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Abstract
In this paper we provide a description of several methods forcreating tessellations of the hyperbolic plane, and
patterns obtained from them by allowing gaps and overlapping. All designs are created using Wolfram Mathematica
packageTess, visualized in the Poincare and Klein disk models, hence thename Fisheye view.

Introduction

What is the shape of the universe? This question, that scientists still do not know how to answer, is re-
lated to determining if the universe behaves like hyperbolic, Euclidean or spherical space, respectively of
constant curvature minus one, zero or plus one. The differences between these spaces can be illustrated
using tessellations in Fig. 1. While there are finitely many regular tessellations of the sphere and Euclidean
plane, tilings of the hyperbolic plane are much richer and diverse [1], both in the choice of tessellation and
the visualization model [2, 3]. We focus on the Poincare and Klein disk models that can be thought of as
providing mathematicians and artists with ”fisheye views” of the hyperbolic plane. In this paper, we present

Figure 1 : Spherical or elliptic (3,3,3,3,5), Euclidean (3,3,3,3,6) and hyperbolic (3,3,3,3,7) tessellations.

and discuss tessellations created using Wolfram’s Mathematica packageTess [4, 5]. Tess enables creating
and drawing tessellations of Euclidean, elliptic and hyperbolic plane with regular polygons as tiles based
on their Schläfli symbols1. Choice of Schläfli symbols can be arbitrary but each symbolmay correspond to
many, one or no tessellations at all. Basic tessellations can be enriched by introducing various patterns into
the fundamental domain, and by relaxing the ”no overlap” and”no gaps” conditions that normally go along
with tessellations.

1Schläfli symbols determine a tessellation by specifying the polygons around each vertex of the tessellation. Notice that the
correspondence between the symbol and the tessellations isone to many, i.e., the symbol does not necessarily define the tessellation
uniquely.
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Mathematics Within Art

Figure 2 : Caught in a Dual Nettessellation by R. Sazdanovic 2008.

Mathematics, or more precisely
geometry, provides the basis for
the algorithm used to create tessel-
lations, but also for ways of cre-
ating new from the existing ones
and combining them. Dual tes-
sellation is obtained by connect-
ing the incenters of adjacent poly-
gons in the original tessellation.
Caught in a dual net [2], shown
on Fig. 2, consists of three differ-
ent tessellations:(7, 7, 7) purple
wire model, its dual tessellation
determined by(3, 3, 3, 3, 3, 3, 3)
in red, and the hidden tessella-
tion (6, 6, 7) with turquoise hep-
tagon and two hexagons bounded
by wire models of previous two
tessellations, their edges alternat-
ing between red and purple, visu-

alized in the Poincare disk model. Colors reflect propertiesof the symmetry group of the tessellation: isome-
tries map polygons of the same color to each other, but the color of each class can be chosen.

Art Within Mathematics

At the first sight, mathematics and art could not be more different: free-flowing creative expression versus
rigid definition/proof analysis. Even if you gave this idea more thought it could be hard to imagine their co-
herent coexistence. Yet they are intertwined and examples are numerous: the Great Pyramid, the Parthenon,
and the Colosseum, golden ratio, work of Dürer, Da Vinci, and famous20th century artists M.C. Escher,
R. Penrose, S. Dali.

Figure 3 : Crystal coral reefsand Something Old, Something Blue, R. Sazdanovic 2012

In particular, the creative artistic component of drawing tessellations includes but it is not limited to the
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choice of color. Here is a step-by-step description of the whole process used for creating tessellations in this
paper. First, all of them are based on simple tessellations determined by Schläfli symbols and constructed
using computer programTess. Second, we use additional code to determine the fundamental region of the
tessellation. Once the shape and the size of the region is known, we can choose the basic pattern (motif) and
hand it back to the computer to make copies of it according to the symmetries of the original tessellation in
order to cover the whole plane.

Figure 4 : Red Sea Pearls, R. Sazdanovic 2011

Digital print Red Sea
Pearls, see Fig. 4, is based
on the hyperbolic tessellation
(7, 7, 7, 7) and realized in the
Poincare disk model. The
core pattern consists of red
and white circles of various
sizes, and color intensities. It
is extended to the whole hy-
perbolic plane under symme-
tries of the original tessella-
tion, but the asymmetry of the
pattern has the overall effect
of breaking the original sym-
metry of the tessellation. Note
that there are infinitely many
tessellations of the hyperbolic
plane: all of them can be
used for creating aesthetically
pleasing graphics. What is
very interesting is that choos-
ing a beautiful pattern does
not guarantee that the final re-
sult will be pretty. It is often
very hard or even impossible
to predict the final tessellation

based on the pattern and the symmetries of the original tessellation.

Figure 5 : Seven Towersand Moon SamuraiR. Sazdanovic 2011

TessellationsSeven Towers andMoon Samurai, Fig. 5, are inspired by Japanese culture. Basic patterns
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Figure 6 : Crossroadsand Hyperbolic Ladybird, 2012 by R. Sazdanovic

are chosen after a series of not–so–successful tries, in such a way that the final designs contain structures that
resemble pagodas for the one on the left, and Japanese samurai on the right. Both tessellations are realized in
classical black, red and white color scheme on the black background, emphasizing local seven-fold and six-
fold symmetry. Using the same color scheme, we have constructed Crossroads andHyperbolic Ladybird,
shown on Fig. 6, based on the Schläfli symbol(4, 4, 4, 6) with almost identical patterns. The difference
between them comes from the realization model: one was visualized in Poincare and the other in the Klein
disk model.

All of the tessellations described above are evidence of theintricate two-way relations between mathe-
matics and art. Geometry and combinatorics behind the tessellations provide the framework and limitations
for the creative, artistic expression. The other way around, choice of the basic motif can alter and hide the
mathematical structure, depending on its internal symmetries and the way it is positioned inside the fun-
damental region. The effects of weaving the basic pattern into the original tessellation can be subtle or
dramatic, with the additional richness coming from the choice of the visualization model: Poincare or Klein
disk. In conclusion, the idea that visual artwork can be usedto convey and alter the geometric elegance of
mathematical structures associated with a Schläfli symbols that are merely a sequence of numbers is truly
fascinating.
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