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Abstract
There are five Platonic solids and thirteen Archimedean solids, and they have many interesting characteristics. One
of them is that their faces can be projected outward to a circumscribing sphere, producing tilings of the sphere. In
this paper we show how to use analytical methods to calculate the lengths of the geodesics and the measures of the
angles for these tilings.

Introduction

In art such as modular origami and architecture, regular and semi-regular polyhedra have been popular sub-
jects [2][3]. These polyhedra have regular polygons as their faces and edges with the same length. Five Pla-
tonic solids and thirteen Archimedean solids in Figure 1 are convex regular and semi-regular polyhedra [1].
One of interesting properties of these solids is that all the vertices are on the sphere that circumscribes the
solid. The shortest distance on the sphere’s surface between any two adjacent points is obtained by the arc
of a great circle. By the radial projection of edges of a polyhedron onto the surface, we get arcs which are
called geodesics. These geodesics define a uniform tiling for each solid as in Figure 2. In this paper we
analytically compute the length of a geodesic and interior angle measures of spherical polygons on the tiling
of all the Platonic solids and Archimedean solids.

Necessary Tools for Calculation

Spherical polygon and spherical polyhedron. A bounded region partitioned by arcs on a great circle
is called a spherical polygon. The radical projections of edges are great arcs and a spherical polygon is
acquired for each face of a solid. A spherical polyhedron is a tiling of a sphere where the surface is divided
into spherical polygons. Just like a planar polygon, a spherical polygon has interior angles, and an angle on
a sphere can be defined as an angle between two tangent lines of arcs. Also, the length of a side is specified
by the angle at the sphere’s center subtended to the endpoints of the sides [4].

Figure 1 : The five Platonic solids and the thirteen Archimedean solids.
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Figure 2 : Tilings of the sphere arising from the Platonic and Archimedean solids.

Spherical trigonometry. There are spherical trigonometry identities that are similar to ones in planar ge-
ometry. Let a, b, and c be three sides of the triangle and α, β, and γ be three angles as in Figure 3(a).

Law of cosine rules for sides cos(a) = cos(b)cos(c) + sin(b)sin(c)cos(α)
Law of cosine rules for angles cos(α) = cos(β)cos(γ) + sin(β)sin(γ)cos(a)

The law of sines, tangents, half angle formulas, and other rules are well-known. See, e.g., [4].
Napier’s rules for right spherical triangle. Napier’s rules for right spherical triangle can be easily used
with a circle notation. The circle is divided into five sectors, and all the angles of the triangle are labeled
in their circular order except for the right angle. For an angle that is not adjacent to the right angle, its
complement angle is used. Once the circle is built as in Figure 3(b), for any choice of three angles, the sine
of the middle angle is equal to the product of the cosines of the opposite angles or the product of the tangents
of adjacent angles. A right spherical triangle can be formed for any right polygon in a tiling by using the
center of the polygon, a midpoint of an edge, and a vertex [6].
Cubic formula. The last mathematical tool is the general formula for the roots for a cubic equation. In a
couple of cases (snub cube and snub dodecahedron), the length of a geodesic is a real root of a cubic function.

Calculation

Assuming the radius of the sphere is 1, the circumference of a great circle is 2π. Since there is only one
type of spherical polygon for a given Platonic-solid tiling, it is easy to calculate lengths and angles. For
each Archimedean solid, a careful investigation was carried out to build a solvable system. In the following
sections, x is the length of a geodesic, and α, β, and γ are angles of spherical polygons.
Tetrahedron and icosahedron. A spherical triangle created by a tetrahedron is shown in Figure 3(c). The
angle measure is 2π/3 since three faces meet at a vertex. Then we can use the law of cosines for sides as in
the following.

cos(x) = cos(x)cos(x) + sin(x)sin(x)cos(2π/3)

By solving this for cos(x) using trigonometric identities, we can get cos(x) = −1/3 or 1. Then x =
cos−1(−1/3) = 1.9106. For an icosahedron, the same method can be used with an angle measure 2π/5 . The
length of the geodesic is 1.1072
Cube and dodecahedron. Figure 3(d) and (e) show a tiled square and pentagon. The law of cosines for
angles can be used for a triangle. For a cube,

cos(π/2) = cos(π/3)cos(π/3) + sin(π/3)sin(π/3), x = cos−1(1/3) = 1.2310

For a dodecahedron

cos(2π/5) = cos(π/3)cos(π/3) + sin(π/3)sin(π/3), x = cos−1(0.7754) = 0.7297
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(a) (b) (c) (d) (e)

Figure 3 : Spherical triangle (a), Napier’s circle (b), and spherical polygons on tiling (c, d, e).

Octahedron. Since four geodesics makes a great circle, x = π/2. α = π/2 since four faces meet at a vertex.
Truncated tetrahedron and seven other solids. The vertex configuration of a truncated tetrahedron is
(3, 6, 6) [1]. If we let α be the interior angle of a hexagon and β be the interior angle of a triangle, then

2α+ β = 2π. (1)

Also from right triangles in a hexagon and a triangle, Napier’s circles can be built as in Figure 4(a) and (b).
By selecting three angles that include α, β, and x, we can create two more equations.

sin(π/3) = cos(π/2− α/2)cos(x/2), sin(π/6) = cos(π/2− β/2)cos(x/2). (2)

We can find α, β, and x by solving the system of equations from (1) and (2). The solution is x = 0.8812,
α = 2.5559, and β = 1.1714

Because seven Archimedean solids have two types of regular polygons, similarly we can find α, β, and
x. They are categorized according to the first equation between interior angles.

