the height of the major axis of the modified Versica Piscis lens is equal to half the height of the conventional Versica Piscis (giving a smaller and slimmer lens shape). This shape is then bisected and rotated through

360 degrees to create a solid ('American Football' shaped) torpedo. The forms are then obliquely truncated at both ends by two mirrored planes set at thirty degrees to the major axis and intersecting at a point halfway
along the radius (set at ninety degrees to the major axis) of a circle circumscribing the modified Versica Piscis lens shape. The truncated faces of the three forms are then mated in CAD to construct the solid three dimensional abstract form submitted.

STATEMENT

Besides expressionistic painting and sculpting of the figure and portrait, I am recurrently drawn into geometr
projects, probably by previous life.
This year I present two 3-D prints This year I present two 3-D prints by Materialise (Leuven, Belgium) of works previously shown 2-D:
y paper in the present conference and to a work I was accepted to present at the Joint Mathematics Meeting in San Francisco in January 2010 (http://www.anneburns.net/jmm10 verbiese.html), and

FRACTAL' GOLDEN PYRAMID
3-D print (stereolithography) in seethrough resin. $183 \times 112 \times 150 \mathrm{~mm}$. 2010.

My Golden Pyramid is a truss that can project (when viewed from underneath, at a precise, quite near point, orthogonally to the back gold-
en triangular face) into the K5 graph en triangular face) into the K5 graph
(pentagram inscribed in a pentagon) (pentagram inscribed in a pentagon) equilateral and two golden triangles on a golden rectangular base featuring its two diagonalss. The model has its struts built here, kind of fractally,
from 463 slightly overlapping tiny golden pyramids. The software used for modelling were Scott Vorthmann's vZome and Materialise's Magics. Thanks for their respective help.

MICROCHARTRES LABYRINTH
PROJECTED
REVERSE ON A CUBE
3-D printing (stereolithography) in see-through
mm. 2010.

The idea stemmed from the desire to design a labyrinth that followed the theme of the garden fair "Les
Jardins dAywiers", devoted in the spring of 2008 to the bees. An hexagonal symmetry resulted, complete with bee cells (thanks extended to Patricia Limauge for kindly inviting me). Contemplating this, readily lead to projecting the microChartres
on a cube, and this, in an 'inverted' on a cube, and this, in an inverted
way, i.e.: the labyrinth path on top of way, i.e.. the cubic wall and the maze
the domed cur "wall" in the bottom of the cube. The object was further developed into a building accessible from the Ariadne thread at ground level. Four tunnels between dead-ends have been added
to transform the maze into a circuit, which can be seen thanks to the seethrough nature of the used material.

STATEMENT

Sean obtained his Bachelor of Science degree in 1993 with a special interest in physics and mathematics. He sub-
sequently obtained a post-graduate sequently obtained a post-graduate
degree in the health sciences field in degree in the health sciences field in 1997.

He applies his mathematical background to his photography and paintings to create organized ran-
domness in his work. Currently he is exploring x-ray photography using expired medical film and intensify-
ing screens.

Mathematical Paintings: These images originated by first selecting a

ALGEBRAIC BLISTER
Digital print on canvas. 24x36. 2009, Polarizing mathematical interpreta tion of graffiti with manual introduc tion of error points to simulate 'blistering' of the image.

photograph which had the appropriate colour palate I was looking for. Using mathematical formulas and pushing pixels around manually with a mouse or pen tablet, the images were formed. Some still resemble
the original photo, while others are the original photo, while others are
only similar in their colour. Some only similar in their colour. Some
images have thousands of formulas images have thousands of formulas
applied to them, taking many weeks to complete. All of the mathematical pieces were created using open source software.

COLOURFUL

MYOPIA

Digital print on canvas + board, gloss polymer. 18x27. 2010 .
Polarizing interpretation of graffiti to Polarizing interpretation of graffiti
simulate myopic vision problems.

