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Abstract

This paper discusses repeating patterns on infinite skeyh@dta, which are triply periodic polyhedra. We exhibit
patterns on each of the three regular skew polyhedra. Thetserps are each related to corresponding repeating
patterns in the hyperbolic plane. This correspondencebeibxplained in the paper.

1. Introduction

A number of people, including M.C. Escher, created conveéytmalra with patterns on them. Three of Es-
cher’s polyhedra are shown on pages 246 and 295 of [11]. Llatgis Schattschneider and Wallace Walker
placed Escher patterns on convex polyhedra and on non->caimgs of polyhedra, called Kaleidocycles,
that could be rotated and which are described in [12]. Thé gbthis paper is to start an investigation
of drawing repeating patterns on a new kind of “canvas”: itéiskew polyhedra — i.e. triply periodic
polyhedra. Figure 1 shows a finite piece of such a pattern.

Figure 1: A pattern of fish on the tessellatidis, 6/3}.
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We begin with a discussion of infinite skew polyhedra and show they are related to tessellations of
the hyperbolic plane. This relationship can also be apptiedpeating patterns on those respective surfaces.
Then we present patterns on each of the three regular trgrlpglic polyhedra. We also show a pattern on
a non-regular triply periodic polyhedron. Finally, we iodie possible directions of further investigation.

2. Patterns, Hyperbolic Geometry, and Infinite Skew Polyhech.

A repeating patterris a pattern made up of congruent copies of a basic subpattenotif. There can be
repeating patterns on the Euclidean plane, hyperboliceplsphere, and polyhedra. Hyperbolic geometry
is the least familiar of these surfaces, probably becauslkéuthe sphere) there is no smooth embedding
of the hyperbolic plane into Euclidean 3-space [6], thus wistmely on models of hyperbolic geometry.
We use thdPoincaté diskmodel whose points are represented by Euclidean pointénwvathounding circle.
Hyperbolic lines (which include diameters) are represiiye (Euclidean) circular arcs orthogonal to the
bounding circle. This model distorts Euclidean distangesuch a way that equal hyperbolic distances
correspond to ever-smaller Euclidean distances as figpmeach the edge of the disk (the precise measure
of distance is given in [9]). The Poincaré disk model wasealipg to Escher and other artists since it
represents the entire hyperbolic plane in a finite area aisdinformal that is, the hyperbolic measure of
an angle is the same as its Euclidean measure, so that maiifisain their same approximate shape as they
approach the bounding circle. For more on hyperbolic gegmste [5].

A regular tessellatioris a special kind of repeating pattern on the Euclidean pldresphere, or the
hyperbolic plane. It is formed by regularsided polygons (equal edge lengths, equal vertex angtes) o
p-gons ¢ of which meet at each vertex, and is denoted by the Schlafibsy{p, ¢}. If (p —2)(q¢ —2) > 4,
the tessellation is hyperbolic, otherwise it is Euclideasgherical. Figure 2 shows the regular hyperbolic
tessellation{4, 6}.

Figure 2: The {4,6} tessellation.

We will consider polyhedra in Euclidean 3-space whose facesll regulap-sided polygonsy-gons),
and whose symmetry group is transitive on the vertices, adtiere is a uniqgueertex figure— the polygon
obtained by connecting midpoints of the edges incident artex. If the polyhedron is convex, the vertex
figure will be a planar polygon, otherwise it will be a skewygmn. Thus annfinite skew polyhedron
is defined to have-gon faces, to have a non-planar vertex figure (hence the fskee/”), and to repeat
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infinitely in three independent directions [7]. Since thetee figure is non-planar, the interior angles of the
polygons meeting at a vertex add up to more than 360 degteestifference between the angle sum and
360 degrees is called ttangular excesslnfinite skew polyhedra have been callegberbolic tessellations
because they have positive angle excesses at their veliaeg/e don'’t use this designation since it conflicts
with our definition above. (They have also been nampelyhedral spongebecause they can be seen to
divide space into polyhedral cells.)

