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André Génard

Amazing Labyrinths, further Amazing Labyrinths, further developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Samuel Verbiese

Finding a New Route to the Moon Using Paintings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Edward Belbruno

Text from Truchet Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
David Reimann

Geometry and Geodesy: Estimating the Earth’s Circumference with
Prospective Elementary Teachers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Sandy Spitzer

A myriad shades of green . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Liselott Flodén, Anders Holmbom, Marianne Olsson and Jens Persson

Geometric Transformations in Surface Design Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Fatma Mete

The Quinary–Permuting Meaning with Generative Poetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Brian Evans

Spelunking Adventure II: Combining Cyclons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Curtis Palmer

Binary Based Fresco Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Wolfgang Baatz, Massimo Fornasier, Peter A. Markowich and Carola-Bibiane Schönlieb

Plane, Space, Cubism and Perpetual Displacement in 3D Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Joel Varland

Mathematical Classroom Quilts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Elaine F. Ellison

Mathematical Iconography in Gaudı́’s Cosmos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Stephen Luecking

Chaos – The Movie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Susan Happersett

The Frustrated Mathematician . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Michael Frantz

An Optical Demonstration of Fractal Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Billy C. Scannell, Ben Van Dusen and R.P. Taylor

xii



Using Geometer’s Sketchpad to Construct Pop-up Polyhedra as a Tool for
Classroom Study of Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
S. Louise Gould

Workshops

Chaos, Complexity, and Creativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Krystyna Laycraft

Stories Count: Narrative Approaches to Quantitative Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Suzie Garfield

Creating Islamic Patterns from Folded Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
E.B. Meenan and B.G. Thomas

Workshop: Working With Patterns To Introduce Mathematics Concepts To Young Children . . . . . . . . . . . . 375
Patricia Bentley

Exploring Some of the Mathematical Properties of Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Eva Knoll and Tara Taylor

Bridges 09 Interactive Workshop: The Geometry of Longsword and Rapper Sword Locks . . . . . . . . . . . . . 383
Susan Gerofsky

The Beautiful Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Greg Beiles and Daphne Rosenwald

Perspectives on Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Duncan Melville and Sarah Melville

Workshop on The Fusion Project: Bridging Art Museums and Middle School Math Teachers . . . . . . . . . . 395
Benjamin Wells and Philip Wagner

A Workshop to Build Three Simple Tensegrity Models for K-12 Mathematics Classrooms . . . . . . . . . . . . . . 403
Robert McDermott

Transferring Patterns: From Twill to Peyote Stitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Eva Knoll

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

xiii



xiv



Preface

2009 marks the 12th year of the annual Bridges Conference. This year we find ourselves returning to The
Banff Centre, a wonderful facility nestled in the Canadian Rockies. It’s hard to imagine a location better
suited to the spirit of Bridges. The region inspires with its natural beauty. The campus itself has a longstand-
ing reputation as a world leader in art, media and culture, and a tradition of interdisciplinary cooperation.
Over the past decade, the Banff International Research Station (BIRS) has grown to become a focal point
for mathematical interaction within North America and worldwide, and has made The Banff Centre an ideal
place to explore ideas that lie in the intersection of art and mathematics. We are honoured and thrilled that
BIRS has invited us back to Banff for Bridges 2009. and hope to make the trip again many times in the
future.

As always, we make an effort to bring new and exciting experiences to Bridges. This year we will explore
sights around the Banff region as well as some of the studios and facilities on campus at The Banff Centre.
Three evenings will be dedicated variously to music, theatre, and film.

Like last year, we collected regular paper, short paper, and workshop submissions using EasyChair, a free
conference management service hosted by the University of Manchester. Each submission was then assigned
to two members of our international Program Committee for review. In some cases one or more additional
reviews were provided by other Program Committee members or by external experts. The quality of the
reviewing was quite high, with many reviewers providing fine-grained, detailed advice for improving a
paper’s content or presentation. In several cases authors wrote back to express their gratitude to the reviewers
who helped improve their papers significantly.

Once the reviewing process was complete, Craig S. Kaplan, the chair of the Program Committee, worked
with the reviewers and the Bridges organizers to arrive at a decision for each paper. Occasionally the decision
process called for additional opinions or communication with the authors. Submissions of all kinds were
either accepted as-is, accepted with revisions, or rejected. In addition, some regular paper and workshop
submissions were recommended for inclusion in the short papers program. In the end, we arrived at a total
of 38 regular papers (including four contributed papers from invited speakers), 24 short papers (including
one contributed paper), and 11 workshops. These papers represent a wide range of multidisciplinary work
in mathematics, art, culture and pedagogy, from an equally diverse group of authors from around the world.
We are certain to have another stimulating week of inspiration and dialogue.

The Bridges Visual Art Exhibition is always a highlight of the conference. Robert Fathauer, the curator,
collected submissions. He then assembled a Jury that decided on the works to include in the exhibition. This
year we will feature the work of 40 artists working in a variety of visual media. One design by Brian Evans
was chosen as the cover image for the Proceedings. The cover was expertly designed by Jeff Rutzky.

In organizing and producing a Bridges Conference, the Bridges Organization relies on the concerted volun-
teer efforts and general goodwill of a large number of people. The members of the board of the non-profit
Bridges Organization work on aspects of conference planning and management throughout the year. Robert
Fathauer has worked tirelessly to run the Art Exhibition, as well as hosting the registration website. Mara
Alagic and Paul Gailiunas oversee the workshops. This year we received dedicated support and participation
from Kameko Higa, Mary Hofstetter, Barry Schiffman and Kerry Staufer at The Banff Centre, and Danny
Fan, Wynne Fong, Nassif Ghoussoub and Brenda Williams at BIRS. Who else do we want to thank? Any-
body in the list above who doesn’t need to be included? To these people we offer our sincere gratitude. They
have helped make the conference an event that many of us look forward to all year.

xv



Most of all, we would like to thank everyone who has made the trip to Banff to participate in this year’s
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Mathematics Is Art

Erik D. Demaine Martin L. Demaine
Computer Science and Artificial Intelligence Laboratory
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E-mail: {edemaine,mdemaine}@mit.edu

Abstract

This paper gives a few personal examples of how our mathematics and art have inspired and interacted with each
other. We posit that pursuing both the mathematical and artistic angles of any problem is both more productive and
more fun, leading to new interdisciplinary collaborations.

Introduction

We come from two different backgrounds: Marty’s first love was visual arts, while Erik’s was mathematics.
Over the years, we have learned extensively from each other, and worked collaboratively in both fields.
Lately we have found the two fields to be converging more and more in our minds. No longer do we have
separate art projects and mathematics projects: many of our projects have both artistic and mathematical
angles, and we pursue both.

We find this approach to have several advantages. First, the art and mathematics inspire each other:
building sculpture inspires new insights into the mathematics, and mathematical understanding inspires new
sculpture. Second, it is harder to get stuck: if the mathematics becomes too difficult to solve, we can switch
to illustrating the difficulty visually, and if a sculpture becomes too difficult to build, we can switch to
developing a basic mathematical understanding of the structure to be built.

This paper gives a few personal examples of our projects that span both mathematics and art, and how
we switched back and forth between the two fields. The first main example, pleated origami, has led to
strong sculpture as well as interesting mathematics. The second main example, hinged dissections, has led
to strong mathematics as well as interesting design. Both stories span a period of around ten years, with
many small steps along the way in both art and mathematics.

Pleated Origami

Our first adventure in mathematical sculpture [7] appeared back at the second BRIDGES (1999), in a paper
with Anna Lubiw (then our advisor). We were fascinated by a known geometric origami model, the “pleated
hyperbolic paraboloid” or hypar shown in Figure 1. The folder makes a simple crease pattern—concentric
squares and diagonals alternating mountain and valley—and then the model almost folds itself into a striking
saddle surface. To turn these basic forms into more intricate structures, we designed an algorithm for
generating sculptures composed of several hypars, automatically determined from a given input polyhedron.
Figure 2 shows one example, which the algorithm produces when given a cube as input. Thus our study of
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pleating began in the artistic context, using mathematics (specifically algorithms) as a tool to design new
sculpture.

(a) Hypar crease pattern. (b) Folded hypar. [Photo by Jenna Fizel.]

Figure 1: Pleated hyperbolic paraboloid (hypar).

Figure 2: 24 = 6 · 4 hypars arranged in the structure of a cube [7].

Still intrigued by the self-folding nature of the hypar, in 2004–2006 we explored computer simula-
tion of the material properties of paper. With Jenna Fizel (then an architecture student at MIT) and John
Ochsendorf (an architecture professor at MIT), we succeeded in reproducing the physical form of hypars
using a computer simulation, as shown in Figure 3. This simulation captures just two aspects of paper:
the usual mathematical restriction that paper cannot stretch, and a physical property not studied in origami
mathematics, the material elasticity of paper. The latter property is that paper tries to reach its memory
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state—flat for uncreased paper, and a particular fold angle at creases (depending on how hard the crease was
made)—and searches for an equilibrium among these forces. This elasticity is the driving force that makes
the hypar naturally take its saddle shape. Our simulation could even capture composite forms such as the
24-hypar representation of the cube, as shown on the right of Figure 3.

Figure 3: Simulating self-folding origami. Top: Physical models of paper. Bottom: Analogous simulated
models. Left to right: square, circle, and “cube” from Figure 2.

Thus we turned to mathematics and science to better understand the artistic forms that we were working
with. Armed with a computational tool for simulating these forms, we returned to the sculpture side, this
time with the goal of illustrating that we can virtually simulate paper folding. Together with Jenna Fizel, we
built the sculpture shown in Figure 4, which is a physical realization of a virtual simulation of a physical
piece of paper, namely, a hexagon pleated with concentric hexagons and diagonals. This sculpture consists
of aluminum rods, representing the creases of the form, and balls that are 3D printed to have holes at the
angles found by our simulation. Approximately 1 meter in diameter, we view this construction as a model
for a larger, climbable lawn sculpture.

Recently we discovered two surprising facts about the hypar origami model. First, the first appearance
of the model is much older than we thought, appearing at the Bauhaus in the late 1920s [2]. Second, together
with Vi Hart, Greg Price, and Tomohiro Tachi, we proved that the hypar does not actually exist [5]: it is
impossible to fold a piece of paper using exactly the crease pattern of concentric squares plus diagonals
(without stretching the paper). This discovery was particularly surprising given our extensive experience
actually folding hypars. We had noticed that the paper tends to wrinkle slightly, but we assumed that was
from imprecise folding, not a fundamental limitation of mathematical paper. It had also been unresolved
mathematically whether a hypar really approximates a hyperbolic paraboloid (as its name suggests). Our
result shows one reason why the shape was difficult to analyze for so long: it does not even exist!
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Figure 4: Physical sculpture built from hexagonal hypar simulation.

Curved Creases

Our adventure with pleated origami continued in the context of curved creases. Most origami uses straight
creases, and in contrast to this origami, relatively little is known about curved creases and how they behave.
A simple variation of the hypar, already shown in the middle of Figure 3, folds concentric circles instead of
squares, this time with no diagonals but with a circular hole cut out of the center. This model also goes back
to the Bauhaus in the late 1920s [2].

We have been experimenting with variations of this circular hypar for several years, as it naturally
extends the hypar. On the mathematical side, the curved creases seem to behave quite differently from the
straight creases of the hypar, as the resulting origami seems to actually exist [5]. A natural goal is curved-
crease origami design: can we harness the power of these self-folding curved-crease forms to fold into
desired 3D surfaces? How can we control the equilibrium form, and what (approximate) surfaces are even
possible?

This mathematical challenge seems quite difficult, so we have so far focused this chapter of our ad-
venture into the artistic realm. By experimenting with new forms and the effects of small variations, we
simultaneously encounter new sculpture and get a better handle on how these forms behave mathematically.
We hope one day to have a complete understanding of how to control the equilibrium form through a pleated
crease pattern.

Our first main series, shown in Figure 5, is in the permanent collection of the Museum of Modern Art
(MoMA) in New York. These pieces make one primary change to the circular hypar: they use a “circle” of
total angle more than 360◦. Given the hole in the center, the piece of paper is effectively a circular ramp that
goes around two or three full circles before attaching to its starting point. Physically, such paper is formed
by joining together multiple circles into one big cycle (without a topological Möbius twist). We find that
this change to the paper drastically increases the geometric twist caused by the curved creases, and small
variations can produce surprisingly different forms.

The MoMA pieces are initially scored with a laser cutter, then folded by hand. In 2009, we designed a
new series folded entirely by hand for an exhibit at Art Cézar in Belgium. Figure 6 shows a few examples.
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Figure 5: “Computational Origami” (2008), in the permanent collection and on display at MoMA. Each of
the three pieces is roughly 15 inches in diameter.

Another way to vary the concentric pleating idea uses flat paper but noncircular curves. We started
exploring some of these variations in 2003 with abhi shelat (then an MIT PhD student in computer science),
including ellipses and partial circles. Most recently, with Duks Koschitz (an MIT PhD student in architec-
ture), we have explored a wide variety of curves with different offset patterns [10]; see Figure 7 for two
examples. Our primary mathematical goal is to understand what pleating “works” (produces an interesting
3D form). Along the way, we find interesting sculptural forms.

We are also interested in finding other materials that fold in a way similar to paper, with the motivation
of making larger and/or stronger structures. Such materials would be useful for larger sculpture as well
as more practical applications like furniture, buildings, and other large-scale constructions. One promising
alternative is metal, which is difficult to fold, especially manually, but can produce striking results when
successful.
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Figure 6: “Waves” (2009), exhibited at Art Cézar in Belgium. Each of the three pieces is roughly 15 inches
in diameter. In reading order: Inner Wave, Splash, and Three Waves Meeting.

Hinged Dissections

A hinged dissection is a chain of polygonal pieces, hinged together at vertices, that can fold into multiple
desired polygons. Perhaps the most famous example, shown in Figure 8, is Dudeney’s hinged dissection of
an equilateral triangle into a square. Hinged dissections have been thoroughly studied and designed [9], but
until recently lacked a general theory. In particular, the major open question that intrigued us was whether
hinged dissections exist for any two polygons of the same area.

We started exploring hinged dissections from the mathematical perspective in 1999 [4]. Initially in-
spired by a web discussion between David Eppstein and Erich Friedman, together we found hinged dis-
sections for “polyforms”: shapes made out of n copies of a common shape. The most popular example of
polyforms is polyominoes, of Tetris fame, made up of n copies of a unit square joined edge to edge. Our
result shows that one hinged dissection can fold into all (exponentially many) polyforms for any desired
base shape (squares, equilateral triangles, right isosceles triangles, hexagons, etc.) and any desired value
of n. The hinged dissection is also quite simple, dividing each copy of the base shape into a few pieces.
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Figure 7: Two curved-crease models from [10]. Top: Crease patterns. Bottom: Folded models.

Figure 8: Dudeney’s hinged dissection from 1902.

Later, Greg Frederickson joined in, and we found that one hinged dissection could fold into polyforms with
different base shapes, such as both squares and triangles, by incorporating a hinged dissection similar to
Figure 8.

Next we turned to the artistic side, this time in the context of design. On the one hand, we wanted
to illustrate the generality of the mathematical result: one hinged dissection could fold into many many
shapes. On the other hand, we have always been fascinated by font design. We combined these two desires
by designing a font [3], shown in Figure 9, with the property that one hinged dissection can fold into every
letter and digit of the font as well as a square. To achieve this property, we needed every letter and digit
to have the same area and to be a polyform, in this case with the base shape a right isosceles triangle. The
smallest interesting size for the square seemed to be 4×4, resulting in 32 = 4 ·4 ·2 copies of the base shape
and 128 = 32 · 4 pieces in the hinged dissection.

Returning to mathematics, we found that the hinged-dissection technique of [4] could be applied even
more generally. Together with Jeff Lindy and Diane Souvaine, we proved that one hinged dissection could
fold into all 3D polyforms, or “polypolyhedra”, where the base shape is now a polyhedron such as a cube [6].

While writing down this result, we were contacted by Laurie Palmer, a professor in sculpture from the
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(a) Alphabet designed to have a hinged dissection.

(b) Shaping the hinged dissection into the letter A and the square.

Figure 9: Hinged dissection of the alphabet [3].

School of the Art Institute of Chicago who was then a Radcliffe Institute Fellow. She wanted to build an
interactive sculpture that the viewer could fundamentally change in shape, from a one-dimensional line to a
two-dimensional plane to a three-dimensional solid. She already had around 1,000 identical wooden blocks
and piano hinges for connecting them together. The striking similarity to the paper we were working on at
that moment was a pleasant surprise. We noticed that the hinged dissection for the base shape of a cube
generalized to any parallelepiped, in particular her rectangular blocks. We described the (regular) pattern in
which she had to hinge the blocks in order to guarantee universal folding, and she built the installation, The
Helium Stockpile, which exhibited at Radcliffe in April 2004; see Figure 10. Excited about our experience
with the collaboration, we wrote a paper together about it [8].

Back to the mathematical realm, last year we finally conquered the general hinged-dissection problem,
proving that hinged dissections exist for any desired set of polygons of equal area [1]. The solution required
key new insights made by four students: Timothy Abbott (MIT), Zachary Abel (Harvard), David Charlton
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Figure 10: Laurie Palmer’s The Helium Stockpile, April 2004 [8].

(Boston University), and Scott Kominers (Harvard). After nearly ten years of pursuing this problem from
artistic and mathematical angles, it is exciting to see the main mathematical problem finally answered. Of
course, now the challenge is to design interesting art using the mathematical theory.

Glass

Marty’s first artistic endeavor was glass blowing, and returning to those roots, both authors are now active
glass blowers at MIT. A recent project with Amy Nichols (MIT glass blower and PhD student in biological
engineering) combines our interests in folding and hot glass by attempting to fold glass. A unique property
of hot glass is that we cannot touch it (being at around 1400◦F), which requires a fundamental shift from
the usual approach to folding origami. We chose to embrace the use of gravity as a primary force in glass
blowing. To help gravity fold the glass in interesting ways, we fused the initial piece of glass from two
chemical mixtures—stiff white glass and soft black glass—and built a simple annealing chamber providing
obstacles during the folding process. After this setup, the folding was done entirely by gravity. Figure 11
shows our first sculpture made by this approach, which we hope will lead to many more interesting forms.
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Abstract
The marriage of art and mathematics has been widespread and productive, but almost nowhere more productive than
in the world of origami. In this paper I will discuss how mathematical ideas led to the development of powerful
tools for origami design and will present a step-by-step illustration of the design and realization of a representational
origami figure using mathematical design algorithms. Along the way, I will discuss how these mathematical concepts
have led to new levels of creative expression within this art.