SAXON SZÁSZ JÁNOS
Mobile MADI Museum Budapest, Hungary saxon-szasz@invitel.hu
www.saxon-szasz.hu

IMMATERIAL
TRANSIT
Oil on wood. $152 \times 152 \mathrm{~cm} .1997$

POLY-DIMENSIONAL BLACK SQUARE Oil on wood. $55 \times 55 \mathrm{~cm} .2000$.

STATEMENT

SAXON: From Immat
to POLY-UNIVERSE
his complete transfiguration, this absolutely transparent state, I could only model in painting by using such elements as even in themselves represent the supremacy of pure sensation. Thus two basic suprematist elements, the square and the cross
through which the square is divided into four parts, have served as points of departure. In this case, the square bears a yellow colour symbolising existence, whereas its opposite, the cross is characterised by a white tone that creates an impression of empti-
ness. During the construction of the ness. During the construction of the
picture, i.e. the deconstruction of the yellow square, I came to sense total depletion, or, more precisely, to set up a polydimensional net. The net that connects micro- and macroworlds, is the virtualisation of an absolute mind which, stretched in
infinite dimension structures infinite dimension structures or
POLY-UNIVERSE as a hyper-filter, incessantly attempts to jettison the imperfect objects of existence from its "body".

Generally it very seldom happens that a geometric form capable of iteration should be suitable as an
icon on its own. If we find any, it is because it is formally related to the genre of the icon. One example can be the square, as it has the shape of the wooden board. On one occa-
sion, studying the borderlines of the shading I had made on the shapes drawn in graphite, I did indeed take Malevich's Black Square as a starting point. The sides of this square are divided in a $1: 5$ proportion, and this is the scale-shift that leads to the creation of the 'fringes' surrounding the to the picture three times. In this case let us calculate the fractal dimension of the outlines. Here we have eleven steps for a change of 5 length units; the result is hence $\log [11 / 5]$, that is, $1.4898 \ldots$ By the deliberate fusion of the black tone of the different-scale squares our eyes are stimulated to
see one poly-dimensional square, in contradiction to mathematical laws.

UNIVERSE
Tint-drawing on paper. $50 \times 50 \mathrm{~cm} .1979$. During the past thirty years, studying the basic geometrical shapes (the square, the circle, the triangle) I have named these image structures 'poly-dimensional fields'. Now I had the analogy of my childhood observations in nature, since the 'polydimensional fields thus emerging
are able to model the abundance of are able to model the abundance of
nature (trees, blood and water systems, crystals, cell division, etc.) and the infrastructural growth of human civilization (networks of roads, pipe systems, networks of communication, etc.). On the other hand, they can represent the dimension struc-
tures of atomic and stellar systems, which have a similar structure, but are realized on extreme scales. My thoughts germinating while observing nature took the object form in my first work of art very early, at the end of the 1970s when I was 15. I called it 'Universe. The image is made up
very clearly by the possible permutation of halving the diagonals of the square.

STATEMENT

My 2010 entries focus on the theme "Math Becomes Art." Visualization models, constructed to gain an un derstanding of some mathematical their aesthetic qualities. This is demonstrated with two topics; the first one concerns "Simple Knots," the second one "Regular maps.
In 2009, together with a few students, we explored "The Beauty of Knots." For a few simple knots at the beginning of the ubiquitous kno table, we looked for aestheticall
pleasing and truly 3-dimension pleasing and truly 3 -dimensional
realizations and then created small sculpture models on a rapid prototyping machine.
For the last few years I have been trying to find explicit 3D models
for the embedding of regular maps for the embedding of regular maps "Regular Maps" ape networks of high symmetry in which all vertices, edg es, and faces are indistinguishable from one another. There are 76 such regular maps on surfaces of genus-2 through genus-5. So far I have found models for about half of them.

KNOT 52

(above left) Yellow ABS plastic (FDM). 5" $\times 5$ " $\times 3$ ". 2009.
A simple knot turned into a model for a monumental sculpture

KNOT 6.1

(eft) White ABS plastic (FDM). 4" x 4" 4 4". 2010.
Another simple knot turned into a sculpture model.

