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Abstract

By playing a word game, participants “evolve” an original basket design through a sequence of spelling mutations. 
They then learn how to weave their newly-evolved basket through the easy-to-learn technique of unit weaving. This 
fun game has connections to formal language theory, graph coloring, genetics, evolutionary theory, and physics.

Background

Making curved, closed surfaces in the fabric arts can be a headful of trouble. Curvature is typically 
obtained by counting increases and decreases, and full closure is typically obtained, in the last  resort, by 
sewing. In this workshop we will learn a weaving technique that weaves closed baskets idiomatically, 
with no thought to increases, decreases, or sewing. The weaving is directed by “words” written in the 
four-letter alphabet {u, n, d, p} superficially resembling the {A, C, G, T} alphabet  of DNA. The approach 
we will take in the workshop is to first master the simple rules for “evolving” words in this undip 
language; to each evolve such a word; and to then learn to weave the baskets our unique words describe.

Figure 1: The four basket shapes named by the 70 undip words of length 6.
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Formal Languages

Definitions. A formal language is a set of words (character strings) spelled using only letters from a finite 
set of letters called an alphabet. The length of a word is the number of characters in the word. For 
example, the undip word nnuuppdd (which names a cube-like basket) is a word of length 8. By 
convention, every formal language includes the unique, zero-length word called the empty word, 
symbolized by the Greek letter ε.

 A formal language is called algebraic if its membership is completely specified by a set of rewriting 
rules. Undip is an algebraic language. Thus, undip is the set  of character strings {ud, np, udud, udnp ... 
etc.} containing all the words that can be formed by recursively applying the rewriting rules that  will be 
specified below. The empty word serves as the starting point in generating a language from its rewriting 
rules.

Undip

Undip is an algebraic language on the alphabet {u, n, d, p}. Taking note of the direction of their strokes, 
we will call u and d up letters, and n and p down letters.

The Re-Writing Rules for Undip.  The following re-writing rules suffice to form all the words, and only 
the words of undip:

Insertion  Rule: ud or np can be inserted anywhere. (In other words, those sequences can be 
inserted before, after, or between the letters of any word.)

Shuffle Rule: Where an up and a down letter are adjacent, their order can be reversed.

Inverses of the  Re-Writing Rules. It  is easy to see that shuffle is its own inverse: applying it twice to the 
same letters returns the original word. Insertion, on the other hand, has a distinct  inverse: deletion. 
Deletion can be used can to generate a shorter undip word:

Deletion Rule: The subwords ud or np can be deleted from any word.

Questions and Exercises. Is there an undip word of odd length? The number of undip words of length 2n 
is given by the product  of consecutive Catalan numbers, which are namely the numbers in the sequence 
{1, 1, 2, 5, 14, 42, 132 ...}. Can you name the (1 x 1 = 1) undip word of length 0? See if you can find all 
(2 x 5 = 10) undip words of length 4. Which of these ten words are just one edit (one “mutation”) apart?

Playing the Word Game

Starting Genesis-like from the empty word, we will, each at our own whimsey, apply the above two (or 
optionally three if we use deletion) rewriting rules recursively to “evolve” a unique undip word. To 
document the evolution of our words, we will use proofreaders’ marks as exemplified by the notes 
reproduced below. Notice that  after indicating an edit  with proofreaders’ marks, a clean, edited copy is 
written out on the next line below—ready for another “mutation.” The first  line of an evolution is 
invariably an insertion into the empty word.
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Figure 2: Markup for the evolution of an undip word of length 4.

Unit Weaving

Weaving One  Crossing at a Time. The basket  weaving technique we will use to make baskets from our  
undip words is called unit weaving. All you need to learn about unit  weaving is how to join three unit-
weavers, called twogs, together in a Y-shaped join which we will call an event. Figure 3 shows the steps. 
Twogs (like playing cards) should always be held with the proper side facing you. Viewed from that 
proper side, the end of the twog looks like a curled right hand (see first frame in Figure 3.)

Figure 3: Three twogs join together in a Y-shaped join called an event.
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 Having reached the “done!” frame in Figure 3, the next  step would to take hold of either the yellow 
or purple twog (i.e., follow either the left  or right  branch of the Y,) and repeat  the assembly process to 
build a second event connected to the first. Practice making a few events. Can you make one without 
looking?

Questions: Can you find a mirrored or “left-handed” way to put twogs together? Is an event  built in the 
left-handed way actually different an event built in the right-handed way? Do you think twogs can be 
used to weave a nonorientable surface such as a Mobius strip or a Klein bottle? Why, or why not?

Baskets as Feynman Diagrams

Weaving Electron  Stories. Many things will be made more vivid and easier to remember if we see the 
baskets we are going to weave as Feynman diagrams [1]. That is, in each basket we will read a simple 
story of an electron and the photons it  emits and absorbs. In quantum mechanics the probability of an 
event  depends on a sum taken over all possible ways the event  can occur—a “sum over histories,” in 
Feynman’s phrase, that  lead up to the event. A Feynman diagram isolates just  one of these histories for  
consideration. As such, we are never so lucky that a single Feynman diagram corresponds to a real 
phenomenon—full accuracy always requires an infinity of ever more complicated diagrams—but weavers 
are lucky enough that a Feynman diagram can correspond to a real basket. 