1 Introduction

The marriage of art and mathematics has been fruitful and productive. Mathematical concepts inspire, en-
able, and enrich artistic forms, and in many cases, mathematical concepts lead to entirely new expressions,
visual, auditory, and conceptual, outside of the traditional milieu of art. It is relatively rare, though, that
mathematical ideas have led to a revolution within an existing art—that is, enabling artists to do what they
wanted to do within their art, but were previously unable to accomplish. That exact thing is what has hap-
pened within the art of origami, the Japanese art of paper-folding (usually from an uncut square), over the
last twenty years or so. Beginning in the late 1970s and early 1980s, and accelerating more-or-less continu-
ously since then, mathematical design techniques have become essential elements of the origami designers’
toolkit, allowing the creation of works only dreamed of in the past, enabling newer, richer, more diverse
forms of artistic expression.

Now, while it is tempting to present the world of mathematical origami design as a simple, linear thread
of development, in fact there were roots stretching back into the 1950s and 1960s and several different ap-
proaches to mathematical design in the 1970s and 1980s investigated by origami artists such as Peter Engel,
Jun Maekawa, and Fumiaki Kawahata, among others. But I will talk about the approach I am personally most
familiar with, and with which I was closely involved in the development of: circle-river packing. This was,
I believe, the first systematic design method that could be used to create and design arbitrarily complicated
origami structures.

As often happens in mathematics, when the time is ripe, the same ideas can occur to multiple people,
and this was the case with circle-river packing: I (in the US) [1, 3, 4, 6] and Toshiyuki Meguro (in Japan)
[10, 9] both developed the concept of circle packing in the late 1980s and then met and compared notes
and ideas beginning in 1992, finding surprising overlap between our approaches and sharing ideas in the
years that followed. (Shades of Newton and Leibniz, with two differences: Meguro and I got on quite
well, and we’re only talking about paper-folding, not calculus!) In the years following our meeting, we
both traded and refined our concepts and were joined by others who built on and expanded the basic ideas
into a regular suite of design algorithms. (I should mention specifically that in recent years I have greatly
enjoyed collaborating with Professor Erik Demaine of MIT on the development of improved algorithms and
expanding their underlying rigor.)
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Fundamental to my own motivation was the goal of developing truly useful techniques for design, and
for several years I designed ever more complex origami figures using circles and spacers (the latter were
my precursors to “rivers,” see below) and nothing more technological than pencil and paper. (My colleague
Meguro added compass and straightedge to his crease pattern design arsenal.) However, a paradigm that
framed my ideas early on was the idea that it might eventually be possible to use computer programming to
solve for complex origami figures, and I began sketching out algorithms for this in the late 1980s. (Early
discovery: FORTRAN 77 is a lousy language for computational origami.) Beginning in the 1990s, I began
writing what became my program TreeMaker (in Object Pascal, then C++), a design program that served
both as a repository of algorithms as I developed them and a way to probe their validity and limits [8]. By
1998, TreeMaker was up to version 4.0, and had become a useful tool rather than just a toy program; in fact,
I realized that it was now capable of solving for origami design patterns that were beyond the ability of an
individual armed with only pencil, paper, and compass.

Which is not to say that pencil-and-paper origami designers have not been creating designs as complex
as those that TreeMaker could create; on the contrary, by recognizing fortuitious geometric alignments and
patterns, origami artists could, and still do, design with pencil and paper extremely complex and beautiful
works. The most complex origami designs today are usually human-designed, not computer-designed. While
its crease pattern may be drawn on computer, advanced origami is designed using a mixture of mathematical
ideas and artistic inspiration, with the designer’s own imagination the most important tool.

Still, a computerized design serves a useful pedagogical purpose: it provides a vivid illustration of the
power of mathematical ideas in achieving a distinctly non-mathematical result. And so, in the bulk of this
paper, I would like to walk the reader through the process of concept, design, and folding, for an origami
figure: an arthropod. The greatest successes of the circle-river method of design came in the design of
insects, spiders, and their ilk, and so I will present here one of my first TreeMaker designs: my “Scorpion,
opus 379” [5]. Although I have designed more complex figures since then, this remains one of my favorites,
both for the geometric structure of its design and its overall appearance.

2 Design

The journey begins with the subject and its abstract description: a tree graph (the “tree” in TreeMaker). Or,
more prosaically, a “stick figure.” The stick figure captures the information that will be produced by the
design algorithm, and so its properties—the number, lengths, and connectivities of its edges—are the choice
of the designer. The circle-river method of origami design is a step in the creation of a folded figure, but it
does not seek to create a specific 3-D form; rather, it produces a shape that has “enough material in the right
places.” Specifically, it produces a folded shape that has a flap of paper for every appendage of the subject.
The algorithm gives relatively little control over the width of those flaps, but it lets one specify the number
of flaps, length of each flap, and how they are connected to one another, and for some subjects, that is very
useful indeed. That information can be described concisely by a stick figure—which, using the terminology
of graph theory, is an “edge-weighted tree graph.” Hence, the tree is the starting point for a TreeMaker
design.

The simplest way to construct the tree is to literally overlay the stick figure on a photograph of the
subject, as illustrated in Figure 1. Each stick represents an appendage or body segment of the subject, and
will be represented in the origami figure by a flap of paper. The folded shape will be a collection of flaps; we
call this collection a “base.” Each edge of the tree graph must be assigned a length, which will be the length
of the associated flap of paper. By measuring lengths of the various body parts in the photograph, one can
choose the desired lengths of the flaps, although it must be noted that one might commonly adjust desired
flap lengths from their literal dimensions for artistic reasons.
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Figure 1 : Left: the stick figure superimposed over a photograph of the subject. Right: represen-
tation of the stick figure by circles and rivers.

We then transform the stick figure into geometric shapes that represent regions of the paper required by
each flap. These shapes are the light and dark regions in the figure. Flaps that are loose at one end, like the
legs or pincers, are represented by circles (light), whose radius is equal to the length of the flap. Flaps that
are connected to other flaps at both ends, like the body segments or the “arms,” are represented by constant-
width curves called “rivers” (dark); the width of the river is equal to the length of the corresponding flap.
Each geometric shape—circle or river—represents the minimum amount of paper required for each of the
flaps. It is a remarkable fact that for any valid arrangement of circles and rivers that specify the minimum
paper needed, there exists a crease pattern that works for that exact arrangement of circles and rivers.

And so, we must find the most tightly packed arrangement of the circles and rivers within a square. The
major rules that apply to this packing are:

• the circles and rivers must be as large as possible but maintain their same relative size to one another;

• they may not overlap;

• the circles do not have to be wholly inside the square, but their centers must be within the square;

• the incidences between the various circles and rivers must match the incidences of their corresponding
edges in the tree graph.

The larger the origami base is for a given size square, the more efficient it is; the fewer the layers in
each flap; and, generally, the easier it is to fold. And so the first stage of origami design consists of an
optimization: finding the most efficient packing of the circles and rivers. This can be done by hand (and it
often is), but for this particular design, it is much faster to use TreeMaker, which has a nonlinear constrained
optimization solver built in. (In the late 1990s, this process took seconds to minutes; with the 1000-fold
increase in computing speed, it is now virtually instanteous.) To use TreeMaker, we start by drawing the
stick figure, as shown in Figure 2 and then typing in the desired lengths of each flap, shown as decimal
numbers next to the lines of the stick figure.

The next step is to find the optimum packing of circles and rivers so that all of the circle centers wind
up inside the square. TreeMaker does this in a fraction of a second, giving the circle arrangement shown
in Figure 2. (The rivers are not displayed by TreeMaker, but the reader can perhaps imagine them winding
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Figure 2 : Left: the stick figure as drawn within TreeMaker. Right: Result of the optimization
(only circles are shown).

between the circles.) Whenever two circles and the intervening rivers all touch one another, TreeMaker draws
a line between the circle centers, shown here in green. These lines are actually some of the creases of the
desired folded shape; they form a “skeleton” of the full crease pattern.

Conceptually, one finds the optimum packing by inflating all of the circles and rivers at the same rate
with the circle centers trapped within the boundaries of the square and allowing the circles and rivers to move
around during the inflation process until they are all wedged into position. This is, effectively, a nonlinear
constrained optimization problem, and, stripped of the visual imagery of circles, rivers, and packing, it
all boils down to a fairly straightforward algebraic description, which is what is needed for a computer
implementation.

We assume that the tree graph can be described by a set of nodes {Ni}, edges {E j}, and edge weights
w j, where the weight w j gives the desired relative length of the jth flap of the desired base. For every path
between two nodes {Ni,N j} we define the path length li j ≡ ∑k wk as the (unique) sum of the weights of the
edges between nodes Ni and N j.

With every leaf node Ni of the tree graph, we associate a vertex Vi = (xi,yi), which will be the center
of the associated circle (and will also turn out to be the point in the square that maps to the tip of the
corresponding flap). We further introduce the scale factor m, which sets the size of the folded shape relative
to the original tree graph, so that if an edge of the tree graph had desired length w j, its corresponding flap in
the folded form will have actual length mw j. The non-overlap condition can be expressed as an inequality:

|Vi−Vj| ≥ mli j, (1)

for every path li j. The requirement that circle centers lie within the square is similarly expressible as inequal-
ities:

0≤ xi ≤ 1, 0≤ yi ≤ 1, (2)

for every vertex Vi. For ease of foldability, one would like the folded form as large as possible relative
to the size of the square; in other words, we should like m to be as large as possible. The solution of
the origami optimization problem then becomes a case of maximizing the scale m subject to both sets of
inequality constraints. And so, the solution of the arrangement of vertices requires the solution of a nonlinear
constrained optimization, with linear and quadratic inequality constraints and a nonconvex feasible region.
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A nice feature of this framework is that it is relatively easy to incorporate additional requirements
into the basic optimization; for example, one can impose mirror symmetry on the crease pattern by adding
additional equality constraints on the coordinates of the affected vertex pairs.

This type of constrained optimization is one that has been studied for decades within computer science.
In my first few implementations of TreeMaker, I wrote my own constrained optimizer using the Augmented
Lagrangian method [11]. On a 68K-based Macintosh (with no floating-point coprocessor), this took several
minutes to converge to a solution, and so to make the wait more tolerable, I wrote code that updated the screen
after each iteration, so I could watch the circles jostle around and expand, which offered entertainment value,
if nothing else. For TreeMaker 4, I replaced it with a Feasible Sequential Quadratic Programming (FSQP)
algorithm developed by Andre Tits at the University of Maryland [12], which turned out to be about a
hundred times faster than my relatively crude code, but it also occasionally sent the evolving solution off
into distant corners of feasible solution space—a behavior I was willing to tolerate, given the incredibly
improved speed.

But there was another factor at work at the same time; throughout the 1990s, the most effective way to
speed up code is often “wait for a faster processor.” From the floating-point-in-software 68K Mac to current
Intel processors, floating-point processing sped up by a factor of about a thousand, and so for TreeMaker 5,
I went back to my hand-rolled ALM code, which was slow, but numerically efficient (and could be made
open-source). On a modern PC, even this far-from-optimum code still converges almost instantaneously
to a high-quality local optimum. Which is not necessarily the global optimum. Artistically, this is a good
behavior: it lets the artist find several candidate arrangements by starting from different initial positions, and
then choosing the local optimum that best fits other aesthetic criteria.

Whatever algorithm is used, at the end of the optimization, one has the positions of the vertices Vi and
the scale factor m. That is sufficient to construct the circle centered on each vertex, as shown in Figure 2
(right). When two circles and all intervening rivers touch, it is an indication that the associated inequality
constraint is, in fact, an equality. In the language of constrained optimization, that constraint is said to be
active, and so we say that the path between the two nodes is active as well. It turns out that active paths
always correspond to crease lines in the crease pattern associated with a circle packing. These creases turn
out to lie along the axis of the folded shape, and so we also call them axial paths. They form the framework
upon which the rest of the crease pattern is constructed.

3 The Creases

Once we have found the axial paths, it is possible to mathematically construct all of the other folds in the
desired shape (which we call a “base”)—again, a process that takes a fraction of a second in TreeMaker, this
time because no optimization is needed; the construction is a straightforward polynomial-time geometric
algorithm. TreeMaker color-codes the creases according to their structural role: there are axial creases
(green), which all wind up along the centerline of the folded model, hinge creases (blue), that run along
the junctions between flaps, and ridge creases (red), that define how wide each flap is. These are shown
in Figure 3. The creases outline regions of the paper, called facets; the collection of all facets and their
intervening creases gives the crease pattern needed to fold the square into the origami base.

The structural information indicated by color tells the designer where in the folded form a given crease
lies and provides some hint for how the folded shape goes together, but ultimately, we need to determine
whether each crease is a mountain or valley fold. To do this, TreeMaker computes the “stacking order” of all
of the layers of paper, which is encoded by a graph on the facets that defines how the layers stack. Once we
know the stacking order of the layers of paper, we can determine whether each fold is a mountain fold (solid
black), valley fold (dashed colored), or is unfolded, or flat (solid gray). The full crease pattern, as computed
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Figure 3 : Left: The computed crease pattern with structural coloring. Right: Final crease pattern
with mountain-valley assignment.

by TreeMaker, is shown in Figure 3. Now, it’s time to fold.

4 Folding

The design is only half the battle of creating an origami figure. Actually, it’s even less than half. First, we
have to fold the crease pattern into the base; then we have to turn the base into the finished form. All we
are guaranteed from the algorithm is that the flaps will be of the right number, have the right length, and be
connected to each other in the way we originally specified. But there are no guarantees on the flap width,
cross section, arrangement of layers, or much of anything else. And at this point in the process, we don’t
even have a base: we just have the crease pattern for it.

And so, that’s what we start with: folding the crease pattern into the base. To accomplish this, we must
first transfer the crease pattern from the design to the actual square1. This is done by measuring the positions
of a few key points, and then forming all of the other creases based on those initial measurements, as shown
in Figure 4.

Most complex origami bases have the property that you can’t fold them one crease at a time; instead,
you must bring all of the creases together at once. That is the case here, so we bring all of the edges of
the square together in a single motion. This process is called “the collapse” in origami, because we are
“collapsing” the square down to the folded base, as shown in Figures 4–5.

“Collapse”-type folds had appeared in origami occasionally throughout the years, but its ubiquity in
complex algorithmic designs came as something of a surprise in the origami world. Published origami
designs almost always consisted of a sequence of relatively simple steps, leading smoothly from the initial
square to the finished form with no individual step requiring more than three or four creases to happen at
once. But complex modern designs are not like that; in fact, it is relatively rare that such a simple folding
pattern exists for a complex crease-pattern-based design. Instead, they almost always require all creases to
be brought together at once—a process my colleague Brian Chan has dubbed (somewhat mischeviously)

1The paper here is a 40 cm square of abaca/hemp paper made by Michael LaFosse, a master papermaker (http://www.
origamido.com) and origami artist whose handmade papers are prized by origami insect folders around the world.
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Figure 4 : Left: Square with creases transferred to the paper. Right: First stage of the collapse.

“three easy steps: precrease, collapse, shape.” But in each case, the precreasing, the collapsing, and most
especially, the shaping, may require several hours for each step.

In this figure, the collapse is relatively simple – only a few tens of creases are involved. (Truly advanced
designs may have hundreds of creases participating in the single collapse step.) The result at the end of the
collapse step is a flat form: the origami base, shown in Figure 5. It doesn’t look like much—certainly, not
like a scorpion—but it contains a flap of exactly the right length, connected in exactly the right way, for every
leg, arm, pincer, and body segment of the desired subject.

Figure 5 : Left: The collapse under way. Right: The fully collapsed base.

The flaps have the right length and connectivity, but not the right width; in fact, most of them are much
wider than their corresponding body part. As problems go, that’s a pretty good one to have; it’s a lot easier
to make a fat flap narrower than to make a narrow flap wider, and with arthropods as subject matter, making
flaps narrower is the usual requirement. We will need to narrow all parts of this base so that they can better
represent the skinny legs, arms, and tail of the scorpion. This is done with a series of what are called “sink
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folds,” which are, essentially nested sets of inversions of the layers of each flap. Sink folds are tedious to
perform (any origami teaching session is guaranteed to elicit a series of groans when a set of sink folds is
announced), but they are conceptually straightforward to perform. Figure 6 show the base with some (left)
and all (right) of its layers sunken. In the end, the folded paper shape looks not unlike the original tree graph:
a collection of long, skinny, connected sticks, each of which will become an appendage of the subject.

Figure 6 : Left: The partially narrowed base. Right: The fully narrowed base.

Last comes the shaping. There is no algorithm for this—and, in fact, this is one part of the process
where both craftsmanship and artistry are preeminent in the process. A representional origami figure, no
matter how realistic, is, in any absolute sense, still a rather crude approximation of the subject. The artist
selects what features to emphasize and what features to minimize in order to convey the essential character
of the subject. Craftsmanship is called for, too, to insure that every visible edge, every visible fold falls in
the right place to convey the desired impression. A misplaced edge, an unintended wrinkle—these can spoil
the visual effect, for the human eye is drawn to lines, ignores smooth surfaces. It is often the case that the
shaping takes by far the greatest amount of time when creating a complex origami figure, and this process can
last, literally, for days. (For this scorpion, shaping took only a few hours in total.) Figures 7–8 show the final
process of shaping, beginning with narrowing of the legs, then proceeding through shaping of the tail and
claws, and ending up with the final scorpion form. The narrowing and shaping of the legs is accomplished by
selectively dampening flaps as they are folded, a technique called “wet-folding” that was introduced by the
great 20th-century origami master Yoshizawa; strips of drafting tape hold the figure in position as it dries.

5 Final Thoughts

The early successes of circle-river packing and its relatives were most vividly seen in the subject matter of
origami insects and their kin. In the 1970s, origami insects were considered the ultimate challenge, and at
least one origami book flatly declared that an origami grasshopper was “impossible” from a single square. In
the 1980s, grasshoppers were not only possible, but folded and then surpassed; and the 1990s saw a golden
age of origami insects informally known as the “Bug Wars,” in which origami creators vied with one another
for the most realistic, leggiest, pointiest, wingiest, horniest creature they could find! (Entomology journals
saw a noticeable uptick in their origami subscribers, as origami artists sought out the most challenging
possible subjects to take on.) (See [2, 7] for some of my own contributions to this battle.)
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Figure 7 : Left: Narrowing the legs. Right: The curved tail has been folded and shaped.

Figure 8 : Left: Final stages of shaping. Right: The finished scorpion, approximately 15 cm long.
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To some degree, the Bug Wars are still going on, but with far more than bugs as their subject matter—
complex origami subjects include other animals, plants, human figures, and indeed, purely geometric forms—
and the goals of origami artists have moved well beyond “mere realism,” to now address the question,“how
can I create a visually interesting shape that challenges the mind and perceptions of the viewer?” Design
techniques have grown as well; circle-river packing has been expanded to include techniques based on pack-
ings of polygons and other shapes, and the ranks of other algorithms for computational origami continues to
grow, with contributions now coming from the academic world of computational geometry and other parts
of mathematics and computer science. It is a heady time.