REGULAR MAP R3.2 \{3,8\} ON A TETRUS
SD Print, hand painted. 4 " $x 4^{\prime \prime} x$ 2004.
"Regular Maps" are networks of edges and vertices embedded in closed 2-manifolds of arbitrary genus. The most familiar examples are the five
Platonic solids, which represent such maps on surfaces of genus zero. There are 20 different regular maps of genus 3. They can readily be depicted in the Poincaré disk. It is a bigger challenge of find nice symmetrical embeddings n a handle-body of suitable genus. Here I have taken the regular map and 32 triangles, which always join eight to a vertex, and mapped it onto a Tetrus surface, maintaining the full 12 -fold symmetry of the oriented tetrahedron.

TIFFANY LAMP BASED ON REGULAR MAP R3.2_\{3,8\}
Computer rendering. $16^{\prime \prime} \times 16^{\prime \prime}$. 2004
The regular map R3.2_\{3,8\} embed The regular map R3.2_\{3,8\} embedded into the surface of a Tetrus sur-
ace, is turned into a virtual Tiffany amp with 4 light bulbs in the corners of the tetrahedral frame. The project ed pattern on the back wall is gener ted by ray-tracing.

STATEMENT

1 seek to depict interesting math ematical truths, curiosities and puzzles in simple, visually descriptive ways. Mathematical amusements inspire the color and form in my paint-
ings, and I try to strike a balance beings, and I try to strike a balance be-
tween the simplicity of the concepts and their depiction in art. The logic and balance of the discipline is beautiful, and I like art that both stills and stimulates the mind - these are the qualities I strive to capture in my work.

SACRED CUT

Acrylic on canvas. $24^{\prime \prime} \times 30^{\prime \prime} .2010$. The Sacred Cut was perhaps historically used to find a method to double the area of a given square. For example, in order to double the altar they The Sacred Cut gave a means to do it. It produces the Silver Rectangle with ratio of sides $1: \sqrt{2}$ which is used in A Form paper. This work illustrates how to construct the Silver Rectangle or the Sacred Cut and also gives an impression of doubling both the rectangles and the squares.

THE PASCAL LINE
Acrylic on canvas. 24" $\times 24^{\prime \prime}$. 2010.
At the age of 16 , Blaise Pascal dis covered and published his famous theorem entitled Essai pour les Coniques. The theorem states that if a hexagon is inscribed in a conic then the three points in which the opposite sides meet are collinear. The line the Pascal Line in a zig-zag inscribed hexagon.

THREE FISH ON A PLATE-COMMON CHORDS
Acrylic on canvas. 24" $\times 24$ ". 2010.
If three circles intersect, the three common chords intersect at a point.

PEDAL TRIANGLE II Acrylic on canvas. 24" $\times 24$ ". 2010. The so called pedal triangle is also the billiard ball path (on a trianguar billiards table!). It is the shortest omplete repeating route that touches the three sides of the triangle. Mis pedal triangle by joining the feet of the altitudes of a triangle.

STATEMENT

I seek to depict interesting mathe

 matical truths, curiosities and puzzles in simple, visually descriptive ways Mathematical amusements inspiic the color and form in my paintings, the simplicity of the concepts and their depiction in art. The logic and balance of the discipline is beautiful, and I like art that both stills and stinulates the mind - these are the qual ties I strive to capture in my work.

THE PASCAL LINE
Digital print. $257 \times 259 \mathrm{~mm} .2009$. Ten interlaced pentagonal stars forming a tree-like shape are scaled by the golden mean. They are stowing self-similarity and forming Pen-
rose rhombs on different scales in the middle. We can observe the richness of golden mean relations in the lines, and in geometrical shapes.