A flag of a polyhedron is a triple: a vertex, an edge containing\hetex, and a polygon face containing
that edge. A polyhedron is said to begular if its symmetry group transforms any flag to any other flag;
i.e. its symmetry group is transitive on flags. Thegular skew polyhedrare special cases of infinite
skew polyhedra whose symmetry groups are flag-transitiver& are exactly three of them, as proved by
John Petrie and H.S.M. Coxeter in 1926 [2]. Their proof imeal trigonometry as shown in a reprint of
Coxeter’s paper [4] (simple “counting” arguments showihgttthere are exactly five Platonic solids don'’t
work since the polyhedra are not convex). Coxeter used thdifiad Schlafli symboKp, ¢|n} to denote
them, indicating that there arep-gons around each vertex anegonal holes. Figure 1 shows a fish pattern
on{6,6|3}. The other possibilities argt, 6|4} and{6, 4|4}, which we show in Figures 3 and 6 below.

A smooth surface has aniversal covering surfacea simply connected surface with a covering map
(projection) onto the original surface [8]. As exampleg Euclidean plane is the universal covering surface
of the torus, and the sphere is the universal covering sidathe projective plane. The topological notion
of a covering surface extends to Riemannian manifolds, vhave metric properties, including curvature.
If the original surface is negatively curved, its universalering surface is also negatively curved and has
the same large scale geometry as the hyperbolic plane.

A regular polyhedron has a universal covering surface thatehpolyhedron-like structure, one of the
tessellations{p, ¢} of the sphere, Euclidean plane, or hyperbolic plane. Fomela for regular skew
polyhedra, the hyperbolic tessellatigp, ¢} can be considered to be the “universal covering polyhedron”
for {p,¢q|n}. Since regular skew polyhedra have positive angle excless, universal covering polyhedra
must be hyperbolic. We also extend the covering idea to teygepatterns on polyhedron: if the covering
map from the universal covering polyhedron to the origir@i/pedron respects the pattern, we can say the
patterned covering surface is the “universal coveringepattof the original patterned polyhedron. As an
example, Coxeter showed how to place 18 butterflies on a toqpages 24—-27 of [3]. The covering pattern
is Escher’s planar butterfly pattern Regular Division Dragvv0, page 172 of [11].

Infinite skew polyhedra are also related to triply periodinimal surfaces (TPMS), since some TPMS
surfaces are the (unique) minimal surfaces that span limdsedded in infinite skew polyhedra. Such
TPMS’s are thus intermediate between those polyhedra airduhiversal covering polyhedra. Alan Schoen
has done extensive investigations into TPMS [13].

In the next three sections we show examples of patterns amed¢judar skew polyhedra and their associ-
ated hyperbolic “covering” patterns.

3. A Pattern on the {4, 6|4} Polyhedron

The{4, 6|4} polyhedron is the easiest to understand. Itis based ongbelkation of 3-space by unit cubes.
One way to visualize it is to index the cubes in each of theethtieections by their integer coordinates
and form a solid figure from only those cubes with one or thk@me&oordinates (the complementary solid
figure formed from cubes with zero or two even coordinate®igyouent to it). Theg4,6[4} polyhedron is
the boundary of that solid figure. Figure 3 shows a pattermgtikar fish on that polyhedron. These fish
were inspired by Escher’s first pattern in the hyperboliop|&ircle Limit I. The colored backbones of the
fish are embedded lines in the polyhedron. Those lines aveeaibedded lines in SchwarzZsurface, the
corresponding triply periodic minimal surface shown inlg4. Figure 5 shows the corresponding pattern
in the hyperbolic plane.
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Figure 3: A pattern of angular fish on thit, 6|4} polyhedron.