And yet, all of these techniques are still no more than tools in the hands of the artist. I am sometimes
asked if the development of mathematical design techniques (or, heaven forbid, computer programs!) some-
how diminishes origami as an artistic activity. To which I answer: these techniques, for all their power, are
still just tools, no more than a painter’s pigments, or a sculptor’s chisels. The quality of the tool does not
set the quality of the artwork; what matters most is what you do with those tools. But seeing what origami
artists from all over the world have done in recent decades with the tools that computational origamists have
given them, and an entirely new generation of conceptual and computational tools coming down the pike, I
have no doubt that the future of origami as an art form will be exciting and invigorating for many years to
come.

TreeMaker is open-source (GPL), runs on Macintosh OS X, Linux, and Windows computers, and may
be downloaded at [8].

References

[1] Robert J. Lang. Mathematical algorithms for origami design. Symmetry: Culture and Science,
5(2):115–152, 1994.

[2] Robert J. Lang. Origami Insects and their Kin. Dover Publications, 1995.

[3] Robert J. Lang. A computational algorithm for origami design. In 12th ACM Symposium on Computa-
tional Geometry, pages 98–105, 1996.

[4] Robert J. Lang. The tree method of origami design. In Koryo Miura, editor, Origami Science and Art:
Proceedings of the Second International Meeting of Origami Science and Scientific Origami, pages
73–82, Ohtsu, Japan, 1997.

[5] Robert J. Lang. Scorpion, opus 379, 2002. http://www.langorigami.com/art/gallery/
gallery.php4?name=scorpion_varileg.

[6] Robert J. Lang. Origami Design Secrets: Mathematical Methods for an Ancient Art. A K Peters, 2003.

[7] Robert J. Lang. Origami Insects II. Gallery Origami House, 2003.

[8] Robert J. Lang. TreeMaker, 2003. http://www.langorigami.com/treemaker.htm.

[9] Toshiyuki Meguro. Jitsuyou origami sekkeihou [practical methods of origami designs]. Origami Tan-
teidan Shinbun, 2(7–14), 1991–1992.

[10] Toshiyuki Meguro. ‘Tobu Kuwagatamushi’-to Ryoikienbunshiho [‘Flying Stag Beetle’ and the circular
area molecule method]. In Oru, pages 92–95. 1994.

[11] R. T. Rockafellar. Augmented Lagrangian multiplier functions and duality in nonconvex programming.
SIAM Journal on Control, 12(2):268–285, 1974.

[12] Andre Tits. CFSQP. http://www.aemdesign.com.

Lang

20



Kircher’s Mechanical Composer: A Software Implementation

Jim Bumgardner
10066 Orcas Ave

Shadow Hills, CA, 91040, USA
E-mail: jbum@jbum.com
Website: krazydad.com

Abstract

A description of a working software implementation of Athanasius Kircher’s Musurgia Mechanics: The algorithm 
the Jesuit Polymath invented for non-musicians to set hymns to music, in four-part polyphonic arrangements.  This 
algorithm  was  used  in  two  related  inventions  of  Kircher’s,  the Arca  Musarithmica,  and  the Organum 
Mathematicum.  The author has created a software program that incorporates data from both devices.  This software 
produces files in the open-standard ABC notation, thru which one can produce printed scores and MIDI recordings  
of 17th century polyphony in great quantity.

Introduction to Kircher

The  mechanical  production  of  music  is  nothing  other  than  a  certain  closely  defined 
method I have invented, by which anyone, even if he has no musical knowledge, may, by  
the varied application of music-making instruments, compose tunes.

– Athanasius Kircher [1] 

Athanasius Kircher (d. 1680) [figure 1], was a Jesuit Scholar and Polymath who 
achieved great renown in his lifetime, due to his prodigious output of lavishly 
illustrated  books  and  his  role  as  curator  of  one  of  the  first  natural  history 
museums  at  the  Collegio  Romano.   Kircher’s  books  demonstrate  his  varied 
expertise  in  such  diverse  subjects  as  Linguistics,  Antiquities,  Speculative 
History, Magnetism, Optics, Mechanics, Cryptography, Astrology, Mathematics, 
Microbiology, Geology and Music. Among the numerous inventions attributed 
to  Kircher  are  the  megaphone,  the  magic  lantern,  the  aeolean  harp  and  the 
pantometrum (a “universal measure” for solving geometry problems).  Kircher 
had  the  advantages  of  a  relentless  curiosity  and  a  secure  academic  position 
which made him the intellectual center of the Jesuit organization, and put him on 
the receiving end of voluminous correspondence from distant places. It is no 
surprise that Kircher was described as “master of a hundred arts.”[2]

In  the  years  after  his  death,  Kircher  began  to  sink  into  obscurity.   One  reason  is  due  to  the 
suppression of the Jesuit order by the Catholic church in the mid-18th century.  Another reason is that 
Kircher’s writings inhabit a porous region somewhere between religion and science, and freely combine 
speculation, intuition with his empiricist experiments in a manner that became outmoded in a society of 
increasingly  humanist  thinkers.   The  Rosetta  Stone  was  another  nail  in  Kircher’s  coffin,  helping  to 
demonstrate that Kircher’s once celebrated “translations” of the Egyptian hieroglyphs were only delusions 
of a fertile but febrile imagination [3].  

Figure 1:  
Athanasius Kircher
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In recent years, Kircher’s star has begun to rise again. The mixture of science, pseudo-science, truth 
and humbuggery which once tainted his work only serve to make him a more compelling figure in these 
times when specialization is the rule, and universal knowledge an unattainable dream.

Kircher  the  musicologist. One  of  Kircher’s  most  successful  and  enduring  works  was Musurgia 
Universalis, published in two large volumes in 1650.  In this encyclopedic work, Kircher described nearly 
everything then known about sound, audio production, sound perception, and western music at the time, 
borrowing heavily from such previous works as Mersenne’s Harmonie Universelle. Diarist Samuel Pepys 
bought  a  copy  in  London  for  35  shillings  in  1668  [4].   The  Pepys  library  at  Magdalene  College, 
Cambridge still has a curious (and surprisingly small) box that Pepys built (or commissioned) from plans 
in Kircher’s book: an Arca Musarithmica.  [Figure 2]

Kicher’s Arca Musarithmica and Organum Mathematicum

Although  much  of  Musurgia  Universalis  is  derivative,  Kircher’s  invention  of  a  music  composition 
algorithm was decidedly modern, anticipating the work of algorithmic music pioneers such as Lejaren 
Hiller  and  aleatoric  composers  like  John Cage.   Likely  influenced  by  the  musical  combinatorics  of 
Mersenne [5], and the mechanical inventions of Lull [6], Kircher conceived of a process by which non-
musicians could compose music, by converting numbers to pitches, and combining pre-composed phrases 
into longer pieces.

Kircher’s process was first developed for the Arca Musarithmica, 
described in Musurgia Universalis.  The Arca was a box containing a 
series  of columnae or  wooden  strips  with tariffa (tables)  affixed  to 
them.   The tables  contained the  information required for  Kircher’s 
mechanical method.  The composer would pull a set of columns from 
the  box,  and  string  phrases  in  the  columns  together  to  produce  a 
complete piece of music.

Kircher  later  copied  these  tables 
and used them in a similar, but more 
wide-ranging invention,  his Organum 
Mathematicum [figure 3], described in 
the  book  of  the  same  name  by  his 
pupil,  Kaspar  Schott,  and  originally 

constructed  in  1661 for  the  edification  of  a  twelve-year-old  archduke, 
Karl Joseph, son of Habsburg Emporor Leopold I.  The Organum, the 17th 

century  equivalent  of  a  laptop  computer,  was  also  a  box  containing 
wooden strips.  The strips were divided into nine sections, which were 
used  to  aid  in  the  production  of  arithmetic,  geometry,  fortifications, 
calendars,  gnomics,  spherics,  planetary  movements,  earthworks  and 
finally, music [7].  The music tables in the Organum were essentially a 
subset of the tables designed for the Arca (give or take a few transcription 
errors).  Two extant devices can be found in museums in Florence and 
Munich, respectively.  It appears unlikely that any Organum saw much practical use – they were most 
likely used as expensive gifts and conversation pieces, intended to impress wealthy patrons and cement 
the Society of Jesu into the intellectual firmament.

Figure 2: 
Arca Musarithmica

Figure 3: 
Organum Mathematicum
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Origins of this Project

I first encountered Kircher at the Museum of Jurassic Technology in Los Angeles, around 1999, where I 
read this misleading (albeit accurate in parts) caption below an illustration of the Arca:

Arca  musarithmica:  a  primitive  mechanical  computer  that  would  compose  simple 
random compositions, as well as write messages in cipher, calculate the  date of Easter in 
any year, and design fortifications. 

Like Kircher’s writings, much of the information at the MJT (which is equal parts art exhibit and 
museum) can be misleading.  Nonetheless, I resolved to find out as much as I could about this apparent 
precursor to Babbage.  I was primarily interested in the musical applications of such a device, having 
produced my own algorithmic music compositions years ago in college.  It sounded like Kircher had 
invented a clockwork device which composed music.  I quickly found that this “primitive mechanical 
computer” was nothing more than a glorified recipe box.  Undaunted, I became determined to produce a 
software implementation of Kircher’s compositional method used in the Organum.

At the time, images of the actual tables from Kircher’s Organum were hard to come by (complete 
copies of the relevant works are now readily available online via the Echo archive), and I had a difficult 
time getting access to the rare book collections at local libraries.  I eventually managed to acquire some 
photocopies of the relevant tables from Schott’s book, as well as a German translation of the relevant 
passages from Dr. Hans-Joaquim Vollrath, a mathematician at Wurzburg university where Kaspar Schott 
wrote and taught.  I am indebted to Dr. Vollrath for his assistance.

The Software Implementation

My software is written in the Perl programming language.  It consists of a single script, organum.pl, 
which makes use of three include (“header”) files, which contain the data I transcribed from the writings 
of Kircher and Schott. Two of the header files contain tables from Kircher’s and Schott’s books (one 
contains phrases, and the other contains modes or scales).  The third header file contains a set of lyrics, 
which are to be set to music using Kircher’s method.

Data Entry and Representation.  The most tedious 
part of my implementation involved typing in all the 
tables of numbers and rhythmic values that appear on 
the tariffa (tables) in Schott’s book.  In some cases, 
the  Perl  representation  resembles  quite  closely  the 
original  illustrations  which  appear  in Organum 
Mathematicum, as can be seen in a screen snapshot I 
took while entering the data [Figure 4].

Most  of  the  tables  I  transcribed  from Schott’s 
book consist of musical phrases, notated as separate 
pitch and rhythmic values.  The eight rods are divided 
into two distinct groups: simple and florid.  

Figure 4: Data Entry
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Four of the rods are used for music in the “simple” style, or first-species counterpoint.  In the music 
produced by these rods, all four voices sing melodies with identical rhythmic values.  For each musical 
phrase, which consists of a set of pitches, a choice of different rhythmic values are provided, in a set of 
separate tables.   In addition,  a set  of  rhythms is  provided in the “Tripla” style,  which use three per 
measure, rather than four.  

The other four rods contain music in the “florid” style, or fifth-species counterpoint.  In these rods, the 4 
voices are assigned different rhythmic values, and only one such set of rhythms is provided for each 
phrase.

The  tables  are  further  divided  into  classes  based  on  the  number  of  syllables  per  strophe, 
corresponding to the metrical style of the latin hymns which a church composer would want to set to 
music.  The phrases are arranged in six groups, as follows:

a) Class  1  fronts.  “Euripedaean”  phrases  for  setting  trochaic 
trimeter  supposedly  in  the  style  of  Euripedes  with  six 
syllables per phrase.  An example verse used with this class 
is “Ave Maris Stella”.

b) Class  1  backs.  “Anancreonic”  phrases  for  setting  trochaic 
tetrameter  with  eight  syllables  per  phrase.   Kircher’s 
example is “O ter quaterque felix” (O ter QUA ter QUE fe 
LIX).  A modern  example  would  be  “We  three  kings  of 
Orient are.”

c) Class  2  fronts.  “Archilochan”  phrases  for  setting   iambic 
tetrameter  with  eight  syllables  per  phrase.  Ambrosian 
hymns,  such  as  “Oh  Little  Town  of  Bethlehem,”  fit  this 
pattern,  as  does  Kircher’s  example  of   “Veni  Creator 
Spiritus” (ve NI cre A tor SPI ri TUS).

d) Class  2  backs.  “Sapphic”  phrases,  for  setting  versus  with  a 
syllabic pattern of 11-11-11-5.  Examples are “Iste Confessor 
Domini Sacratus” and “Ut queant axis resonare fibris”.

e) Class  3  fronts  and  backs.  “Euripedaean”  phrases  (trochaic 
trimeter) in the florid style.  The fronts contain the pitches, 
and the backs contain the corresponding rhythmic values.

f) Class 4 fronts and backs [see figure 5]. “Archilochan” phrases 
(iambic tetrameter) in the florid style.  The fronts contain the 
pitches, and the backs contain the corresponding rhythmic 
values.

 
The Class 5 columns contain information used to coerce pitches 

into the correct register, based on the tonic of the scale in use, and the vocal part (Soprano, Alto, Tenor, 
Bass).  This information appears, in altered form, on the front panel of the Arca.

Figure 5: Class 4 front and back for 
the 4th strophe .
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The Class  6  columns include the tabellae tonorum (tone tables),  which are employed to convert 
digits to pitch values, using eight different modes or scales.  These same tables appear on the underside of 
the lid in Kircher’s illustration of the Arca. These tables are used to convert the digit values in Kircher’s 
note phrases to specific pitche classes, depending on the mode or scale the composer chooses.

I had some difficulty with these because in music notation of the period, the note B is sometimes 
implicitly assumed to be flatted, and it is difficult for me to always be certain where Kircher intended it. 
The tables roughly correspond to the following medieval church modes:  Dorian, Hypodorian, Phrygian, 
Hypophrygian,  Lydian,  Hypolydian,  Mixolydian,  Hypomixolydian.   The  correspondence  with  these 
modes is not exact, and I have tried to be true to what Kircher & Schott notated, rather than what is 
generally documented about these modes.

Input Parameters.  My software is a Perl script that is operated from the command line.  A typical 
invocation of the script is shown below.

organum.pl -li 5 -csn 6 -mi 6 -rnd -tempo 180 –vl 2 

These  parameters  indicate  to  use  lyric-number  5  (from  a  database  of  lyrics),  card-set  6  (which 
corresponds to the class 4 “Archilochan” tables), mode 6 (hypolydian), random phrase selection, a MIDI 
tempo of 180, and to preserve voice leading for step-wise motion of 2 half-steps.

The Algorithm.  My algorithm is essentially a nested loop which processes each note of each phrase of 
each voice (SATB).  

A set  of  phrases are selected from each of four cards,  in sequence (the phrases on the last  card 
typically have cadences).  If the user has indicated the –rnd parameter, phrases are randomly chosen, 
otherwise, phrases the user explicitly selects are used.  If the cards use simple style counterpoint, then 
rhythmic phrases are also chosen, in a similar manner.  For florid counterpoint, there is only a single 
choice of rhythmic values for each phrase.

Figuring out the rhythmic value for each note involves nothing more complicated than a table lookup, 
to retrieve the values specified in the tables. 

Figuring out the pitches is a little more complicated.  The pitch class of each note (C,C#,D etc.) is 
obtained by looking up the note number in the list of pitch values for the current mode.  Choosing the 
register (the octave) is a little more complicated.  First  an appropriate octave is chosen based on the 
register of the voice and the information from the class 5 data column.  In addition, an attempt is made to 
preserve stepwise motion, allowing the melody to stray slightly outside of the register, if small intervals 
are being used in the melody.

The three aspects of implementation that have given me the most trouble are a) choosing correct pitch 
values for Kircher’s modes, b) transcribing Kircher’s note durations correctly, and c) avoiding awkward 
leaps in melodic lines, while still honoring the spirit of Kircher’s algorithm.  

Format of results.  My software produces files in the ABC format which contain information for both a 
MIDI version, and a printed score [figure 6].  In addition, I have produced “sung” versions using Flinger, 
a text-to-song package written by the late Mike Macon.
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The sung versions are produced by producing 4 separate MIDI files (one per melodic line) which 
contain embedded syllables, from a lyric file which contains phonetic transcriptions of the original latin. 
The Flinger software converts these to separate audio files, which may then be mixed together and post-
processed to add some reverb, using an off-the-shelf audio editor.

Discussion

In implementing this software, and researching Kircher’s algorithm, a number of questions occurred to 
me, which I’ll raise here for discussion.

Is it disingenuous to call Kircher’s procedure an algorithm?   If you define algorithm as “a sequence 
of well defined instructions,” than clearly Kircher’s procedure was intended to be an algorithm.  However, 
it was an algorithm intended for humans, and not machines, and as such, it contains a few steps that are 
difficult to translate into software.  For example, Kircher suggests choosing modes based on the character 
of  the  selected  hymn,  and  helpfully  provided  a  list  of  adjectives  for  each  mode  such  as  “heroic,” 
“magnificent,” “pius” and so on. To my less delicate and more modern ears, his choice of adjectives 
seems quite arbitrary, so I have instead chosen modes based on whether they “sound good” or simply by 
using a random number generator.

Was it the first music algorithm?  No.  If Kircher’s procedure is to be called an algorithm, then so is any 
well  defined  musical  procedure,  such  as  species  counterpoint,  which  precedes  Kircher.   Kircher’s 
procedure differs from species counterpoint however, in his use of combining phrases from a fixed set, 
which appears to be a novel compositional technique of Kircher’s, inspired by Lull and Mersenne.

Was it intended for mechanical computation?  Although words like “mechanicam” and “artificium” 
appear repeatedly in Kircher’s writing about this process, it seems clear he is talking about human labor. 
Nonetheless, elsewhere in Musurgia Universalis, Kircher wrote about a number of intriguing automatic 
instruments of the time, such as an elaborate water-powered barrel organ. So it is compelling to ask if 
Kircher might have put 2 and 2 together and imagined a clockwork machine used for the purposes of 
composing music.  If he had such thoughts, he did not write them down in Musurgia Universalis.  The 
closest he came to inventing such a machine is his revolving bell choir (a working reproduction can be 
seen and heard at the Museum of Jurassic Technology).