TWINSTAR

Digital print. 240 X 280 mm .2010.
In the black quasicube constituted of thin and thick Penrose rhombs we can find two interlaced pentagons in which two interlaced pentagrams can be drawn, together forming a dou-
ble- or a twin star. While observing the artwork our minds themselves complete the image in parts where the lines are intentionally absent. The image is perceived in various interpretations. A rich interplay of golden mean relationships can be observed, as well.

HEARTWORK NO.

Digital print. $200 \times 250 \mathrm{~mm} .2009$. In the mysterious world of chaos and trange attractors a seeker can find very heartful things.

STATEMENT

The "Imaginary Cube" is based on simple geometrical idea. See the pa per in the Bridges proceedings for the details. Through a mathematical study of imaginary cubes, the author arrives at an idea for an object of art. The 16 components of the sculptures all have different shapes but together they present uniform appearances nal directions. Moreover, the 16 components are not arbitrary ones but they are exactly the representa tives of all the 16 classes of minimal
nvex imaginary cubes. Imaginary cubes are also useful in mathemati-
cal education; the author held a lot of workshops on imaginary cubes with classes from elementary schools up to universities. Special thanks to Hiroshi Nakagawa; through his accurate woodworks, imaginary cubes
become really artistic sculptures become really artistic sculptures.
Thanks are also due to Kei Terayama for his techniques in assembling p per models and Mako Mizobuchi for fine pictures.

Wood and acrylic resin $5 \times 45 \times 45 \mathrm{~mm}$ for eac

IMAGINARY CUBES

Woodworks by Hiroshi Nakagaw (Gallery of Wooden Polyhedra http://ww6.enjoy.ne.jp/~hiro-4 woodenpolyhedra30.html). Imagine a three-dimensional object which has square appearances in three orthogosuch an object an imaginary cube such an object an imaginary cube.
Among imaginary cubes, consider convex ones, and also among convex ones, minimal ones for a fixed surrounding cube. Such minimal convex imaginary cubes are divided into 16 equivalence classes and here are the representatives of them, made
of wood. It is difficult to imagine that of wood. It is difficult to imagine that
these polyhedra have this property if they are put solely, but once each of them is put in an acrylic resin box with one side open, one can easily find that it is an imaginary cube just by looking at it from the faces of the box. It is a good mathematical puz
to put imaginary cubes in

Paper
$180 \times 180 \times 180 \mathrm{~mm}(400 \mathrm{~mm} \times 600 \mathrm{~mm} \times$ 450 mm with mirror)
m with
2008

等
ch xex $x=x x^{2}$

$$
\begin{gathered}
\text { Paper } \\
180 \times 180 \times 180 \mathrm{~mm} \\
2010
\end{gathered}
$$

IMAGINARY CUBE SCULPTURE

 (SIERPINSKI TETRAHEDRON LAYOUT)These four pictures present different appearances of one and the
same object. It is composed of the 6 imaginary cubes of the above art ork, that is, all the representative of the minimal convex imaginary n imaginary cube, as this picture hows. The imaginary cube components are arranged according to the structure of the 2nd level approxima tion of the Sierpinski tetrahedron, nd their assignment and orientation
are carefully chosen so that they are connected at vertices. They are conected by threads which are glued from the inside of the polyhedra at vertices. This object is colored with 7 colors except for white; six colors are
assigned to faces and edges of the 6 directions with square appearances, and those faces which compose the holes in the four blocks are colored black. These holes have the form of triangular antiprismoid, which is also an imaginary cube.

IMAGINARY CUBE SCULPTURE (CUBOCTAHEDRON-LIKE LAYOUT)

The object is placed in the center f the picture, and the surrounding The object is also an imaginary cube composed of the 16 representatives of the minimal convex imaginary cube classes, but with a different layut of the 16 components. These two
ranents of the 16 imaginary cubes are obtained through the inestigation of Latin squares of degree . This object has 4 holes of the shape fa triangular antiprismoid-also an
maginary cube-in the four blocks and one hole of the shape of a regular octahedron in the middle.