Figure 4: Schwarz’s P surface showing embed- Figure 5: The hyperbolic pattern of fish corre-
ded lines. sponding to Figure 3.
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4. A Pattern on the {6, 4|4} Polyhedron

The {6,4]4} polyhedron is the dual of thé4,6|4} polyhedron. The{4, 6|4} polyhedron is based on the
bi-truncated, cubic, space-filling tessellation by triadaoctahedra [1] (for details on truncated polyhedra
in general see [14]). If we index rectangular lattice posii in 3-space as in the previous section, we can
place one set of truncated octahedra at positions with alh @pordinates, and a complementary set at
positions with all odd coordinates such that all the truedatctahedra are congruent and fill space. The
boundary between these two sets is{the|4} polyhedron. Figure 6 shows another pattern of angular fish
on that polyhedron. As in the previous section, the backbarig¢he fish lie along lines embedded in the
polyhedron. In fact the set of backbone lines is the samedtr imodels. All fish along any backbone line
are the same color. Figure 7 shows a top view of the polyhea@nath Figure 8 shows its universal covering
pattern.

Figure 6: A pattern of angular fish on thig, 4|4} polyhedron.

5. A Pattern on the {6, 6|3} Polyhedron

The {6,6|3} polyhedron may be the most difficult to understand. It is fednfrom truncated tetrahedra
with their triangular faces removed. Such “missing” triafeg faces from four truncated tetrahedra are then
placed in a tetrahedral arrangement (around a small ineisgdtrahedron) [10]. A side view of €6, 6|3}

is shown in Figure 1. Figure 9 shows a top view looking downreg of the vertices (where six hexagons
meet). Again, we placed a pattern of angular fish on this mmlytn. Figure 10 shows the corresponding
universal covering pattern based on {lie6} tessellation.

All the fish along a backbone line in Figure 10 are the samercotd swim the same direction. No
two backbone lines of the same color intersect. In fact thieepahas 3-color symmetry (every symmetry
of the polyhedron permutes the colors of the fish). The saments also apply to the pattern of Figures
1 and 9. In the upward facing planes in Figure 1, the red fisimsiver right to upper left, the blue fish
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Figure 7: A top view of the pattern on the Figure 8: The hyperbolic pattern of fish corre-
{6,4/|4} polyhedron. sponding to Figure 6.

P

Figure 9: A top view of a pattern of fish onthe  Figure 10: A pattern of fish based on tH&, 6}
{6, 6|3} polyhedron shown in Figure 1. tessellation.
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swim lower left to upper right, and the green fish swim towéweltiewer. In fact the backbone lines on the
{6,6/3} polyhedron are embedded Euclidean lines.

6. A Pattern on a Non-regular Skew Polyhedron

Figure 11 shows a piece of a non-regular skew polyhedron. vilhiwe polyhedron is made up of parts
of regular octahedra of two types: “hub” octahedra and tstbatahedra. Each hub octahedron has four
strut octahedra placed on alternate faces of the hub, sdfdutriangles are covered by struts and four are
exposed. Each strut connects two hubs to opposite faces sfrilit, which are covered by the hubs, leaving
six exposed triangle faces. Thus eight equilateral triemgheet at each vertex, so we could designate this a
{3,8} polyhedron. However it is not regular since there is no syinynef the polyhedron that maps a hub
triangle face to a strut triangle face (and vice versa). Poighedron has diamond lattice symmetry and
is closely related to the Schwarz D surface, which has endub&diclidean lines [13]. Figure 12 shows a
pattern of fish of four colors on the polyhedron. The rows df green, yellow fish each roughly follow the
embedded lines of the Schwarz D surface; the blue fish mals lamund the struts.

Figure 11: A piece of the{3, 8} polyhedron. Figure 12: A pattern of fish on the polyhedron.

7. Observations and Future Work

We have shown patterns on each of the regular skew polyhedragertainly many more patterns could be
drawn on them. It is also possible to draw patterns on othferit@ but non-regular skew polyhedra. In
creating such patterns, it is desirable to take advantagigeatombinatorics and any underlying geometry
of the skew polyhedra, as was done with the patterns we haetett. In summary, there are many more
patterns on skew polyhedra to investigate.
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