Was it  an  aleatoric  algorithm?  Some  Kircher  enthusiasts,  such  as  David  Wilson,  have  described 
Kircher’s algorithm as producing “random compositions”, which implies random selection or chance, the 
hallmarks of an aleatoric algorithm, such as those developed by John Cage.  In my opinion, Kircher 
probably  did  not  intend  for  chance  to  play  as  big  a  role  in  his  method  as  it  does  in  my  software 
implementation.  Some of the decisions that I make using a random number generator were intended to be 
made by humans using their best judgement, such as the choice of modes.  However, Kircher himself 
describes the algorithm as being of use for persons “with no musical knowledge”.  Since such a person 
would not necessarily be capable of making informed choices for phrase selection, it seems likely that a 
certain amount of chance would have crept in, regardless of Kircher’s intention.

Are any published hymns based on material from the Organum or Arcas?  I haven’t found any yet, 
but admittedly, I haven’t looked very hard.  Since the material produced by Kircher’s algorithm is not of 
particularly high quality, I doubt that any composers of lasting merit would have made much use of it. 
Interestingly, Kircher himself provides very few complete examples in Musurgia Universalis which are 
derived from his own Arca tables.
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Figure 5 : 
Sample Output, using the Class 4 Tables.

Kircher’s Mechanical Composer: A Software Implementation
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Are the phrases in the Arca derived from music in vogue at the time or was the material all written 
by Kircher?  This will be a tough question to answer, since little printed music survives from this period. 
Also the somewhat uniform and redundant style of the polyphonic snippets used by Kircher may closely 
resemble other music that wasn’t explicitly copied.  

Sources

My Perl software program, Organum, can be downloaded at my website:

http://www.krazydad.com/organum.zip
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Abstract
This paper considers three conceptions of musical distance (or inverse “similarity”) that produce three different
musico-geometrical spaces: the first, based on voice leading, yields a collection of continuous quotient spaces or
orbifolds; the second, based on acoustics, gives rise to the Tonnetz and related “tuning lattices”; while the third,
based on the total interval content of a group of notes, generates a six-dimensional “quality space” first described
by Ian Quinn. I will show that although these three measures are in principle quite distinct, they are in practice
surprisingly interrelated. This produces the challenge of determining which model is appropriate to a given music-
theoretical circumstance. Since the different models can yield comparable results, unwary theorists could potentially
find themselves using one type of structure (such as a tuning lattice) to investigate properties more perspicuously
represented by another (for instance, voiceleading relationships).

1 Introduction

We begin with voice-leading spaces that make use of the log-frequency metric [1, 15, 3]. Pitches here are
represented by the logarithms of their fundamental frequencies, with distance measured according to the
usual metric on R; pitches are therefore “close” if they are near each other on the piano keyboard. A point
in Rn represents an ordered series of pitch classes. Distance in this higher-dimensional space can be inter-
preted as the aggregate distance moved by a collection of musical “voices” in passing from one chord to
another. (We can think of this, roughly, as the aggregate physical distance traveled by the fingers on the
piano keyboard.) By disregarding information–such as the octave or order of a group of notes–we “fold”
Rn into a non-Euclidean quotient space or orbifold. (For example, imposing octave equivalence transforms
Rn into the n-torus Tn, while transpositional equivalence transforms Rn into Rn−1, orthogonally projecting
points onto the hyperplane whose coordinates sum to zero.) Points in the resulting orbifolds represent equiv-
alence classes of musical objects–such as chords or set classes–while “generalized line segments” represent
equivalence classes of voice leadings.1 For example, Figure 1, from Tymoczko 2006, represents the space
of two-note chords, while Figure 2, from Callender, Quinn, and Tymoczko 2008, represents the space of
three-note transpositional set classes. In both spaces, the distance between two points represents the size of
the smallest voice leading between the objects they represent.

Let’s now turn to a very different sort of model, the Tonnetz [4, 5, 6] and related structures, which I
will describe generically as “tuning lattices.” These models are typically discrete, with adjacent points on a
particular axis being separated by the same interval. The leftmost lattice in Figure 3 shows the most familiar
of these structures, with the two axes representing acoustically pure perfect fifths and major thirds. (One
can imagine a third axis, representing either the octave or the acoustical seventh, projecting outward from
the paper.) The model asserts that the pitch G4 has an acoustic affinity to both C4 (its “underfifth”) and D5
(its “overfifth”), as well as to E[4 and B4 (its “underthird” and “overthird,” respectively). The lattice thus
encodes a fundamentally different notion of musical distance than the earlier voice leading models: whereas
A3 and A[3 are very close in log-frequency space, they are four steps apart our tuning lattice. Furthermore,

1The adjective “generalized” indicates that these “line segments” may pass through one of the space’s singular points, giving
rise to mathematical complications.

Bridges 2009: Mathematics, Music, Art, Architecture, Culture

29



Figure 1 : The Möbius strip represent-
ing voice-leading relations among two-note
chords.

Figure 2 : The cone representing voice-
leading relations among three-note transposi-
tional set classes.

Figure 3 : Two discrete tuning lattices. On the left, the chromatic Tonnetz, where horizontally
adjacent notes are linked by acoustically pure fifths, while vertically adjacent notes are linked by
acoustically pure major thirds. On the right, a version of the structure that uses diatonic intervals.

where chords (or more generally “musical objects”) are represented by points in the voice leadings spaces,
they are represented by polytopes in the lattices.

Finally, there are measures of musical distance that rely on chords’ shared interval content. From this
point of view, the chords C, C], E, F] and C, D[, E[, G resemble one another, since they are “nontrivially
homometric” or “Z-related”: that is, they share the same collection of pairwise distances between their notes.
(For instance, both contain exactly one pair that is one semitone apart, exactly one pair that is two semitones
apart, and so on.) However, these chords are not particularly close in either of the two models considered
previously. It is not intuitively obvious that this notion of “similarity” produces any particular geometrical
space. But Ian Quinn has shown that one can use the discrete Fourier transform to generate (in the familiar
equal-tempered case) a six-dimensional “quality space” in which chords that share the same interval content
are represented by the same point [10, 11, 12, 13, 2]. We will explore the details shortly.

Clearly, these three musical models are very different, and it would be somewhat surprising if there
were to be close connections between them. But we will soon see that this is in fact this case.

Tymoczko

30



Figure 4 : Left: most efficient voice-leadings between diatonic fifths form a chain that runs
through the center of the Möbius strip from Figure 1. Right: these voice leadings form an ab-
stract circle, in which adjacent dyads are related by three-step diatonic transposition, and are
linked by single-step voice leading.

Figure 5 : Left: most efficient voice-leadings between diatonic triads form a chain that runs
through the center of the orbifold representing three-note chords. Right: these voice leadings
form an abstract circle, in which adjacent triads are linked by single-step voice leading. Note that
here, adjacent triads are related by transposition by two diatonic steps.

2 Voice-leading lattices and acoustic affinity

Voice-leading and acoustics seem to privilege fundamentally different conceptions of pitch distance: from
a voice leading perspective, the semitone is smaller than the perfect fifth, whereas from the acoustical per-
spective the perfect fifth is smaller than the semitone. Intuitively, this would seem to be a fundamental gap
that cannot be bridged.

Things become somewhat more complicated, however, when we consider the discrete lattices that repre-
sent voice-leading relationships among familiar diatonic or chromatic chords. For example, Figure 4 records
the most efficient voice leadings among diatonic fifths–which can be represented using an irregular, one-
dimensional zig-zag near the center of the Möbius strip T2/S2. (The zig-zag seems to be irregular because
the figure is drawn using the chromatic semitone as a unit; were we to use the diatonic step, it would be regu-
lar.) Abstractly, these voice leadings form the circle shown on the right of Figure 4. The figure demonstrates
that there are purely contrapuntal reasons to associate fifth-related diatonic fifths: from this perspective {C,
G} is close to {G, D}, not because of acoustics, but because the first dyad can be transformed into the second
by moving the note C up by one diatonic step. One fascinating possibility–which we unfortunately cannot
pursue here–is that acoustic affinities actually derive from voice-leading facts: it is possible that the ear asso-
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Figure 6 : Major, minor, and augmented tri-
ads as they appear in the orbifold represent-
ing three-note chords. Here, triads are partic-
ularly close to their major-third transpositions.

Figure 7 : Fifth-related diatonic scales form a
chain that runs through the center of the seven-
dimensional orbifold representing seven-note
chords. It is structurally analogous to the cir-
cles in Figures 4 and 5.

ciates the third harmonic of a complex tone with the second harmonic of another tone a fifth above it, and the
fourth harmonic of the lower note with the third of the upper, in effect tracking voice-leading relationships
among the partials.

Figures 5–7 present three analogous structures: Figure 5 connects triads in the C diatonic scale by effi-
cient voice leading, and depicts third-related triads as being particularly close; Figure 6 shows the position of
major, minor, and augmented triads in three-note chromatic chord space, where major-third-related triads are
close [7]; Figure 7 shows (symbolically) that fifth-related diatonic scales are close in twelve-note chromatic
space. Once again, we see that there are purely contrapuntal reasons to associate fifth-related diatonic scales
and third-related triads.

This observation, in turn, raises a number of theoretical questions. For instance: should we attribute the
prevalence of modulations between fifth-related keys to the acoustic affinity between fifth-related pitches, or
to the voice-leading relationships between fifth-related diatonic scales? One way to study this question would
be to compare the frequency of modulations in classical pieces to the voice-leading distances among their
associated scales. Preliminary investigations, summarized in Figure 8, suggest that voice-leading distances
are in fact very closely correlated to modulation frequencies. Surprising as it may seem, the acoustic affinity
of perfect fifth-related notes may be superfluous when it comes to explaining classical modulatory practice. 2

3 Tuning lattices as approximate models of voice leading

We will now investigate the way tuning lattices like the Tonnetz represent voice-leading relationships among
familiar sonorities. Here my argumentative strategy will by somewhat different, since it is widely recognized
that the Tonnetz has something to do with voice leading. (This is largely due to the important work of Richard

2Similar points could potentially be made about the prevalence, in functionally tonal music, of root-progressions by perfect
fifths. It may be that the diatonic circle of thirds shown in Figure 5 provides a more perspicuous model of functional harmony than
do more traditional fifth-based representations.
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Figure 8 : Correlations between modulation frequency
and voice-leading distances among scales, in Bach’s
Well-Tempered Clavier, and the piano sonatas of Haydn,
Mozart, and Beethoven. The very high correlations sug-
gest that composers typically modulate between keys
whose associated scales can be linked by efficient voice
leading.

Figure 9 : On this three-dimensional
Tonnetz, the C7 chord is represented
by the tetrahedron whose vertices are
C, E, G, and B[. The Cø7 chord
is represented by the nearby tetrahe-
dron C, E[, G[, B[, which shares the
C-B[ edge.

Cohn, who has used the Tonnetz to study what he calls “parsimonious” voice leading [4].) My goal will
therefore be to explain why tuning lattices are only an approximate model of contrapuntal relationships, and
only for certain chords.

The first point to note is that inversionally related chords on a tuning lattice are near each other when
they share common tones.3 For example, the Tonnetz represents perfect fifths by line segments; fifth-related
perfect fifths, such as {C, G} and {G, D} are related by inversion around their common note, and are adjacent
on the lattice (Figure 3). Similarly, major and minor triads on the Tonnetz are represented by triangles;
inversionally related triads that share an interval, such as {C, E, G} and {C, E, A}, are joined by a common
edge. (On the standard Tonnetz, the more common tones, the closer the chords will be: C major and A minor,
which share two notes, are closer than C major and F minor, which share only one.) In the three-dimensional
Tonnetz shown in Figure 9, where the z axis represents the seventh, C7 is near its inversion Cø7. The point is
reasonably general, and does not depend on the particular structure of the Tonnetz or on the chords involved:
on tuning lattices, inversionally related chords are close when they share common tones.4

The second point is that acoustically consonant chords often divide the octave relatively evenly; such
chords can be linked by efficient voice leading to those inversions with which they share common notes [15,
16].5 It follows that proximity on a tuning lattice will indicate the potential for efficient voice leading when
the chords in question are nearly even and are related by inversion. Thus {C, G} and {G, D} can be linked
by the stepwise voice leading (C, G)→(D, G), in which C moves up by two semitones. Similarly, the C
major and A minor triads can be linked by the single-step voice leading (C, E, G)→(C, E, A), and C7 can be
linked to Cø7 by the two semitone voice-leading (C, E, G, B[)→(C, E[, G[, B[). In each case the chords are

3This is not true of the voice leading spaces considered earlier: for example, in three-note chord space {C, D, F} is not particularly
close to {F, A[, B[}.

4In the general case, the notion of “closeness” needs to be spelled out carefully, since chords can contain notes that are very far
apart on the lattice. In the applications we are concerned with, chords occupy a small region of the tuning lattice, and the notion of
“closeness” is fairly straightforward.

5The point is relatively obvious when one thinks geometrically: the two chords divide the pitch-class circle nearly evenly into
the same number of pieces; hence, if any two of their notes are close, then each note of one chord is near some note of the other.
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Figure 10 : On the Tonnetz, F major (Triangle 3)
is closer to C major (Triangle 1) than F minor (Tri-
angle 4) is. In actual music, however, F minor fre-
quently appears as a passing chord between F major
and C major. Note that, unlike in Figure 3, I have
here used a Tonnetz in which the axes are not or-
thogonal; this difference is merely orthographical,
however.

also close on the relevant tuning lattice. (Interestingly, triadic distances on the diatonic Tonnetz in Figure 3
exactly reproduce the circle-of-thirds distances from Figure 5.) This will not be true for uneven chords: {C,
E} and {E, G]} are close on the Tonnetz, but cannot be linked by particularly efficient voice leading; the
same holds for {C, G, A[} and {G, A[, D[}. Tuning lattices are approximate models of voice-leading only
when one is concerned with the nearly-even sonorities that are fundamental to Western tonality.

Furthermore, on closer inspection Tonnetz-distances diverge from voice-leading distances even for these
chords. Some counterexamples are obvious: for instance, {C, G} and {C], F]} can be linked by semitonal
voice leading, but are fairly far apart on the Tonnetz. Slightly more subtle, but more musically pertinent,
is the following example: on the Tonnetz, C major is two units away from F major but three units from
F minor (Figure 10). (Here I measure distance in accordance with “neo-Riemannian” theory, which considers
triangles sharing an edge to be one unit apart and which decomposes larger distances into sequences of one-
unit moves.) Yet it takes only two semitones of total motion to move from C major to F minor, and three to
move from C major to F major. (This is precisely why F minor often appears as a passing chord between
F major and C major.) The Tonnetz thus depicts F major as being closer to C major than F minor is, even
though contrapuntally the opposite is true. This means we cannot use the figure to explain the ubiquitous
nineteenth-century IV-iv-I progression, in which the two-semitone motion 6̂→5̂ is broken into a pair of
single-semitone steps 6̂[6̂→5̂.

One way to put the point is that while adjacencies on the Tonnetz reflect voice-leading facts, other
relationships do not. As Cohn has emphasized, two major or minor triads share an edge if they can be
linked by “parsimonious” voice-leading in which a single voice moves by one or two semitones. If we are
interested in this particular kind of voice leading then the Tonnetz provides an accurate and useful model.
However, there is no analogous characterization of larger distances in the space. In other words, we do
not get a recognizable notion of voice-leading distance by “decomposing” voice leadings into sequences
of parsimonious moves: as we have seen, (F, A, C)→(E, G, C) can be decomposed into two parsimonious
moves, while it takes three to represent (F, A[, C)→(E, G, C); yet intuitively the first voice leading is larger
than the second. The deep issue here is that it is problematic to assert that “parsimonious” voice leadings
are always smaller than nonparsimonious voice-leadings: by asserting that (C, E, A)→(C, E, G) is smaller
than (C, F, Af)→(C, E, G), the theorist runs afoul what Tymoczko calls “the distribution constraint,” known
to mathematicians as the submajorization partial order [15, 8].6 Tymoczko argues that violations of the
distribution constraint invariably produce distance measures that violate intuitions about voice leading; the
problem with larger distances on the Tonnetz is an illustration of this general point.

Nevertheless, the fact remains that the two kinds of distance are roughly consistent: for major and
minor triads, the correlation between Tonnetz distance and voice-leading distance is a reasonably high .79.7

6Metrics that violate the distribution constraint have counterintuitive consequences, such as preferring “crossed” voice leadings
to their uncrossed alternatives. Here, the claim that A minor is closer to C major than F minor leads to the F minor/F major problem
discussed in Figure 10.

7Here I use the L1 or “taxicab” metric. The correlation between Tonnetz distances and the number of shared common tones is an
even-higher .9; however, “number of shared common tones” is not interpretable as a voice-leading metric.
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Figure 11 : The magnitude of a set class’s nth Fourier component is approximately linearly related
to the size of the minimal voice leading to the nearest subset of the perfectly even n-note chord,
shown here as dark spheres.

Furthermore, since Tymoczko’s “distribution constraint” is not intuitively obvious, unwary theorists might
well think that they could declare the “parsimonious” voice leading (C, E, G)→(C, E, A) to be smaller than
the nonparsimonious (C, E, G)→(C], E, G]). (Indeed, the very meaning of the term “parsimonious” would
seem to suggest that some theorists have done so.) Consequently, Tonnetz-distances might well appear, at first
or even second blush, to reflect some reasonable notion of “voice-leading distance”; and this in turn could
lead the theorist to conclude that the Tonnetz provides a generally applicable tool for investigating triadic
voice-leading. I have argued that we should resist this conclusion: if we use the Tonnetz to model chromatic
music, than Schubert’s major-third juxtapositions will seem very different from his habit of interposing
F minor between F major and C major, since the first can be readily explained using the Tonnetz whereas the
second cannot [6]. The danger, therefore, is that we might find ourselves drawing unnecessary distinctions
between these two cases–particularly if we mistakenly assume the Tonnetz is a fully faithful model of voice-
leading relationships.

4 Voice leading, “quality space,” and the Fourier transform

We conclude by investigating the relation between voice leading and the Fourier-based perspective [14, 9, 2].
The mechanics of the Fourier transform are relatively simple: for any number n from 1 to 6, and every pitch-
class p in a chord, the transform assigns a two-dimensional vector whose components are

Vp,n = (cos(2π pn/12),sin(2π pn/12))

Adding these vectors together, for one particular n and all the pitch-classes p in the chord, produces
a composite vector representing the chord as a whole–its “nth Fourier component.” The length (or “mag-
nitude”) of this vector, Quinn observes, reveals something about the chord’s harmonic character: in par-
ticular, chords saturated with (12/n)-semitone intervals, or intervals approximately equal to 12/n, tend to
score highly on this index of chord quality.8 The Fourier transform thus seems to quantify the intuitive
sense that chords can be more-or-less diminished-seventh-like, perfect-fifthy, or whole-toneish. Interest-
ingly, “Z-related” chords–or chords with the same interval content–always score identically on this measure

8Here I use continuous pitch-class notation where the octave always has size 12, no matter how it is divided. Thus the equal-
tempered five-note scale is labeled {0, 2.4, 4.8, 7.2, 9.6}.
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of chord-quality. In this sense, Fourier space (the six-dimensional hypercube whose coordinates are the
Fourier magnitudes) seems to model a conception of similarity that emphasizes interval content, rather than
voice leading or acoustic consonance.