IMAGINARY CUBE SCULPTURE

 (CUBOCTAHEDRON-LIKE LAYOUT, WOOD)Woodworks by Hiroshi Nakagawa
It has the same shape as the above sculpture, but composed of wooden imaginary cube components. As we Amazingly the empty space is de composed into five polyhedra; the central hole has the form of a regular
octahedron and the others have the form of a triangular antiprismoid. Frames for these polyhedra are conructed from brown wood. The 16 lued together through these frames of form one imaginary cube object.

STATEMENT

Typically, my creation process runs through several stages. First I draw abstract geometric designs for executing my computer programs. I use the computer on different levels.
Some of my computer programs proSome of my computer programs produce two dimensional images; others are three - depending on my composition's final dictates. Then I add and digital cameras. The programs that produce two-dimensional artwork serve as a point of departure for photolithographs and photo silkscreened prints on canvas and paper. They are included both into my twodimensional and three-dimensional
works. All of these approaches are works. All of these approaches aith
combined for image creation with the use of painterly markings.

A SURFACE OF

 REVOLUTION(above left) Archival Print. 5x7". 2010. It is possible to construct $1 / 5^{\text {th }}$ of a given entity, but many believe such division may not be seen adequate.

EXPRESSIVE MATH

(left) Print. 7x5". 2010.
We may imagine infinitely many figures that satisfy one basic rule.

MINIMAL SURFACES
Archival Print. $5 \times 7^{\prime \prime}$. 2010.
In order to communicate the essence of a notion, we can abstract ideas by removing all non-crucial elements.

RECTIFYING THE CIRCLE
chival Print. 7x5". 2010

There are so many methods that it is hard to come up with one standard solution. It makes room for shortuts, insight, and intuition.

STATEMENT

KINETIC SCULPTURES I have been inspired by the geometry of the ELLIPTIC CYLINDER This profile can be formed with a stairs. It has an ellipse as cross sec tion and circular sections when cut under the right angle. The circular sections are joined to produce transformable forms.

The experiments led to the discovery of transformable polyhedra

TRANSFORMING

 CUBEBeech wood, metal connector $30 \times 30 \times 30 \mathrm{~cm} .1977$
The edges of the cube are elliptic The edges of the cube are elliptic
cylinders. Each edge has two circucylinders. Each edge has two circu-
lar sections with rotation axles. This allows the cube to rotate into a solid with 24 faces (icosi tetrahedron). The photo shows a halfway position.

and design applications a.o. in the field toys (produced by the Swiss company NAEF SPIELE AG, Cat erpillar Juba, flexible chain Elip hombic cube). -contracting cubic grid has an equivalent in nature as the crystal sfucture of minerals named "tilted perovskites".

TRANSFORMING CUBIC LATTICE

Beech Wood, metal connectors. $90 x$ $90 \times 90 \mathrm{~cm} .1990$.
The corners of the single cubes are cut under an angle perpendicular to the diagonals of the cube. They form circular faces. The faces are provided with rotation axles and joined. The whole cubic lattice (grid) is transf each cube can be chosen to the right or to the left. This forms different symmetries within the lattice. The picture shows an assembly of six cubes.The grid is extendable in he $\mathrm{x}, \mathrm{y}, \mathrm{d}$ direction. The grid is rigid. urning one part transforms the whole structure.

TRANSFORMING

RHOMBIC
DODECAHEDRON
Cardboard linen aluminium. 60×60
$x 60 \mathrm{~cm} .2005$.
The edges of the rhombic dodecahe ron are instrumented with 2 hinge 8 in total. The dodecahedron trans forms into a cube

TRANSFORMING TRIACONTAHEDRON

Plasticcardboard. $80 \times 80 \times 80 \mathrm{~cm} .2006$.
The edges of the triacontahedron re instrumented with 2 hinges, 120 total. The triacontahedron tran rms into a dodecahedron. The pic

