Gary R. Greenfield

"Untitled"

digital print, 6" x 6", 2007.



Virtual interacting particles are realized as small paint droplets encased in hard shells. Particles move under the influence of artificial gravity. When a particle touches the canvas it adheres, its shell disintegrates, and the particle's footprint becomes visible. Particles stream from fountains located slightly above the canvas. Back scattering and dispersion occur when particles from two or more intersecting streams collide. This series of images was made by sequentially turning on and off 120 pairs of streams where some collision potential existed. Each stream contained 400 particles, all particles in a stream were of the same color, and four colors were available. The resulting "fountain paintings" lie on a spectrum somewhere between simulated Pollock style drip paintings and simulated air brush paintings.


Gary R. Greenfield, Associate Professor of Mathematics and Computer Science Mathematics & Computer Science Department, University of Richmond, Richmond, VA 23173

"Many of my computer generated algorithmic art works are based on visualizations from simulations that are inspired by mathematcal models of physical and biological processes. Examples include cell morphogenesis, swarm behavior, diffusion limited aggregation, and interacting particles. By experimenting with the parameters affecting simulation settings and drawing attributes, I try to focus the viewer's attention on the complexity underlying such processes. "

Another work by the artist

"Untitled"

digital print, 6" x 6", 2007.



See Description of first work