However, there is again a subtle connection to voice leading: it turns out that the magnitude of a chord’s
nth Fourier component is approximately linearly related to the (Euclidean) size of the minimal voice leading
to the nearest subset of any perfectly even n-note chord.9 For instance, a chord’s first Fourier component
(FC1) is approximately related to the size of the minimal voice leading to any transposition of {0}; the second
Fourier component is approximately related to the size of the minimal voice leading to any transposition of
either {0} or {0, 6}; the third component is approximately related to the size of the minimal voice leading to
any transposition of either {0}, {0, 4} or {0, 4, 8}, and so on. Figure 11 shows the location of the subsets of
the n-note perfectly even chord, as they appear in the orbifold representing three-note set-classes, for values
of n ranging from 1 to 6 [1, 15, 3]. Associated to each graph is one of the six Fourier components. For
any three-note set class, the magnitude of its nth Fourier component is a decreasing function of the distance
to the nearest of these marked points: for instance, the magnitude of the third Fourier component (FC3)
decreases, the farther one is from the nearest of {0}, {0, 4} and {0, 4, 8}. Thus, chords in the shaded region
of Figure 12 will tend to have a relatively large FC3, while those in the unshaded region will have a smaller
FC3. Figure 13 shows that this relationship is very-nearly linear for twelve-tone equal-tempered trichords.

Table 1 uses the Pearson correlation coefficient to estimate the relationship between the voice-leading
distances and Fourier components, for twelve-tone equal-tempered multisets of various cardinalities. The
strong anti-correlations indicate that one variable predicts the other with a very high degree of accuracy.
Table 2 calculates the correlation coefficients for three-to-six-note chords in 48-tone equal temperament.
These strong anticorrelations, very similar to those in Table 1, show that there continues to be a very close
relation between Fourier magnitudes and voice-leading size in very finely quantized pitch-class space. Since
48-tone equal temperament is so finely quantized, these numbers are approximately valid for continuous,
unquantized pitch-class space.10

Explaining these correlations, though not very difficult, is beyond the scope of this paper. From our
perspective, the important question is whether we should measure chord quality using the Fourier transform
or voice leading. In particular, the issue is whether the Fourier components model the musical intuitions we
want to model: as we have seen, the Fourier transform requires us to measure a chord’s “harmonic quality”
in terms of its distance from all the subsets of the perfectly even n-note chord. But we might sometimes
wish to employ a different set of harmonic prototypes. For instance, Figure 14 uses a chord’s distance
from the augmented triad to measure the trichordal set classes’ “augmentedness.” Unlike Fourier analysis,
this purely voice-leading-based method does not consider the triple unison or doubled major third to be
particularly “augmented-like”; hence, set classes like {0, 1, 4} do not score particularly highly on this index
of “augmentedness.” This example dramatizes the fact that, when using voice leading, we are free to choose
any set of harmonic prototypes, rather than accepting those the Fourier transform imposes on us.

5 Conclusion

The approximate consistency between our three models is in one sense good news: since they are closely
related, it may not matter much–at least in practical terms–which we choose. We can perhaps use a tuning
lattice such as the Tonnetz to represent voice-leading, as long as we are interested in gross contrasts (“near”

9Here I measure voice-leading using the Euclidean metric [1, 15, 16].
10It would be possible, though beyond the scope of this paper, to calculate this correlation analytically. It is also possible to use

statistical methods for higher-cardinality chords. A large collection of randomly generated 24- and 100-tone chords in continuous
space produced correlations of .95 and .94, respectively.
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vs. “far”) rather than fine quantitative differences (“3 steps away” vs. “2 steps away”). Similarly, we
can perhaps use voice-leading spaces to approximate the results of the Fourier analysis, as long as we are
interested in modeling generic harmonic intuitions (“very fifthy” vs. “not very fifthy”) rather than exploring
very fine differences among Fourier magnitudes.

However, if we want to be more principled, then we need to be more careful. The resemblances among
our models mean that it is possible to inadvertently use one sort of structure to discuss properties that are
more directly modeled by another. And indeed, the recent history of music theory displays some fascinating
(and very fruitful) imprecision about this issue. It is striking that Douthett and Steinbach, who first described
several of the lattices found in the center of the voice-leading orbifolds–including Figure 6–explicitly pre-
sented their work as generalizing the familiar Tonnetz [7]. Their lattices, rather than depicting parsimonious
voice leading among major and minor triads, displayed single-semitone voice leadings among a wider range
of sonorities; and as a result of this seemingly small difference, they constucted models in which every dis-
tance can be interpreted as representing voice-leading size. However, this difference only became apparent
after it was understood how to embed their discrete structures in the continuous geometrical figures described
at the beginning of this paper. Thus one could say that the continuous voice-leading spaces evolved out of
the Tonnetz, by way of Douthett and Steinbach’s discrete lattices, even though the structures now appear to
be fundamentally different. Related points could be made about Quinn’s “quality space,” whose connection
to the voice-leading spaces took several years–and the work of several authors–to clarify.

There is, of course, nothing wrong with this: knowledge progresses slowly and fitfully. But our inves-
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Figure 14 : The mathematics of the Fourier transform requires that we conceive of “chord qual-
ity” in terms of the distance to all subsets of the perfectly even n-note chord (left). Purely voice-
leading-based conceptions instead allow us to choose our harmonic prototypes freely (right).
Thus we can use voice leading to model a chord’s “augmentedness” in terms of its distance from
the augmented triad, but not the tripled unison {0, 0, 0} or the doubled major third {0, 0, 4}.

tigation suggests that we may want to think carefully about which model is appropriate for which music-
theoretical purpose. I have tried to show that the issues here are complicated and subtle: the mere fact
that tonal pieces modulate by fifth does not, for example, require us to use a tuning lattice in which fifths
are smaller than semitones. (Indeed, the “circle of fifths” C-G-D-... can be interpreted either as a one-
dimensional tuning lattice incorporating octave equivalence, or as a diagram of the voice-leading relations
among diatonic scales, as in Figure 7.) Likewise, there may be close connections between voice-leading
spaces and the Fourier transform, even though the latter associates “Z-related” chords while the former does
not. The present paper can be considered a down-payment toward a more extended inquiry, one that attempts
to determine the relative strengths and weaknesses of our three different-yet-similar conceptions of musical
distance.
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Abstract 
 

A number of software packages allow us to stitch together photos to capture the entire viewable sphere.  To 
represent the viewable sphere in interesting ways, we introduce a new way to define projections (cartographic 
mappings from the sphere to the plane) using a turtle language similar to Logo.  These projections can be printed, 
cut out and assembled into photographic equivalents of Termespheres. Further, this new method for defining 
projections is versatile enough to allow artistic and mathematical explorations and as such, the projections can be 
interesting in their own right (i.e., without being constructed back into spheres). 

 
 

1    Motivation 
 

Image stitching software makes it easier for users to create larger, seamless images from photos.   
Panoramas that capture the entire viewable sphere can be stitched together, but how does one represent, 
display, and share them?  To display these panoramas on a flat computer screen or on paper, we need a 
mapping from the sphere to the plane.  In cartography, these mappings are referred to as projections and 
all projections will introduce some sort of distortion. Despite this, projecting the visible sphere onto the 
plane has been undertaken by photographers and mathematicians alike, and conformal mappings 
(mappings with no local distortions) play a big role [5]. But perhaps a more natural medium for 
representing panoramas would be the photographic equivalent of a Termesphere [6]. Dick Termes painted 
spherical representations of the viewable sphere so that rather than looking outward from the observer's 
viewpoint, the observer looks inward to the scene on the surface of the sphere. If a spherical 
representation is chosen, then the photographer's problem would then become one of manufacturability. 
 

A common method for creating globes by gluing thin paper strips called gores onto a sphere can 
result in creases and wrinkles. More gores reduce the amount creases but make the task of assembly more 
finicky. Another solution is to include features akin to a dressmaker’s darts where a thin triangle of 
material is removed and the edges are brought together to shape the sphere.  Many commercial globes use 
this approach. Towards creating complex projections such as gores with darts, this paper describes a 
versatile approach to designing projections that are suitable for printing and assembling back into spheres.   
 

The problem of covering a sphere with paper will be familiar to those who have seen the work by 
Demaine et al. [4].  Their solution uses the same fundamental mechanism as the one presented here (i.e., 
the taut paths in their terminology are called skeletons here).  While they discuss metrics for area, 
perimeter, and tiling the plane, this paper introduces the new concepts of a) a turtle language for the 
purpose of designing projections more easily b) having a disconnected set of taut line segments c) a focus 
on mapping the interior imagery and d) an exploration of some different families of projections. 
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This paper is organized as follows: Section 2 introduces the concept of skeletons and how they map 
the sphere to a plane while Section 3 describes how we can use a turtle language to define these skeletons.  
Section 4 walks through an example. Section 5 discusses some tips on implementation. Finally, Section 6 
displays some projections created with the new method. 
 
 

2   Mapping the Sphere to the Plane 
 

In keeping with the idea that we intend to paste the planar projection back onto a sphere, it helps to 
think of some lines and points on a ball where we glue or tack pieces of paper.  And now, imagine pulling 
the unglued portions of paper taut and down onto the ball.  In this scenario, the paper is the plane and the 
ball is the sphere of course.  We call the set of line segments and points that correspond to the glue the 
skeleton of the projection.  

 
The method for mapping the sphere to the plane becomes more apparent when we realize that this 

skeleton exists as a set of line segments on the sphere and a corresponding set on the plane. We still need 
to establish how to map the non-skeleton points of the sphere (mimicking pulling the unglued portion of 
the paper taut).  But once we do so, we can define projections by specifying a skeleton as a set of line 
segments on the sphere, and a corresponding set of line segments with the same lengths on the plane. 
 

Given some line segments on the sphere, some line segments on the plane, and given an arbitrary 
point on the sphere, the task is to find a point on the plane in the same relative position and distance to the 
segments on the plane. We define the mapping for both skeleton and non-skeleton points below.  In this 
paper, distance on the sphere refers to great circle-distance (i.e., the distance along the surface).  
 
Definition.  Given S, a set of line segments on a sphere, and S′ a corresponding set of line segments of the 
same lengths on the plane, we define a function fS,S′ that maps the points on a sphere to the plane.  Let p 
be a point on the sphere.  Let segment ab∈S be the segment nearest p, with corresponding segment 
a′b′∈S′.  If p lies on ab, then we define fS,S′(p) as the point p′ on a′b′ such that |ap|=|a′p′|.  Otherwise, p 

                         
Figure 1: Mapping a point p on the sphere to a point p′ on the plane based on the nearest 

segment to p and its corresponding segment on the plane.  (a) depicts when p is closest to an 
endpoint of ab, (b) depicts when it is closest to a non-endpoint 
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does not lie on ab. So let q be the point on ab nearest to p (without loss of generality, q≠a). Then let q′ be 
the corresponding point on a′b′ such that |aq|=|a′q′|.  We define the function fS,S′(p) as the point p′ on the 
plane, such that ∠aqp=∠a′q′p′ and |pq|=|p′q′|. 
 

The above function is not well defined if |ab|=0, i.e., in the degenerate case where the segment is just 
a point, because the required angle is not defined. However, we can apply fS,S′ to skeletons with points if 
we keep a sense of direction with each skeleton point. 
 

In our intuitive picture of gluing pieces of paper to a ball, we left out the details of what shape the 
pieces of paper will be.  The definition of fS,S′ defines the paper shapes when it requires that we must use 
the nearest segment to map our points. Thus the sphere is divided neatly into Voronoi regions 
(neighborhoods of the closest points) around each line segment.  And hence the shapes of the pieces of 
paper that get glued to the ball are the shapes of these Voronoi regions, mapped around their 
corresponding skeleton line segments on the plane. 
 
 

3 Defining a Skeleton with a Turtle Language 
 
The previous section defined a mapping that uses a given skeleton to map the sphere to the plane.  To 
define the skeleton itself, we can make use of the concept of a turtle language.  This simplifies the 
definition of the skeleton line segments and also places the skeleton on the plane in a logical arrangement. 
 

Turtle languages such as Logo are graphic programming languages that use commands to move a 
"turtle" around on the screen [1].  The turtle has a pen which draws a line along its path.  In our situation 
we have two spaces, the plane and the sphere. It makes sense then to have two turtles, a sphere-turtle and 
a plane-turtle, which simultaneously obey the same set of instructions. 
 

The list of the primitives that we use is in Table 1.  Turtle language commands are usually simple 
primitives such as "pen up", "move forward 10", and "pen down" however our set of commands use 
move-to and line-to commands to accomplish the same thing.  The units listed in the table are chosen for 
practical purposes; a line segment measuring π radians on the sphere corresponds to a line segment of 
length n pixels on the plane. 
 

Table 1 Commands in our turtle language. 
R x Rotate in place x×π radians counter-clockwise 
M x Move x×π radians on the sphere, x×n pixels on the plane.  No segment is 

created 
L x Create a line segment forward x×π radians on the sphere, x×n pixels on the 

plane. 
 

Defining the skeleton with a turtle language this way has the benefit of arranging the skeleton on the 
plane in the right position and at the right distance, such that the mapped Voronoi regions are just 
touching and the imagery within adjacent regions is aligned. 
 

Since the regions are well aligned by this method, designing a skeleton solely in “sphere-space” 
usually results in pleasing results on the plane. However, it is still possible to have a mapping where 
different points on a sphere get mapped to the same position on the plane!  (An exercise for the reader is 
to peel a mandarin orange in one piece such that when flattened, the rind overlaps itself.)  In practice, 
such situations are rare and minor enough to ignore. But if necessary, one could add an “M 2 ” instruction 
which returns the sphere pointer to its original position, but moves the plane pointer 2n pixels away. 
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4 The Volleyball Projection (A Demonstration) 
 
Let us now illustrate the process of mapping the sphere to the plane based on the design of a volleyball’s 
panels.  Instead of a panorama, we use a map of the world for illustration purposes since it is familiar, and 
it shows up well in this medium.  The sphere-turtle starts out in Banff, Alberta, Canada and faces east. 
 
The projection process starts by instructing the sphere-turtle to mark the middles of the leather panels.  
See Figure 2(a).  For instance, the specific turtle instructions for three adjacent panels on a side are:  

M -1/6; L 1/3; M -1/6; R 1/2; M  1/6; R -1/2;  
M -1/6; L 1/3; M -1/6; R 1/2; M -1/3; R -1/2;  
M -1/6; L 1/3; M -1/6; R 1/2; M  1/6; R -1/2; 

The sphere-turtle is moved to the other five sets of three panels and the above sequence is repeated. 
Simultaneously, the plane-turtle follows along and automatically creates an organized layout. See also 
Figure 2(a). 
 

The drawn line segments of the turtles’ path create the two skeletons used for the mapping, one 
skeleton on the sphere, and one skeleton on the plane. See Figure 2(b).   
 

The points of the sphere are thus arranged into Voronoi regions around the skeleton’s line segments, 
Figure 2(c).  Finally, using fS,S′, the points of each Voronoi region are mapped around the corresponding 
line segments on the plane to create the final volleyball projection.  See also Figure 2(c). 

 
 

5    Implementation 
 
The preceding section demonstrates some important concepts of our skeleton method but does not serve 
well as a guide to implementing an algorithm.  To render an image, we might start with the position of 

 
Figure 2: (a) A single turtle program directs two turtles to draw paths, one on a sphere and one on a 
plane. (b) Two skeletons (sets of line segments) are thus defined.  (c) The points nearest to each line 
segment on the sphere (Voronoi regions) are mapped to the corresponding segment on the plane.         
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each pixel p′ on the plane and then calculate the point p on the sphere to render.  However, the function 
fS,S′ maps points in the opposite direction; we would need to implement its inverse. And yet, fS,S′ has no 
inverse in the rare cases when it maps two points on a sphere to the same point on the plane. Our 
implementation gets around this technicality by blindly ignoring it.  (If necessary though, one could use 
the “M 2 ” work around described at the end of Section 3.) 
 

The pseudocode below may help those wishing to write their own software. We define function gS′,S 
in the same way that fS,S′ is defined in Section 2, but with the roles of the sphere and the plane reversed. 
Thus when fS,S′(p)=p′ is single-valued, then yes, gS′,S(p′)=p, but only when p is in the proper Voronoi 
region on the sphere.  The pseudo-code below applies gS′,S and then performs this check. 

 
The input is a skeleton and a color for each point p on the sphere 
for each pixel p′ on the plane, do: 
 s′ ← nearest segment on the plane to p′  
 s ← segment on sphere corresponding to s′ 
 p ← gS′,S (p′)   (the point on the sphere in the same relative position to s as p′ is to s′) 
 if the nearest segment to p ≠ s then: 
  output a blank pixel 
 otherwise: 
  output the color of p 
 
   Figure 3: Pseudocode for one possible implementation 

 
 Our implementation is a Win32 console application written in C, with no graphical user interface.  
Its running time has not been formally analyzed but experience shows a strong dependency on the number 
of segments in the skeleton.  For instance, it takes about five seconds to render a 2000x2000 image of a 
two-segment skeleton, but almost 30 minutes for a 600-segment skeleton of the same size. 
 
 

6    Examples 
 
We finish by looking at some of the projections accomplished with our new method.   
 
6.1 Simple Projections Even very short turtle programs can generate some interesting results.  A single 
point skeleton specified by “L 0 ” creates a projection known as an azimuthal equidistant projection.  See 
Figure 4.  A skeleton consisting of a great circle is specified by “L 2 ” and produces a well known and 
common projection known as an equirectangular projection.  See Figure 5.   

         
Figure 4: An azimuthal equidistant 

projection centred on Banff. 
                   

        

 
 
Figure 5: An equirectangular projection, with Banff at 

the middle of the left edge. 
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The previous two projections are notable since they help characterize the interior of any projections 
produced with our skeleton method.  Mathematically, each projection is a piecewise mix of azimuthal 
equidistant projections and equirectangular projections depending upon the two cases shown in Figure 1. 
 
6.2 Polyhedra. Skeletons consisting of the face centres of polyhedra projected onto the sphere can 
produce interesting projections.  Such projections resemble unfolded and flattened polyhedra, although 
not exactly (for instance, the edges of the faces are curved).  The pentagonal hexecontahedron based 
projection in Figure 6 is my personal favourite. 
 
