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Abstract 
 

Bivariate splines are piecewise polynomials in two variables defined over planar tessellations. Most of these 

tessellations are symmetric in some sense and represent famous design and tiling patterns. We show that this 

symmetry is an intrinsic property of bivariate splines directly related to the concept of dimension of spline spaces.  

 

1. Introduction 
 

A bivariate spline is a function which is made up of pieces of polynomials in two variables defined on a 

partition ∆ of a polygonal domain Ω in the plane. These pieces are joined together to ensure some order r 

of global smoothness. Bivariate splines are highly effective tools in numerical analysis, computer-aided 

geometric design and image analysis. A detailed mathematical treatment of bivariate splines can be found 

in [1]. The vast majority of partitions used in applications appear symmetric in some sense. Moreover, 

they are composed of famous design and tiling patterns, see all three patterns in Figure 1, and the 

symmetric versions in Figures 2, 3, 4 on the left. However, in many applications, this symmetry is not 

 

 
 

Figure 1: Patterns often appearing as partitions for bivariate splines. 

 

desirable, since the scattered data does not come on the grid. Why do researchers use semi-regular 

symmetric patterns then? In this paper we show that viable spline spaces tend to favor symmetric 

partitions. When defined on a finite partition, bivariate splines are linear spaces with finite dimension.  

Viable spline spaces have low degree of polynomial pieces, high smoothness, and high dimensions. The 

high dimension is needed to accommodate the available for modeling data. For many important spline 

spaces, the dimensions are not known. The main reason appears to be the dependency of the dimension on 

the exact geometry of the partition, see [2] for more details. In particular, dimensions seem to depend on 

symmetry of the partition. We shall refer to symmetry in a broad sense, since in most cases defining the 

exact dependency is an open question. For example, smooth quadratic splines over the middle pattern in  

Figure 1  absorb the three non-regular edges,  yielding the pattern on the left. The pattern on the right is 

the less applicable than the one on the left. The results of this paper suggest that symmetry of the partition 

accommodates higher dimensions of spline spaces, which in turn provides more flexibility for modeling. 
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2. Smooth Splines and Symmetry 
 

In this paper, the elements of the partition ∆ are triangles and quadrilaterals. We first introduce the space 

of splines as follows: 
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is the space of polynomials in two variables of total degree  ≤ d.  Some smooth splines of degree 

d ≤ 4r+1 are known to show strong dependency on the geometry of the underlying triangulation. In 

general, not much is known about spaces of splines of degree d ≤ 3r+1. It is believed that their dimension 

always depends on the geometry of the partition. In this section, we investigate two families of smooth 

spline spaces and their dimensions.  

 Figure 2 shows two partitions of a quadrilateral. Both partitions consist of four triangles, thus, they 

are called four-cells. The split on the left is symmetric about the point O, while the one on the right is not. 

 
Figure 2: Symmetric (left) and asymmetric (right) four-cells. 

 

The following two theorems show that for a fixed degree and smoothness, the dimension of splines on a 

symmetric four-cell is higher than that on an asymmetric one. The proofs follow from Theorem 9.3 in [1]. 

 

Theorem 2.1. The dimensions of polynomial splines of degree d and positive smoothness r ≤ d on the 

symmetric four-cell depicted in Figure 2 (left) are given by the following formulas: 
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Theorem 2.2. The dimensions of polynomial splines of degree d and positive smoothness r ≤  d on the 

asymmetric four-cell depicted in Figure 2 (right) are given by the following formulas: 
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Figure 3 shows two partitions of a triangle. Both consist of seven triangles. They are known as 

Morgan-Scott triangulations.  The split on the left is symmetric about each of the three lines formed by 

the pairs of points (u,U), (v,V) and (w,W). The split on the right is not symmetric in the following sense: 

the three points of pairwise intersections of the lines (u,U), (v,V) and (w,W) are not collinear. We note 
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here that this asymmetry can be specified more, however, it is still on open question to what extent. The 

following two theorems show that for a fixed degree that equals to a double of smoothness, the dimension 

of splines on a symmetric Morgan-Scott triangulation is one higher than that on an asymmetric one. The 

proofs follow from Theorems 1 and 2 in [3]. 

 

 
Figure 3: Symmetric (left) and asymmetric (right) Morgan-Scott splits. 