 Twogs come in three colors, and there will always be three different-colored twogs joined at each 
event. Choose the lightest  color (yellow) as your photon color. The other two colors, pink and purple, 
become by default  your electron colors. At  each event  the electron emits or absorbs a photon, thereby 
experiencing a change in energy and momentum. Our electron changes colors at  each event  (pink to 
purple, or purple to pink) as an emblem of these changes.

 Let’s look at  the basket being woven in Figure 4, and try to read it as the story of an electron. The 
first  frame in Figure 4 says our electron starts out in its pink color, emits a photon to the left, and 
continues on in its purple color. The second frame says that the electron experiences a second event where 
it emits a photon to the right, its color changes back to pink, and it continues on.

 The third frame shows a third event  where now the electron absorbs a photon on its left. Which 
photon does it  absorb? (In this particular basket the answer is quite easy because only one photon has 
been emitted on the left side.) Because our baskets always have spherical (a.k.a., planar) topology, we can 
always use this simple rule:

First-to-Hand Rule: to find the correct photon to absorb, run a hand backwards along the work 
on the side you are looking for a photon. The first that comes to hand is the correct one. 

Figure 4: A basket as a Feynman diagram: the lightest (yellow) twogs represent photons.
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 The fourth frame in Figure 4 shows a fourth event in the electron’s story—the absorption of a photon 
on the right—but  in a partially completed state. This event  is a little different because the final photon is 
being absorbed, thus completing our basket, and taking our story back to its beginning. Notice that  the 
last twog joined is actually the other end of the very first twog. In last  frame the work is nearly finished—
we just need to place the remaining (purple) hook behind the last-added (pink) twog. (Weaving the last 
event is always a little fussy because all the twogs are already anchored in the work.)

Reading Undip Words

Bottoms Up. We now know how to make a basket that tells the story of an electron, all we need to add is 
the ability to read such a story in an undip word. That part is easy. Rotate your word so that you are 
reading from the bottom up. Open letters emit photons, closed letters absorb them. Can you guess on 
which side the emission or absorption occurs? That’s all there is to it.

Figure 5: Undip words are read sideways, from the bottom up. Open letters emit photons, closed 
letters absorb them. Can you guess to which side?

 One more rule will be handy in getting your photons to emit and absorb on the side you want:

Left-is-Last Rule: the color you want on the left side is the last added in building the event.

How it Works

Every closed surface can be approximated by a triangulation, or, roughly speaking, as a polyhedron with 
faces that are all triangles. Such a triangulation has a dual having three edges meeting at every vertex. 
Given any triangulated surface, it is the dual that  can be unit-woven. Taking the icosahedron as an 
example of a triangulated surface, Figure 6 shows the close relationship between a triangulation (the 
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Figure 6: A triangulated surface, a woven basket of the same shape, the dual of the triangulation, and a 
unit-woven basket of the same shape.
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icosahedron), a kagome basket  basket of the same shape, the dual (the dodecahedron), and a unit-woven 
basket of the same shape. This same way, every closed surface can be approximated by both a classical 
kagome basket and a unit-woven basket.

 A special sort  of dual is needed for us to read the story of an electron in it: it  must  have a Hamilton 
circuit. A Hamilton circuit is a closed path that  visits every vertex without  re-traversing any edge. A 
chosen Hamilton circuit  becomes the path of the electron in the story. Most  3-regular graphs have 
Hamilton circuits. If there are none, or one is too difficult to find, Gopi and Eppstein [2] have described 
an algorithm that edits a graph in subtle ways in order to create a Hamilton circuit.

 Any polyhedron of spherical topology can be stretched to lie flat  on the plane with all but  one face 
showing. This is called a Schlegel diagram  of the polyhedron. We will only need to see the edges of the 
missing face, and they are still present as the perimeter of the Schlegel diagram. Figure 7 shows a 
Schlegel diagram of a cube, with a Hamilton circuit  highlighted in red. We can stretch the diagram still 
more to turn the Hamilton circuit into a circle. Choose some mid-edge on the Hamilton circle as a starting 
location for the electron’s story, and choose a direction (clockwise or counter-clockwise) to travel. Each 
time we encounter a black edge for the first time, it  is recorded as a photon emission, the second time it  is 
recorded as a photon absorption. When we complete the circuit, we will have recorded an undip word that 
describes the basket. This technique for describing a planar map was described by Cori et al. in 1986 [3].

Questions: Try finding a Hamilton circuit in a graph that  can be drawn on the plane without  crossings. 
Does every such graph have a Hamilton circuit? If you find one, can you stretch your drawing to show the 
Hamilton circuit  as a circle? Has another student  woven a basket of the same shape as yours following a 
different word? What is the smallest number of “mutations” that can turn the one word into the other?
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Figure 7: A Schlegel diagram can be deformed so that a particular Hamilton circuit becomes a circle.
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