6.3 Sport Balls.  We have already seen the volleyball.  And we have already discussed polyhedra, but the 
soccerball needs a special mention.  In this case, our polyhedron approach mentioned in Section 6.2 does 
not create regular hexagons: the distance between the face centres of two neighbouring hexagons is 
greater than between a hexagon and a pentagon, and thus the hexagons’ Voronoi regions are not regular.  
A new feature was added to our turtle language to give a weighting to each skeleton segment.  By scaling 
up the distance to each pentagon centre appropriately, we achieve our soccerball projection in Figure 7. 

 
As for baseballs, John Conway once conjectured, “no two definitions of "the correct baseball curve" 

will give the same answer unless their equivalence is obvious from the start” [3]. The set of turtle 
instructions “L 2x; M 1-x; R 1/2; M –x; L 2x; ” with x=0.739726 throws another definition 
into the mix. See Figure 8. The value of x  was chosen such that the leather flats are 13/16 inches wide at 
the “waist” for a baseball with a circumference of 91/8 inches, according to measured values. 
 
6.4 Trail of Small Segments. Lloyd Burchill of Flaming Pear Software created a projection which 
mimics the peeling of an apple [2].  We can accomplish the same effect by specifying a trail of one 
hundred or so line segments which spiral from the top to the bottom of the “apple”.  See Figure 9. 
 
6.5 Gores.  The standard layout of gores can be specified with a line segment from pole to pole for each 
gore.  This is well explored in [4].  Dart features are created by adding gaps to the meridians (Figure 10). 

 
 

 

Figure 6: A pentagonal 
hexecontahedron projection 

Figure 7: A soccerball projection Figure 8: A baseball projection      

Swart

44



 
 
 6.6 Photographs.  Returning to the original reason for this work, Figure 11 shows a constructed 
photographic Termesphere using the gore design shown in Figure 10.  The paper is cut and glued over a 
3” plastic ball and used as a Christmas tree ornament. 
 

We finish by showing how our new projections 
can be used as a compositional element for panoramas.  
Figure 12 shows four more projection designs.  
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Figure 9: A rind projection, after a projection by 

Lloyd Burchill 
Figure 10: The skeleton to create gores with 

darts shown on (a) the sphere and (b) the plane. 
A dart is shown inset. 

 
Figure 11: Photographic Termesphere 
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 Figure 12: “Twin’s Eye View”(a) uses a three-gore projection as a compositional element. 

“Meandering Meridians”(b) and “Snowflakes on Snowflakes”(c) explore the potential of the turtle 
method with less emphasis on their panoramic content. “Under the Maple Tree”(d) is produced by the 

turtle instruction “L 1”.                   
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Abstract
We propose notation for a class of paperfolded models that uses a simple formula-like string to completely describe
the folding process.

1 Introduction

In origami, or paperfolding, there are models that require complex fold steps. In order to describe the folding
process in written form, over time an intricate system of diagramming symbols and conventions has been
developed. Even so, there have been models that simply defy diagramming and whose authors (designers,
or composers) prefer to teach the folding process only in person, or not at all, and instead provide only the
crease patternthat shows the location (and sometimes sense) of all the folds actually present in the finished
model. Of course, a crease pattern alone may not uniquely define the model, but in typical cases it allows for
an educated guess at how, for example, the layers of paper should be arranged.

1.1 Pureland origami

So-calledpurelandorigami models restrict the folds used in each step to just the basicmountainandvalley
folds. In a valley fold, a straight line from one edge of the model to another divides the (normally flat) model
into two parts. The fold consists of a single crease along the straight line, and except for the rotation of one
of the two parts formed by the crease around the crease, nothing else moves. Pureland origami has been
popularized by John Smith through several booklets published by the British Origami Society. Due to the
simplicity of individual steps, it is particularly well suited to the teaching of beginners. Since the nature of
a simple mountain or valley fold is to rotate one part of the model around the fold crease by 180 degrees,
pureland models almost always remain flat.

1.2 Tessellations

As the name suggests, paperfoldedtessellationsare formed by repeating a single pattern, or a small set of
patterns, across the whole folded sheet. The folding of tessellations is usually considered to date back to the
work of Shuzo Fujimoto [3] and Yoshihide Momotani [7] in the 1960s and 1970s in Japan, although there
are known examples of folded tessellations as early as this in the West as well, notably that of Ron Resch.
Most folded tessellations require higly complex steps, since the different instances of the pattern to be folded
tend to interfere with each other and in fact, the easiest way to fold some tessellations is to carefully coax
the precreased or scored sheet into forming all the creases at once. In contrast to such more typical folded
tessellations, we study a class that can be folded by iteration of simple mountain and valley folds, that is, a
class ofpureland tessellations.

A pleatis formed by a pair of adjacent parallel folds, one a mountain and the other a valley fold.

∗This author’s work supported in part by NSF grant 0830791.
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(a) A tessellation fold by T. Kawasaki (b) Folding a pleat. Mountain fold (solid line) next to a valleyfold
(dashed line).

Figure 1: A tessellation that requires complex fold steps or a nonrigid collapse to fold; simple pleat fold.

2 Pleat tessellations

We consider pleat tessellation models formed by folding a sequence of pleats along grid lines parallel to
the edges of the initial square, and possibly a few extra valley or mountain folds (the lock). There is no
unfolding, so the model belongs to “pureland origami” and in theory lies flat. However, the photographs of
models shown in these pages illustrate the difference between the theoretical model and the real life: paper
has finite positive thickness and the models shown are obviously not flat. Theycanbe forced into lying flat
by careful application of force, but as soon as they are released, they spring back into a three-dimensional
shape. This behavior is the result of a locking fold applied to (some) edges of the folded sheet. The lock
consists of two parallel mountain folds close to the edge, and keeps the pleats folded tightly at the edge. The
shape itself is determined by the arrangement of pleats. As in the case of the hyperbolic paraboloid [2], the
three-dimensional shape is determined by the tension of the folded sheet, but in this case the thickness of the
paper and the elastic properties of its folds play a very significant role. It is an interesting and apparently
difficult problem to predict the exact shape formed by a pleat tessellation model. While there has been some
work on computer simulations of the physical behavior of folded paper [1, 6, 4], none of it addresses the
forces acting between adjacent layers of paper. We are currently studying a mathematical model that allows
us to take this issue into consideration. The notation presented here is the (easy) first step in building such a
simulation, since it allows a simple input specification to be translated into the folding process and an initial
state for the simulation to be computed.

Pleat tessellations appear to have been folded first by Paul Jackson, and a photograph of the basic form,
titled “Bulge”, appears in his Encyclopedia of Origami & Papercraft Techniques [5]. The basic form has
also been used by several origami designers to represent fish scales or snake skin. The more complex pleat
tessellations shown here have been folded by the first author, starting in 2006.

3 Pleat tessellation notation

Since all pleats are parallel to the edges of the original square, each pleat is completely specified by four
pieces of information:(a) direction(horizontal or vertical),(b) location(the coordinate of a point at which
the mountain fold of the pleat intersects an edge of the square),(c) sense(positive or negative—the sign of
the difference between the location of the pleat’s mountain and valley folds), and(d) width.

Clearly, each pleat tessellation can be completely described by listing all the pleats to be folded in order.
Thus to explain how to fold a pleat tessellation, we need no diagrams!
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(a) The basic crease pattern with pleat order speci-
fied. The mountain folds very close to bottom and
left edges are the optional locking folds
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(b) Bottom and left edges: pleat order for flat-bottom
bowl or pyramid (locking optional). Top and right
edges: pleat order for simple bowl (with lock) or “four
peaks” (without lock).

Figure 2: Crease pattern for models in Figures 3(a)–3(d). Each pleat is given a rank in each model. The
pleats should be folded in the order specified by these ranks. Pleats assigned equal rank can be folded in any
arbitrary order. Each number refers to two creases that form a single pleat. Figure 2(a) shows the pattern
for the basic form in Figure 3(a). The bottom and left edges of Figure 2(b) show the sequence of pleats that
leads to the pyramid of 3(c), while the top and right edges define the models in Figures 3(b) and 3(d).

We describe two ways to notate a pleat tessellation. The first is very general, and could be generalized
to an arbitrary pureland model. There are several precedents for this, most notably the origami instruction
language OIL [8]. However, thanks to the restrictions we impose on the creases in pleat tessellations, our
task is simpler. In fact, in many cases the notation for a sequence of creases can be compressed, resulting in
very short descriptions of some models that appear relatively complex. The second way of notating (typical)
pleat tessellations is even more compact, because in addition to individual creases, it uses the fact that
typical pleat tessellations are formed by folding one or more regular sequences of pleats, in ways that create
symmetric patterns, and that there is only a small number of different ways these sequences are composed
and interleaved.

We first describe the general notation for a single pleat, and then, after giving some examples of pleat
tessellations defined by listing all their pleats, show some simple ways of compacting the description. Finally,
we describe the compact notation.

4 Single pleat

Direction. Each pleat is by definition either horizontal or vertical, and so we use the lettersh and v,
respectively, to denote the direction.

Location. It is convenient to express distances and lengths in terms of the size (side length) of the original
square—that is, a horizontal fold formed by placing two opposite edges of the square on top of each other
and pressing the sheet flat would be at distance 1/2 from the edge of the square. A pleat that uses this crease
as its mountain fold would then be at location 1/2. On the other hand, if pleats that we fold are all located
on a fixed grid, then writing down just the numerators of their locations creates significantly less clutter. In
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such a case, though, the numbers are meaningful only if we know the grid size. For example, if we start with
a 16×16 grid, the same horizontal crease through the center would have location 8, while in a 32×32 grid
its location would be 16. Which of the two units is being used may be indicated, for example, by writing
u = 1/16. However, since in the first case all the distances are less than 1, and in the other all the distances
are at least 1, which unit is used can normally be inferred from the description.

To be consistent in this notation, we set up a coordinate system with origin at the bottom left corner of
the square and direct thex andy axes in the standard way, towards the right and up.

Sense. If we fold a horizontal valley fold, and then some distance above it a horizontal mountain fold, we
get a positive pleat. If the mountain fold is below the valley, the difference between the mountain and valley
locations is negative, and so the pleat is negative as well.

Width. Again, this is expressed either in terms of the original square size, or in terms of the grid unit
distance. In the notation, we will combine the information about the sense and the width of the pleat, by
writing the width of a negative pleat as a negative number.

Pleat notation. A pleat formed by a horizontal mountain fold through the center, and a valley fold 1/16
of the square width below it would be written as(8/7)h (the mountain fold is at distance 8 from the bottom
of the square, the pleat is horizontal, and the valley fold is (positive) 1 units below the mountain fold). If the
pleat were negative (valley through the center, mountain a unit below), we would write−(8/7)h. The simple
rule for decoding this notation is: the first number tells us the location of the top crease of the pleat, and the
letter the direction. If the pleat is positive, then the mountain fold is above the valley, so the location of the
mountain fold is given by the first number. If the pleat is negative, then the first number gives the location of
the valley fold.

5 General pleat notation

The basic form. Let’s first consider the basic form of Figure 3(a) and take the point of view from which
the model bulges upwards. Suppose each pleat is 1/16 wide and we begin folding from the lower left corner
and continue until we run out of paper. Every pleat we fold is negative, because the coordinate of its mountain
fold is smaller than that of its valley fold. If we begin with a horizontal pleat, and leave two units before it
(for the lock), the notation for this first pleat is−(3/2)h. The second pleat will be vertical, and written as
−(3/2)v. The second horizontal pleat will begin two units above the first. The first of these unit lengths is
hidden by the previous pleat, and the second is the portion visible in the final model. Thus the second pair
of pleats could be written as−(6/5)h and−(6/5)v. Writing out the whole sequence is tedious, so we can
simplify the notation by introducing an index. The complete folding sequence for the model is the sequence
of pairs of the form

−3i
3i−1

h
−3i

3i−1
v,

wherei ranges from 1 to 5 (the largest meaningful coordinate for a 16-unit grid is 16, and 15 is the largest
multiple of 3 smaller than this).

Simple bowl. In folding this model, we are effectively interleaving two bulges, one starting from the bot-
tom left and the other from the top right corner. For symmetry, we alternate between folding two horizontal
and two vertical pleats. Say we begin with a 32-unit grid. The first horizontal pleat is, as before,−(3/2)h.
Before folding the corresponding vertical pleat, however, we fold another horizontal pleat at the very top of
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the sheet, that is, we fold(29/30)h. Note that this pleat is positive, because its mountain fold is above its
valley. Thus the bowl is completely described by

−3i
3i−1

h
32−3i

32−3i−1
h

−3i
3i−1

v
32−3i

32−3i−1
v,

for i ranging between 1 and 5.

Drawbacks. The simple bowl from the previous example has two mirror lines. (It “almost” has even more
symmetries; only the fact that each pair consisting of a horizontal and a vertical pleat cannot be made at the
same time prevents this model from having the symmetry of a square. In a sense, it is globally symmetric,
but not locally.) However, this symmetry is not really reflected well in the notation. The problem is that
we use the same coordinate system for each pleat. In order to give as much information as possible about
a model without need for complicated calculations, we might wish our notation to somehow indicate the
inherent symmetries (as well as the “almost symmetries”, which ignore the ordering of adjacent layers). In
the next section we describe such an approach to the notation of pleat tessellations.

6 Compact notation

In most pleat tessellations, each horizontal pleat is immediately followed by a vertical pleat. In other words,
we consistently interlace horizontal and vertical pleats. This leads to models that hold together even when
folded from paper that doesn’t hold creases too well. The tendency of each crease to unfold is kept in check
by its immediate neighbors, which at the same time creates the tension that shapes the final fold without need
for wet folding. What this means for notation is that perhaps we’ve gone too far in trying to describe every
single crease: if we know the current pleat, the next one is almost completely determined. This observation
leads to the next, more restrictive but much more compact and more visual notation.

Pleat sequences made implicit. The basic form consists of a single sequence of pleat pairs, each hor-
izontal pleat preceded and followed by vertical ones. If we know how many pleat pairs we make, we know
exactly what the final result is. We ignore the distinction between a left-handed and a right-handed model
(determined by whether the first crease is horizontal or vertical). Thus we may as well describe the bulge by
just giving the number of pleat pairs to be folded.

Symmetry. To make the symmetry structure of a pleat tessellation apparent, we specify the degree (the
number of symmetric pleat sequences folded), 1 (which may be omitted) or 2. The goal is to give meaning
to expressions such as 16 (or equivalently 161, the basic bulge model) and 162 (the simple bowl).

Unit pleats. The width of paper used by a pleat of width 1 is actually 3 units: to cross the width of an
unfolded pleat, we first cross a unit in getting to the mountain fold, then turn the corner around the mountain
fold and go back a unit width, and finally turn again, and go another unit to emerge from under the pleat. If
we are describing the model just in terms of pleats, and they are all of the same width, it makes sense to use
the full width of the strip used up by a pleat as a unit of distance. In other words, in the compact notation
writing 16 for a grid size will mean that we can fold 15 pleats from the grid.

Example: bulge. This is the simplest case. If there arek horizontal andk vertical pleats, we write justk.

Example: simple bowl. If the sequence starting from the bottom left is seen as a sequence of positive
pleats, then so should be the sequence starting from the top right. This model consists of two basic pairs of
pleat sequences, and so we write 152.
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Example: pyramid. Here, the folding begins in the center and progresses towards the edges of the sheet.
These are negative pleats, and therefore we write(−15)2.

Example: Two-fold basket. Here, two pleat sequences begin at the centers of two opposite edges of
the sheet. Compared to the basic bulge, one of these is rotated 90 degrees. We writek · i for a lengthk pleat
sequence rotated byπ/2 around an axis normal to the plane of the fold. (Note that this is compatible with
the use of−1 for negative pleats.) Thus the two-fold basket may be denoted by(15i,−15i).

Example: wave. Here, we are simultaneously folding a bulge from one and an upside-down (“flipped”)
bulge from the opposite corner. We denote the flip by the letterf , and so the wave is defined by(15,15f ).

Paper size. We may also specify the paper size (in terms of full pleat width units) before the rest of the
expression. Thus, a wave folded beginning with a 32×32 grid could be written as 32 :(15,15f )2.

Example: fancy bowl. In this model the folding sequence for the upside-down pyramid is interlaced
with the folding sequence for the bowl, resulting in an inverted pyramid in the middle, and four corners
whose shape is exactly the simple bowl shape. We denote this bowl by writing(7,−7 f )2.

Example: second-order bowl. A second-order pleat consists of two opposite pleats next to each other.
We should group the pairs of simple pleats that form second-order pleats: 32 :(7(1,−1 f ))2

More complicated sequences. The basic rule is: recurse and parenthesize. An expression of the form
(A1)(A2) instructs us to first fold the sequence specified byA1, then the one byA2. The pleats ofA2 will be
placed in between those ofA1. See Figure 4(d) for the interleaved bowl, defined by 32 :(8)2(7)2.

7 Final comments

Suggestions for folding. The patterns given in this paper may be sufficient to allow experienced folders
to reproduce the models. However, in order to make it easier for others, we briefly describe the process. Most
of the pieces described in this paper are based on the square grid. The easiest way to fold a grid is to use a
power of 2 as the number of squares along each side, and to always divide an existing unfolded strip of paper
in two by aligning an edge of the paper sheet with a previously folded crease. Since many parallel folds
will stretch the sheet somewhat, it is best to alternate between dividing in half horizontally and vertically. In
order to maintain integrity of the paper sheet, it is best to fold only valley folds (or only mountain folds). Our
personal preference is to precrease only one half of each pleat, that is, only the mountain fold, and to create
the valley fold “on the fly” once the actual folding begins. The main reason for this is that the multiple layers
of paper will cause all but the first few pleats to lie slightly away from their theoretical position. If both
the valley and the mountain fold are precreased, this “creep” leads to problems. This approach to folding is
another factor that makes the compact notation natural, in that it focuses on individual pleats and assumes a
regular grid.

Finally, the lock is achieved by simply folding an edge of the sheet twice: two mountain folds in parallel
creating the impression of a rolled edge. If the pleats are held tightly as this is done (not easy, and best
attempted slowly and only a few pleats at a time), the two folds will prevent the pleats from opening up and
will thus lock the edge.

Acknowledgment. The authors thank the reviewers for a careful reading of the paper and numerous
corrections and suggestions for improving the presentation.
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(a) Basic pleat tessellation, locked (the
Bulge) and unlocked. 15.

(b) Simple bowl: locked.(15)2.

(c) Pyramid.(−15)2. (d) Simple bowl: unlocked.(15)2.

(e) Wave.(15,15 f ). (f) Fancy bowl.(7,−7 f )2.

(g) Candy dish.(10,5 f )2. (h) Two-fold basket.(15i,−15i).