 

Theorem 2.3. The dimensions of polynomial splines of degree d=2r on the symmetric and asymmetric 

Morgan-Scott split in Figure 3 are given by the following formulas, respectively: 
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3. Continuous Splines and Symmetry 

 
Dimensions of continuous splines (with r=0) on triangulations have no dependency on symmetry, see  

Chapter 9 in [1]. There is not much known about continuous splines over arbitrary partitions. In this 

section we study spline spaces over a partition consisting of triangles and quadrilaterals. These spaces 

manifest dependency on the geometry of the underlying partition. 

Figure 4 shows two partitions of a triangle. Both partitions consist of one triangle and three 

quadrilaterals. We shall call them mixed splits. The split on the left is symmetric in the following sense: 

the three lines formed by the pairs of points (u,U), (v,V) and (w,W) are concurrent.  The split on the right 

does not have this property. The following theorem shows that the dimension of linear continuous splines 

on the symmetric mixed split is one higher than that on the asymmetric one. The proof follows from 

Proposition 3.1 in  [4]. However, that proof uses complicated machinery from Algebraic Geometry, and 

the paper is still unpublished.  We show below a different proof based on a simple geometric argument.  

 

 
 

Figure 4: Symmetric (left) and asymmetric (right) mixed splits. 
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Theorem 3.1. The dimension of polynomial splines of degree d=1 and smoothness r=0 on the symmetric 

mixed split  in Figure 4 (left) is equal to four, while it is three on the asymmetric one  in Figure 4 (right). 

 

Proof. We first show that in order to interpolate a piecewise linear continuous function f over the 

symmetric split, exactly four pieces of data are needed. The three values f(u), f(v) and f(w) define a linear 

piece over the triangle [u,v,w]. Let O be the point of the intersection of the three lines (u,U), (v,V) and 

(w,W),see Figure 5 (left).  Then the triple {f(O), f(u), f(v)}  uniquely defines the linear piece over the 

triangle [O,U,V], and thus, over the quadrilateral [U,V,v,u]. Similarly,  the triple {f(O), f(u), f(w)} 

uniquely defines the linear piece over  the triangle [O,U,W], and thus, over the quadrilateral [U,W,w,u]. 

Finally, the triple {f(O), f(v), f(w)} uniquely defines the linear piece over the triangle [O,V,W], and thus, 

over the quadrilateral [V,W,w,v]. In fact, the spline can be visualized as a truncated tetrahedron with the 

base [f(U),f(V),f(W)] and  the truncated vertex f(O) that is cut off with the triangle [f(u),f(v),f(w)]. The 

spline is continuous since its values on the segments [u,U], [v,V], [w,W] are uniquely defined by the pairs 

of values {f(O),f(u)}, {f(O),f(v)}, and {f(O),f(w)}, respectively. This proves the first assertion of the 

statement of the theorem.  

We now consider the asymmetric mixed split, and we will show that four pieces of data 

overdetermine the spline. The three values  f(u)=0, f(v)=0 and f(w)=1 define a linear piece over the 

triangle [u,v,w]. Let O be the point of the intersection of the two lines (u,U) and (v,V), see Figure 5 

(right),  and let f(O)=0. Then the values  f(O)=0, f(u)=0, f(v)=0 make the linear piece over the 

quadrilateral [U,V,v,u] to be  identically equal to zero. The linear piece over the quadrilateral [U,W,w,u] 

 

 
Figure 5: Proof of Theorem 3.1. The edge [v,w] is removed on the right for clarity. 

 

is then defined by  f(O)=0, f(u)=0, f(w)=1, while the linaer piece on [V,W,w,v] is determined by f(O)=0, 

f(v)=0, f(w)=1. We now show that this spline is not continuous on the line (w,W). Let P be the point of 

intersection of the lines (u,O) and (w,W). Both of these lines belong to the plane of the linear piece over 

[U,W,w,u]. Since f(O)=f(u)=0, the value f(P)must be zero. We next define Q as the point of  intersection 

of the lines (v,O) and (w,W).  Both of these lines belong to the plane of the linear piece over [V,W,w,v]. 

Since f(O)=f(v)=0, the value f(Q) must be zero. Thus, we have f(P)=f(Q)=0. But the point w lies on the 

line (P,Q). Therefore, f(w)=0≠1, which is a contradiction. It follows that the spline is uniquely determined 

by three values f(u), f(v) and f(w). Moreover, this spline is simply a plane. □ 
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