• 2α + β = 2π: truncated cube (3, 8, 8), truncated octahedron (4, 6, 6), truncated dodecahedron (3, 10,
10), truncated icosahedrons (5, 6, 6)

• 2α+ 2β = 2π: cuboctahedron (3, 4, 3, 4), icosidodecahedron (3, 5, 3, 5)

• 3α+ β = 2π: rhombicuboctahedron (3, 4, 4, 4)

Great rhombicuboctahedron and two other solids. A great rhombicuboctahedron has three different poly-
gons as its faces; squares, hexagons, and octagons. Its vertex configuration is (4, 6, 8). So we introduce three
unknowns, α, β, and γ to represent interior angle measure of an octagon, a hexagon, and a square respec-
tively. According to the vertex configuration, we have α + β + γ = 2π. As in Figure 4(c), Napier’s circle
can be constructed. Three angles with α, x will derive a similar equation as (2).

sin(3π/8) = cos(π/2− α/2)cos(x/2)

From Napier’s circle for a hexagon and a square,

sin(π/3) = cos(π/2− β/2)cos(x/2), sin(π/4) = cos(π/2− γ/2)cos(x/2)

(a) (b) (c)

Figure 4 : Right triangles on three spherical polygons and corresponding Napier’s circles.
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By solving the system of equations, we can find x = 0.4349, α = 2.4823, β = 2.1812, and γ = 1.6197.
For two other solids with three types of faces, the same method can be used to find solutions.

• α+ β + γ = 2π: great rhombicosidodecahedron (4, 6, 10)
• α+ 2β + γ = 2π: rhombicosidodecahedron (3, 4, 5, 4)

Snub cube and snub dodecahedron. A snub cube has vertex configuration (3, 3, 3, 3, 4), and the first
equation is α + 4β = 2π where α is an interior angle of a square, β is an interior angle of a triangle. From
right triangles we have

sin(π/4) = cos(π/2− α/2)cos(x/2), sin(π/6) = cos(π/2− β/2)cos(x/2)

By eliminating x, we can get sin(α/2) =
√
2sin(β/2).

After substituting α/2 with π − 2β, and simplifying using trigonometric identities, we have a cubic
equation in terms of cos(β/2), 8cos3(β/2)−4cos(β/2)−

√
2 = 0. Using the cubic formula, we have cos(β/2) =

0.8425. The solutions are x = 0.7628, α = 1.7320, and β = 1.1378. A snub dodecahedron has a similar
vertex configuration, (3, 3, 3, 3, 5), and the solution can be found the exactly same way.

Summary and Conclusion

In this paper, for all eighteen Platonic and Archimedean solids which are a popular subject in art and archi-
tecture, the length of geodesics and interior angle measures on their spherical tilings were calculated using
analytical method. The results are summarized in the following table. When there is more than one polygon
type, the interior angle measure of the polygon with more edges is shown first. Numerous data about Platonic
solids and Archimedean solids can be found in some literature such as [5]. Using central angles for an edge
and (edge length)/(circumradius), it is possible to verify these calculations.

Vertex Length of Angle1 Angle2 Angle3 Vertex Length of Angle1 Angle2 Angle3
Solid Configuration Geodesic (x) α β γ Solid Configuration Geodesic (x) α β γ

Tetrahedron 3, 3, 3 1.9106 2.0944 Rhombicuboctahedron 3, 4, 4, 4 0.7310 1.7176 1.1304
Cube 4, 4, 4 1.2310 2.0944 Great Rhombicuboctahedron 4, 6, 8 0.4349 2.4823 2.1812 1.6197

Octahedron 3, 3, 3, 3 1.5708 1.5708 Snub Cube 3, 3, 3, 3, 4 0.7628 1.7320 1.1378
Dodecahedron 5, 5, 5 0.7297 2.0944 Truncated Icosahedron 5, 6, 6 0.4064 2.1696 1.9440
Icosahedron 3, 3, 3, 3, 3 1.1072 1.2566 Icosidodecahedron 3, 5, 3, 5 0.6288 2.0344 1.1072

Truncated Tetrahedron 3, 6, 6 0.8812 2.5559 1.1714 Truncated Dodecahedron 3, 10, 10 0.3386 2.6096 1.0640
Truncated Octahedron 4, 6, 6 0.6436 2.3002 1.6828 Rhombicosidodecahedron 3, 4, 5, 4 0.4460 1.9571 1.6228 1.0805

Cuboctahedron 3, 4, 3, 4 1.0472 1.8925 1.2490 Great Rhombicosidodecahedron 4, 6, 1 0.2633 2.5697 2.1248 1.5884
Truncated Cube 3, 8, 8 0.5704 2.5936 1.0961 Snub Dodecahedron 3, 3, 3, 3, 5 0.4680 1.9643 1.0797

References

[1] H. S. M. Coxeter, M. S. Longuet-Higgins, and J. C. P. Miller. Uniform polyhedra. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 246(916),
May 1954.

[2] J. François Gabriel, editor. Beyond the Cube: The Architecture of Space Frames and Polyhedra. Wiley,
1997.

[3] Rona Gurkewitz and Bennett Arnstein. 3-D Geometric Origami: Modular Polyhedra. Dover Publica-
tions, New York, 1995.

[4] M. Hellwich, H. Kastner, W. Gellert, S. Gottwald, and H. Kunstner. Spherical trigonometry. pages
262–282, 1989.

[5] J. Martineau, M. Lundy, A. Ashton, and D. Sutton. Quadrivium. Walker & Company, New York, 2010.
[6] W. M Smart. Text-Book on Spherical Astronomy. Cambridge University Press, Cambridge, England, 6th

edition, 1960.

Yoon

512