Figure 3: Some pleat tessellations.
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(a) Second order bowl. 32 :(7(1,−1 f ))2. (b) Valentine. 32 :(15(1,−1 f )).

(c) Double wave. 44 :(11,11 f ,11,11f ). (d) Interleaved bowl. 32 :(8)2(7)2.

Figure 4: More advanced pleat tessellations.
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Abstract 

 
Iterated function systems with contracting functions have been widely applied in contexts relating art and science. This paper 

explores iterated function systems which consist of expanding linear functions. An area in the plane is divided in parts which are 

defined implicitly by an inverse function technique. With each part, an expanding function is associated. A coloring technique is 

proposed which yields textures suggestive of sophisticated patterns of depth and light. It is briefly described how a rendering 

technique for recurrent origami can be obtained as a special case of this method. 

 

 

Introduction 

 
Iterated function systems defined by contracting functions are a familiar tool among researchers bridging 

art and science. Such systems yield compact codes for a large variety of images, which can be generated at 

any desired resolution. This paper describes a fractal image creation technique based on iterated function 

systems with expanding functions. The method is based on an inverse technique for iterated function 

systems consisting of two linear holomorphic functions [1]. It is described in this paper in a geometric 

way. I briefly explain how a rendering technique for recurrent origami can be obtained a special case of 

this method. 

 

Suppose that an iterated function system F is defined by n functions fj (j=1,…,n). In the classical 

treatment all functions fj need to be contracting in all directions (see for instance chapter seven in [2] for a 

formal specification of this constraint). I call a function ‘expanding’ if its inverse is contracting. Function 

systems with linear expanding functions have been considered in the context of inverse techniques. In the 

early nineties Prusinkiewicz formulated such a technique which allows one to color the complement of 

attractors [3]. I confine myself to an informal description. Suppose that P is a point on the outside of the 

attractor of F. Let C be a contour which encloses the attractor. Consider compositions of s inverse 

functions 
1 2

1 1 1...
sr r rf f f

− − −
with {1,..., }, 1,...,

j
r n j s∈ = . Since the inverse functions are expanding, each 

composition of sufficient length will map P onto a point on the outside of C. Consider the composition for 

which P travels the longest path inside C before bailing out. The length of this path associates a number 

with P which can be transformed into one or three color values.  

 

This type of inverse technique has one advantage. The color of a point P is determined by an 

algorithm that takes this point as argument. In the direct method, one has to wait and see if the chaos game 

lands on the corresponding pixel until one knows if P is given a colour value (and if so, wait longer until a 

relative frequency of pixel visitation can be reliably determined). In this sense, an inverse technique acts 

like the usual method for coloring points of non-linear escape fractals. But there are two drawbacks. First, 

in contrast with the latter, the inverse technique needs calculation of many trajectories in P. The number of 

trajectories required increases combinatorially with n, which makes this method in most cases practically 
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unfeasible if n is larger than 2. Second, it only colors the complement of attractors. There are many 

situations in which the attractors themselves, and the fractal textures defined on them, are visually 

interesting objects. In this paper I present a geometric formulation of a different inverse technique, which 

solves both problems. First I formulate it in a general way. Then I describe two ways in which it 

can be specified. 

 

 

Iterated function systems with expanding functions 
 
The basic concepts of the present method are illustrated in Figure 1. Let A be an area in the plane. S1,…, 

Sm are disjoint subsets of A. Let B be the set defined by 
1,...,

j

j m

B S
=

= ∪ . Note that B A⊆ . I confine the 

illustrations to the case in which B is a strict part of A. With each subset Sj, an expanding linear function hj 

is associated which maps Sj onto hj(Sj), which is assumed to be a subset of A as well. Consider the function 

:g B A→  which is defined by g(P)=hj (P) if 
j

P S∈ (j=1,…,m). The algorithm considered in this paper 

defines for each point P B∈  a series of points P0,…PN. The first point P0 is initialized by P0=P. Then, P1 

is defined by P1=g(P0). If 1P B∈ , P2=g(P1). Else, if 1 \P A B∈ , the algorithm terminates. This process is 

iterated. If 1( )
k

g P B− ∈ , Pk=g(Pk−1), else the algorithm halts. If the algorithm terminates at step t with t<N, 

a series of N points is constructed by adding N−t times the origin O to P0,…Pt. 

 

In the two last illustrations of next section, the algorithm is made slightly more sophisticated. 

Suppose that at iteration t a point \
t

P A B∈ is produced. Then the algorithm continues but Pt is replaced 

by 
1

1 ( )
t

h P
−

. For this modification, also points in the complement of B (and hence points in the 

complement of A) can be processed and lead to a series P0,…PN. Since 
1

1h
−

is contracting, features in the 

inside of A reappear in magnified version in the complement of A.  

 

The sequence P0,…,PN is turned into a color value as follows: q points Q1,…,Qq are selected in the 

plane (these are allowed to be in A but do not have to). For each point Pk in the series P0,…PN, the 

distance dkj to all points Qj is calculated (j=1,…,q). The inverses of the q distances associated with Pk are 

normalized to one, yielding coefficients ckj. Then, with each point Qj a quantity φj is associated in 

accordance with 

 

1,...

( ) /
j kj

k N

P c k
ρφ

=

= ∑  

where ρ is a constant which was put to ρ =0.5 in the illustrations which follow. These quantities are 

linearly combined into ϕ(P): 

 

1,...,

( ) ( )
j j

j q

P w Pϕ φ
=

= ∑  

where wj (j=1,…,q) are fixed coefficients. (Exploration of expressions with non-linear combinations, such 

as combinations of squares of φj, can be aesthetically rewarding as well). After ϕ(P) has been calculated 

for each point P B∈ , it is normalized between zero and one, and next it is turned into three color values 

by a colormap. In all illustrations in this paper, four points Qj are used, which are located at the vertices of 

a square with center at the origin, and which is a scaled version of the unit square. Informally, the points 

Qj define neighbourhoods which act as traps. The weight of trap j is a function of the inverse distance 
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between Pk and the defining point Qj of the trap (which is expressed by ckj), and different traps contribute 

in different ways to the quantity onto which the colormap is applied (which is expressed by wj).  
 
 

Illustrations for the square 

 
In the first specification of the general concepts, I use an iterated rotation technique to divide B into 

disjoint subsets Sj. In Figure 1, A is the unit square with center at the origin. B is a smaller square with side 

2a and four sets Sj are defined by: 

 

1 {( , ) | ( ) & ( ) & ( ) & ( )}S x y x b x a y a y b= > − < > − <  

2 {( , ) | ( ) & ( ) & ( ) & ( )}S x y x b x a y b y a= > − < > <  

3 {( , ) | ( ) & ( ) & ( ) & ( )}S x y x a x b y b y a= > − < − > − <

4 {( , ) | ( ) & ( ) & ( ) & ( )}S x y x a x b y a y b= > − < − > − < −  

 

with b<a. Similar partitions for the other regular polygons are obtained in a straightforward way (below 

this is illustrated for the octagon). In case of a square, a scaling is applied onto B with center in the lower 

right vertex of B, which results in S1. Then, Sj (j=2,3,4) is the part of B which is not included in 

1 1...
j

S S −∪ ∪  and which, after rotation around the origin with angle − (j−1)2π/4, overlaps with S1. In 

Figure 4 this procedure is applied to the octagon, but Sj (j=2,…,8) was obtained for rotation of the reduced 

octagon with different angles. Variation of these rotation angles, and the resulting variation in the 

definition of Sj, is one way to find aesthetically relevant variations of images.  
 

 
Figure 1: Left: Partition of subset B of A into four parts Sj. Right: Image of the parts after application of g 

(the images of S2 and S3 are identical and include the image of S4) 
 

There are different ways to define the functions hj, but the most natural strategy is to relate hj with 

the way in which the partition of B into the sets Sj was obtained. If these sets are obtained by iterated 

rotation, the simplest strategy is to dissect the action of hj into three steps. I specify the procedure for the 

case of a square set A, but the generalization for other regular polygons is straightforward. Consider a 

point 
j

P S∈ . First P is rotated around the origin with angle − (j−1)2π/4, so that the resulting point, which 

is denoted Pr,j, is in S1 (points in S1 are left unmodified by this step). The second step is the same for all hj. 

Let C denote the center of S1. As can be verified on basis of Figure 1, C has coordinates ((a−b)/2, 

S1 

S2 S3 

S4 

(a,0) 

(0,b) 

g(S1) 
g(S2)

= 

g(S3) 

g(S4) 

A 

B 

A 
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(−a+b)/2). Let γ=2/(a+b). Then, Pr,j is translated with the vector which connects C with the origin. 

Subsequently, the resulting point is subject to a scaling with factor γ and center at the origin (the effect of 

this scaling on the translation of area S1 is that the image of the latter coincides with A). These two actions 

define the second step. Third, the point obtained is rotated around the origin with an angle which is a 

multiple of 2π/4, and/or subject to a reflection. The reflections and rotations in the third step can be 

chosen different for different j. (The case of identical rotations and absence of reflection corresponds to 

the situation considered in [1]). 

 

Turning to complex number notation, the equations involved become very simple. For each 

point
j

P S∈ , Pr,j can be written as Pr,j =P exp(−i (j−1)2π/4) (where i is the imaginary unit). The point 

onto which Pr,j is mapped after the second step is γ(Pr,j−C), with C=  (a−b)/2+i(−a+b)/2. Then, the 

transformations hj which lead to Figure 2 simply read 
*

,( ) ( ( ))j r jh P P Cγ= − , where 
*
 denotes the 

complex conjugate (which corresponds to a reflection; this choice of hj is illustrated in the right part of 

Figure 1). The transformations used to obtain Figure 3 are: 

 

1 ,1( ) ( ) exp( 2 / 4)
r

h P P C iγ π= − ;  2 ,2( ) ( ) exp( 6 / 4)
r

h P P C iγ π= −  

3 ,3( ) ( ) exp( 6 / 4)
r

h P P C iγ π= − ; 4 ,4( ) ( ) exp( 2 / 4)
r

h P P C iγ π= −  

 

The two other illustrations in this section are based on octagonal sets A and B. The dissection of B in eight 

subsets is shown in Figure 4. With each set Sj (j=1,…,8) a function hj is associated in accordance with the 

recipe specified above. The rotations in the third step of the definition of hj were put equal to each other. 

The only difference between the algorithms leading to Figures 5 and 6 is that, in case of Figure 5, the 

rotations in the third step rotate with an angle 4π/8, whereas in Figure 6, this angle is equal to 2π/8. As 

was mentioned above, the algorithm used for these figures includes the additional step according to which 

a point not in \A B is contracted toward the center of S1 with factor δ (which was put equal to 0.8 in the 

illustrations). 

 

             
           

Figure 2: (left) First illustration for square A, with a=0.9925 and b=0.75 and Figure 3: (right) 

Second illustration for square A, with same sets Sj and same values of a and b, but for different definition 

of hj 
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Figure 4:(left) Partition of octagonal set B into 8 sets Sj  and Figure 5: (right) Octagon-based illustration 

with rotation angle in third step of hj equal to 4π/8  

 

 

 
 

Figure 6: Octagon-based illustration with rotation angle in third step of hj equal to 2π/8 
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Definition of Sj and hj by origami 

 

In the second specification of the general concepts, Sj and hj are defined by an origami process. 

Suppose that a polygon B is folded so that a smaller version of the same polygon is obtained. 

After unfolding, the sets Sj are specified by the partition generated by the crease pattern. In order 

to define hj, the reduced polygon is magnified (and possibly rotated) so that it coincides with A. 

For each set Sj, this defines an expanding function which maps Sj onto a subset of A. In 

combination with the algorithm described above, this is basically all it takes to obtain Figure 8 on 

basis of the folding described in Figure 7 (Figure 7 for simplicity only shows B. A is a 

hexadecagon slightly larger than the blue hexadecagon B). Note that the process by which the 

reduced polygon is magnified has an alternative description. Mathematically, this is equivalent 

with downscaling the crease pattern to the reduced polygon, after which the folding is iterated. 

Therefore, the concepts described offer a way to create patterns corresponding to recurrent 

origami (some possibilities for variation, and a more extended discussion is given in [4]). 

 

 
 

Figure 7: The blue hexadecagon B is folded inward onto the smaller orange hexadecagon. First 

the parts between the square and the hexadecagon are folded (see the red arrows). Then the four 

corners of the square are folded, which results in an octagon (as indicated by the green arrows). 

Finally eight corners of the octagon are folded (in accordance with the purple arrows), so that 

the smaller hexadecagon is obtained. In order to define the functions hj, the latter is rotated first 

around the origin with angle θ=π/16, and next scaled so that it coincides with A. 

 

 

θ 
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Figure 8: Image obtained by iteration of the origami process in Figure 7 

 

 

Discussion 

 
Iterated function systems are classically used with contracting functions. I have illustrated that expanding 

functions can yield fine results as well. One condition is that the domain on which functions act is divided 

carefully into parts. I gave two illustrations of how this can be achieved. The first one defines the parts by 

an iterated rotation method, the second one uses origami. There is little doubt that other partitions can be 

found which work equally well from an aesthetic point of view. But the latter application has the 

advantage of relating origami with fractal techniques, which is a domain in which many possibilities 

remain to be explored. 
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Abstract 
 

Although choreographers may employ mathematical principles when creating dances, overt 
attention is seldom given to the mathematics by either the audience or the choreographer. We 
will examine the mathematical elements in several of the author’s recently choreographed 
dances in which mathematical ideas were embedded purposefully and with the intent that the 
mathematics be at least somewhat visible to the audience. Two of the dances included 
elements of proofs, and all but one are part of the show “Harmonious Equations,” which 
premiered in 2008. 

 
 

Introduction 
 

Choreographers often use mathematical principles when creating dances, though usually little overt 
attention is given to these connections by either the audience or the choreographer. In this paper we will 
examine the mathematical elements in several of the author’s recently choreographed dances. In these 
dances the mathematical ideas were embedded purposefully and with the intent that the mathematics be 
visible to the audience. Two of the dances included elements of proofs, and the all but one that we will 
look at are part of the show “Harmonious Equations,” which premiered in 2008.  
 
 

The Sum of the Internal Angles of a Polygon 
 
In one case the dance utilized a kinesthetic “proof,” perhaps better described as an explanation in 
movement, that the sum of the internal angles of an n-sided polygon is  π(n–2). The author and sarah-
marie belcastro used the proof described below when they performed a short dance composition as part of 
a 2008 lecture demonstration [1]. The dance uses simple ballet or modern dance steps and turns. 
 
 Suppose the internal angles are 
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. Most proofs that the author has seen, such as 

those mentioned in Richeson [2], first sum the external angles 
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overall sum must be 2π, which is the result of walking all the way around the polygon:  
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 Then the algebraic rearrangement of this expression gives us  
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 Some of the algebraic steps in this proof might be replaced with kinesthetic “steps,” as follows. 
Suppose one walks facing forward along the first side, from vertex v7 to vertex v1, turns through the 
internal angle of the polygon a1, walks facing backward from v1 to v2, and continues in this way for one 
circuit around the polygon, alternately facing forwards and backwards along sides (Figure 1). 

 
Figure 1: Kinesthetic proof of the internal angle sum of a polygon. 

 
 If there are an odd number of sides, as in the top diagram in Figure 1, then one ends up facing 
backwards on the first side after the last internal turn. Note also, in the example shown, the turns through 
the internal angles are all counterclockwise, while one circuit around the polygon proceeds clockwise. It 
is easy to see what the total sum will be if we imagine that the sides are all laid out along a straight line, 
as shown on the bottom of Figure 1. Then the total angle sum will be nπ. However, in bending the path 
back to the shape of the polygon, so that the final copy of the first edge coincides with its first copy, and 
in the same direction, we will need to add one total turn in the opposite direction, which must have 
measurement –2π. Here we assume that the “winding number” in the clockwise direction is one turn, not 
multiple turns. So the total sum of the internal angles of the polygon must be 

! 

n" # 2" = (n # 2)" . This 
“proof” is easily demonstrated by dancing around the edges, and that is how we used it in the short 2008 
composition, in which we proceeded around the edges of a triangle. Of course, here we have implicitly 
used the fact that the sum of the external angles, each measuring the difference between the straight line 
of angles and the internal angle that is its supplement, is 2π; but the experience of turning forwards and 
backwards n times, minus the ultimate 2π rotation, is accomplished physically. 
 
Gauss-Bonnet formula. In that event in 2008, the author also danced a short circular dance phrase 
verifying that the sum of the angles of a spherical triangle obeys the Gauss-Bonnet formula. In this case 
the degenerate “triangle” had its vertices on the equater of an imagined unit sphere, so that each of the 
three turns at vertices measures π. Then the Gauss-Bonnet formula says that  
 

(triangle area)(Gaussian curvature) + π = angle sum 
 
Because the area of the sphere is 4π, this particular triangle with its vertices along the equater is really a 
hemisphere, and has the area of a hemisphere. Also, the curvature of the unit sphere is 1, so 
 

(2π)(1) + π = angle sum = 3π 
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It would be interesting to find a kinesthetic demonstration of the Gauss-Bonnet formula that works for a 
variety of surfaces, not just a demonstration of one instance.  
 

 
Harmonious Equations 

 
A series of short mathematical dances were created by the author as part of “Harmonious Equations,” 
directed by Keith Devlin [3], in December of 2008. In this hour-length show Keith gives short verbal 
explanations of seven important equations, which are then translated into songs composed and sung by 
the a cappella choral group Zambra. A trio of dancers performs to the musical composition. In the 
remainder of the paper we will look at the mathematics embedded in these dances. 
 
Pythagoras’ Theorem: a2 + b2 = c2. In the duet dance accompanying this equation our dancers used the 
dissection proof of the Pythagorean theorem found by Henry Perigal (1801-1898), shown in Figure 2 
(Frederickson [4]). It is based on a dual tiling of the plane, first by the smaller two squares of sides a and 
b, then overlaid by a tiling by squares with sides equal to hypotenuse c. In the dance we used squares of 
sides 3, 4, and 5 to connect with Zambra's use of this classic right triangle within their song. This 
dissection proof is also very similar to that of the Arab mathematician Thabit Ibn Qurra (836-901 AD). 
 

 
 

Figure 2: Perigal’s dissection proof of the Pythagorean theorem. 
 
 In this duet, each dancer wields  two Styrofoam quadrilaterals, shown light gray in Figure 2; the 
smaller square with side 3, shown darker here,  is mounted on a post, on which it rotates. The dancers 
make a variety of shapes with the quadrilaterals, finally making the side 4 square, then surrounding the 
side 3 square to make the side 5 square. In future performances we plan to find a way to make visible to 
the audience the fact that we are working with the 3, 4, 5 right triangle. 
 
Area of a Circle: Area = πr2. We can see how much longer the circumference of a circle is than its 
diameter, by forming our arms into a circle, then spreading them wide. This also gives us an approximate 
value for π. The joints of the shoulder and arms are such that one may swing the arm in a circle, with the 
arm functioning as the radius around the central point at the shoulder joint, and it is fun to play with ways 
the two arms might make such circles in the air at the same time. For this section of Harmonious 
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Equations we utilized synchronized arm circles, static circles with the arms, and circular floor patterns to 
create a composition suggesting various danced aspects of circles. 
 
 
Einstein’s equation: E = mc2. We certainly could not use radioactive decay, the phenomenon explored in 
Einstein’s 1905 paper that contained the famous equation, so we chose the next best thing, fluorescence, 
the understanding of which was greatly furthered by another of Einstein’s 1905 papers on the particulate 
nature of light. In this section we used lines “painted” with white cloth tape on black costumes, and 
illuminated by black lights, while creating shapes that shimmer and finally “explode,” in accompaniment 
to Zambra’s score. 
 

Leibniz’s series 
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the mathematician Madhava Sangamagrama of Kerala, India (1350-1425), whose discovery preceded that 
by Gottfried Liebniz (1646-1716) by 300 years [5]. We played with the swing time of Zambra’s music for 
this section by using a rhythm game popular among children. In that game, taught to the author by 13 and 
14 year old girls when he was dance faculty at a summer ballet workshop, the participants repeatedly play 
a short rhythm on plastic water bottles, which they pass one person to the right around a circle at the end 
of each rhythmic phrase. In our dance we used 8 inch “gator foam” (hardened foam core) cubes, showing 
four sides to the audience. One side is colored yellow, one blue, one black, and the fourth is also black but 
includes a portion of the Liebniz equation.  
 
 We developed a complicated set of switches of the boxes, performed while playing rhythms based on 
those of the water bottle game. Keeping track of these switches involves symmetry group theory, an area 
of mathematics concerned with such “transpositions.” Though perhaps not directly relevant to this 
equation, group theory was developed by the mathematician Galois to decide whether certain families of 
equations are solvable at all.  
 
 The boxes are placed in a line on a table facing the audience, and manipulated by three dancers, each 
of whom grabs a pair of boxes during each of ten short sections of the dance. The dancers slap out 
rhythms on the boxes while switching their order and also turning one or both 90 degrees. The sequence 
of ten location switches, for the moment disregarding the turning of the boxes, is shown below using 
cycle notation. The boxes are numbered 1 through 6 in their original positions, and “*” is used to show 
composition of permutations, which really means that one permutation immediately follows another. In 
cycle notation, for example, (135642) indicates that the box in position 1 moves to position 3, 3 moves to 
5, and so on, until finally 2 moves to 1. The sequence used in the dance is: 
 

(12)(34)(56)  *  (12)(34)(56)  *  (12)(34)(56)  *  (12)(34)(56) 
* (135642)  * (identity) * (identity)  *  (12)(34)(56)  *  (12)(34)(56)  *  (12)(34)(56) 

 
 Because  (12)(34)(56)  *  (12)(34)(56)  = identity, the result of these ten permutations is really just 
(135642)  * (12)(34)(56) = (14)(36) = (14)(36)(2)(5), where (2)(5) is included to indicate that boxes 2 and 
5 really end at their starting positions. The final order of the boxes is thus 426153.  
 
 The process is further complicated by the fact that on each move each dancer might easily turn one 
or both boxes 90 degrees clockwise or counterclockwise, producing a variety of colored patterns in the 
line of boxes. If we let B = black facing, Y = yellow, L = blue, E = equation, the sequence of turns created 
the following patterns, in order: 
 

LLLLLL,YYYYYY,LYLYLY,LLLLLL,LLLLLL,BLBLBL, 
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BBBBBB,BEBEBE,BBBBBB,BEBEBE,EEEEEE 
 
 The author used this symbolic process to determine the order to place the boxes in at the start of the 
dance, though the other dancers solved the problem more easily by simply running the dance once and 
adjusting the starting position according to the locations of the boxes at the end! 
  
Euler’s polyhedron formula: V–E+F=2. In this section the dancers use the “hexastar,” a hexagon with 
an extra free edge attached at each vertex, shown in Figure 3, to create a cube, octahedron, two linked 
tetrahedra, and other shapes (Figure 4). The hexastar is made of 1-inch diameter foam-covered PVC pipe, 
in 40 inch sections, joined at the vertices by bungee cord (see [6] for further discussion of this prop.) We 
were looking for one set of twelve PVC pipes that could easily be wielded by 3 dancers. Can the reader 
visualize how to fold this structure at its vertices in order to do this? (Solutions on last page, Figure 6.) 
 

             Cube Octahedron

Tetrahedron

 
 
  Figure 3: Hexastar.   Figure 4: Platonic solids formed with the hexastar. 
 
The 6 faces of the cube and 6 vertices of the octahedron are combinatorially related to the 6 edges of the 
tetrahedron, as suggested in Figure 5. These connections are also used by Zambra in their song,. 
 

Six diagonals of the cubic faces are the edges of a regular tetrahedron.
 

 
Figure 5: The cube and the tetrahedron. 
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How to fold the hexastar into the cube, octahedron, and tetrahedra. The cube and the octahdron each 
have 12 edges, as does the hexastar, so no edge duplication is necessary. Also, since the tetrahedron has 6 
edges, two tetrahedra will have 12 edges, and no edges are duplicated. It is possible to fold it into one 
tetrahedron with each edge doubled as shown at the bottom of Figure 6. 
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Figure 6: How to fold the hexastar into cube, octahedron, and tetrahedra. 
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Abstract 
 

The Fusion Project is a research program under development at the University of San Francisco, envisioned by 
Philip Wagner and directed by Benjamin Wells.  With the collaboration of the Fine Arts Museums of San Francisco 
(and their de Young Museum), it seeks to bring art to the math classroom and math students to the art museum.  The 
goals are to enhance existing curricula in order to improve basic and advanced skills, standards-oriented test scores, 
and students’ interest in mathematics.  Therefore, it is a quintessential Bridging project. 

 
 

1.  The Fusion Project:  Some Background 
 

Following the US federal program called No Child Left Behind, the performance of US public schools 
has been judged by standardized test scores in language and mathematics.  Time and again, the authors 
heard that individual teachers’ evaluations as well as school funding depend heavily on improvement of 
student performance on these tests.1  Despite the pressure and effort, scores remain unacceptably low2 in 
California, a state with the seventh largest gross domestic product in the world in 2007.3  San Francisco 
schools in particular have been below the program’s pass level every year.4 

Philip Wagner, a retired California businessman, was inspired by his perception of the crisis in math 
education and his own love for art to create The Fusion Project [1] (FP) as an antidote—or better, a 
nutritious supplement—to fight this trend in middle school math.  The main idea of FP is to engage 
middle school students in learning some critical math concepts by discovering them displayed in artwork 
and architectural components of a major art museum.  In our view, intervention is required to enhance 
interest among students who may not recognize the beauty and importance of math in their futures. 

If the answer is to use art, where better to find the art than in art museums?  In 2006 Phil approached 
the Fine Arts Museums of San Francisco (FAMSF), whose de Young Museum had recently reopened in 
an award-winning building in Golden Gate Park.  Their Education Department saw the value of FP to 
students and to their museums and immediately wrote a letter of support, the first step of a unique 
relationship.  We say unique because our queries of art museums in four countries, search on the Internet, 
and contacts in the Math and Art community report no similar programs. 

Leonard Shlain, author of Art and Physics [2], referred Phil to Benjamin (Pete) Wells at the 
University of San Francisco (USF).  Pete had hosted the controversial author for four talks in his 
interdisciplinary courses melding math, science, religion, and art, which he has been teaching over 
twenty-one years.  Moreover, Pete had trained peer teachers to deliver Socratic curricula to entire math 
classes in 6th–10th grades for eight years under Oakland Public Schools and UC Berkeley sponsorship. 
 
The purposes of FP.  The first goal of FP is to demonstrate that some children can improve their interest 
and understanding in math at a critical grade level.  Recognizing the increased significance and political 
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importance of test results, we also hope to achieve a second goal:  improving student scores on the types 
of problems from the state’s standardized math tests that have significant miss rates. 

To meet our second goal, we needed to know the math concepts that are most challenging to middle 
school students.  One might think this information would be readily available from the school district or 
the state, or even be online.  Not so.  While the State of California releases the total scores for the math 
test (for example, [3]), it does not identify those math concept areas that are most frequently difficult for 
students, nor does it summarize test results by individual topics, much less questions.  Even teachers are 
not privy to this apparently classified information.  Before we found a solution, we got international help. 
 
FP goes international.  In 2006, we learned independently of the workshop “Innovations in Mathematics 
Education via the Arts,” sponsored by the Banff International Research Station for Mathematical 
Innovation and Discovery, to be held at the Banff Centre, Alberta, Canada in January 2007.  Thirty 
mathematicians, educators, and artists from four countries were invited, including Pete.  Pete encouraged 
Phil to apply, but then could not go himself.  The now-invited Phil ended up being responsible for 
presenting the ideas of the FP to the workshop participants.  Although confident as a businessman, he felt 
the scope of the workshop was beyond his experience.  Pete assured him of a receptive audience and 
enriched his PowerPoint talk with museum and art images. 

Phil’s obvious concern for students’ math performance5 made him an instant insider.  FP was quickly 
identified as having significant potential and was chosen for review and development by a focus group, 
comprising Nat Friedman, Doris Schattschneider, and Stewart Craven.  They recognized the opportunities 
in the Bay Area with its many museums of science, nature, and art, but they foresaw an even broader 
context for the development and distribution of FP techniques and materials.  They perceived the 
consonance of FP and the goals of the Banff workshop.  Applying their personal experience from a 
variety of school systems, they advised that we would not gain traction with teachers or administrators if 
the program were couched as reform or even enrichment.  Such attitudes can be interpreted as elitist or as 
undermining established, even mandated, patterns.  In particular, they warned against calling FP products 
curricula.  Later, Doris suggested using words like enhancement and encounter, which we  adopted.  The 
group recommended concentrating on the middle school and tailoring the materials for the 7th grade, 
stressing that interest in math is often gained or lost at this level.   

Since the workshop, the focus group participants have made vital contributions to the development 
of FP.  We have consulted with them electronically and hosted Doris and Nat on visits to San Francisco. 
 
The curious mascot.  While at Banff, Phil’s companions discovered an ingenious toy in a gift shop.  
Invented by the creator of the eponymous Hoberman Sphere, it is sold as the Switch-Pitch™.  It can 
“switch phases” when tossed in the air with a slight spin (Fig. 1).  Phil bought the shop’s entire supply 
and later developed a steady source so we always have them on hand.  
 

 
 
 
 
 
 
 
 

Figure 1.  Static and dynamic changes of the Switch-Pitch [4, 5]; check youtube.com 
 

We have shared this essential FP emblem as a gift on first contact and a “recognition token” to bene-
factors, rewarded wise children who helped us see math in art, stimulated an artist who speaks math to 
prisoners, and shared the balls with university executive officers.  We always point out that the ball can be 
viewed as a self-dualizing tetrahedral compound, such as the stella octangula.  The static shape was 

Wells and Wagner

70



already known to Neolithic Scottish stone carvers [6] (Fig. 2).  Similar stone balls are a source of 
speculation that the Platonic solids were known well before the Greeks [7].  Although not art, this mascot 
fits our broader paradigm of communicating math via visually (and haptically) attractive representations. 
 
 

 
 
 
 
 
 
 
 
 

Figure 2.  Neolithic Scottish type 2 stone balls (1, 2 University of Aberdeen Museum; 3, 4 famed Towie 
ball, and a drawing of it) [7, 8].  Note the chirality in the stone balls as well as in the mascot. 

 
 

2.  FP Connects the Math and the Museum 
 
Both FAMSF and FP felt that a strong correspondence between the art and the math was required for a 
successful collaboration.  Shortly after the Banff workshop, the FAMSF Education Department received a 
grant from the Israel Family Foundation in Colorado.  FAMSF then hired Pete to correlate works of art 
with target standards in the California 7th grade math curriculum.  Two things made this feasible:  his 
experience with aligning (matching) standards and problems, and identification of the crucial standards.   

Pete had performed alignments for five years for the Center for Educational Policy Research at the 
University of Oregon.  For example, their Standards for Success, a project of the Association of American 
Universities, produced a list of Knowledge and Skills for University Success [9] endorsed by 28 leading 
research universities.  The project in which Pete participated aligned that list with state high school 
standards and assessments [10].  FP could reveal the art-math connections, if they were there.   
 
Data difficulties.  Identification of the crucial math standards proved to be a difficult process.  Student 
performance data on individual test problems was virtually impossible to find.  Although much in 
education in America, and particularly in California, currently depends on published test results, these are 
pooled, and actual student behavior on individual problems is zealously (maybe jealously) guarded.  
Apparently administrators are not eager to have that kind of detail revealed, even by averages.  We were 
frustrated for months, but a contact through a local public TV math-tutoring show led to a teacher at a 
continuation school who obtained anonymous test-item score listings.  Pete then aligned the test problems 
with the California state standards.  That gave us a set of concepts to target in order to reach our goal of 
improving test scores.  These we call the target standards. 
 
Target standards.  The California 7th grade content standards [11] list 46 items (including some from 
Mathematical Reasoning).  Using the data on test performance, Pete classified ten items as primary 
targets and another ten as secondary.  The following table summarizes these twenty, with the high targets 
in bold.  Those marked with * are also designated as key standards for 7th grade in the Mathematics 
Framework for California Public Schools [12, p. 112].  It may be significant that only four strong targets 
are key standards, and another eleven key standards are not targets of either kind.   

 

NS1.2*  +, x, –, / rational numbers (integers, fractions, and terminating decimals); (a/b)m  
NS1.3  Convert fractions to decimals and percents; use in estimations, computations, applications 
NS1.6  Calculate the percentage of increases and decreases of a quantity 
NS2.2*  Add and subtract fractions by using factoring to find common denominators 
AF1.2  Use correct order of operations to evaluate algebraic expressions such as 3(2x + 5)2 
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AF1.3* Simplify numerical expressions by applying laws of rational numbers (assoc, etc.), and justify 
AF1.5  Represent quantitative relations graphically; interpret parts of a graph in the situation it represents 
AF3.3* Graph linear functions; note ∆y is same for given ∆x; rise/run = slope 
AF3.4* Plot quantities whose ratios are constant (ft/in); fit line, interpret slope as ratio 
AF4.1* Solve 2-step linear equations and inequalities in one variable over the rationals; interpret 
AF4.2*  Solve multistep problems involving rate-speed-distance-time and direct variation 
MG2.1 Use formulas to find perimeter and area of elementary 2- and 3-dimensional figures 
MG2.2 Estimate and compute area of complex or irregular 2- and 3-dimensional figures by decomposition 
MG2.3 Compute perimeter, surface area, volume of 3-dimensional objects obtained from rectangular solids; 

scale volume, surface area. 
MG3.1 Identify geometric figures; construct with compass and straightedge (altitude, midpoint, 

diagonal, bisectors, circle parts, etc.) 
MG3.2 Use coordinate graphs to plot simple figures; determine length, area; translated/reflected image 
MG3.6* Identify elements of 3-dimensional objects; describe skew lines, 3-plane intersections  
MR1.1  Analyze problems from relationships, relevant/irrelevant and missing information, patterns 
MR2.3  Estimate unknown quantities graphically; solve for them by using logic, arithmetic, algebra 
MR2.4  Make and test conjectures by using both inductive and deductive reasoning 

 
Clustering art and standards into stories.  In visits to the de Young Museum, Pete surveyed works 
from the permanent collection on display, teasing out their mathematical content.  He also noted interior 
and exterior architectural details that would be useful to highlight.  With target standards at hand, he 
matched artwork on his list with the relevant math standards.  A 2D matrix emerged showing that most of 
the identified works and all the target standards (and more) were covered by each other.  But how could 
we organize this diffuse information in a usable way?  By clustering the art works and math topics, we 
found a natural decomposition of both into seven groups and called them Stories/Encounters.  The 
resulting correlation convinced both parties that the de Young Museum was highly suitable for the 
purposes of FP.  Here are the clusters (the first three are more elementary; the last, more exploratory):  

 

Story/Encounter 1. Counting, adding, multiplying, grouping, distributing, and estimating  
Story/Encounter 2. Fractions, percent, parts, and rhythm  
Story/Encounter 3. Lines, slopes, intercepts, equations, and ramps  
Story/Encounter 4. Edge lengths, surface area, and volume of various 3D objects  
Story/Encounter 5. Lines and planes in space, ruled surfaces, and belts  
Story/Encounter 6. Parallels, perspective, other projections  
Story/Encounter 7. Uniformity, symmetry, chaos, confusion  

 
Museum resources.  To see how the art fits into the stories, we need to review the types of art resources 
that FAMSF has made available to FP:   
 

(1) Works of art in the permanent collections—this restriction aids stability of instructional 
materials, and access to the art is more open (for example, nonflash photographs may be taken);  

(2) Cultural artifacts in the ethnological collections;  
(3) Site-specific works and exhibits commissioned by FAMSF;  
(4) Architectural elements (e.g., windows, walls, pavers, rooflines, staircases, furniture);  
(5) Poster-sized prints of any image in the museum’s ImageBase or 4D electronic databases6;  

 

Each Encounter involves all of these:  original paintings and sculpture, integral features of the building or 
its furnishings, ethnological artifacts, or posters to be printed by FAMSF for FP classrooms.  Some works 
on paper, including all of FAMSF’s holdings of Escher’s work, are most easily accessed on the Internet. 
 
Recruiting people and materials.  Pete’s report [13] on alignments and stories to FAMSF gave a 
skeletal structure to their involvement in the project, but FP needed more detailed materials before we 
could begin to think about how to build the school-end of the bridge.  FAMSF sent invitations to a 
thousand Bay Area teachers on their mail list to join the FP Teachers Advisory Group (TAG).  The Israel 
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Family Foundation provided another grant for TAG training and consultation.  From the respondents, we 
chose five middle school math teachers in public, private, and parochial schools.  We trained this group at 
the de Young Museum in late 2007, covering the FP/FAMSF report and giving a tour of major works 
included in it.  Subsequently, the TAG communicated by email with us and with each other.  These 
teachers were expected to develop the Story outlines into teaching materials.  Story assignments were 
negotiated.  On request, Pete offered a suggested outline [14, pp. 16–17] for expanding a Story into an 
Encounter—that is, a teacher-ready guide of questions and explorations that could be used in class and on 
museum visits.  The teachers have submitted two to four sets of draft instructional materials that are 
currently being compiled and edited.  The next section gives samples of three different levels and types of 
draft materials [13, 14] produced by the TAG and FP. 
 
 

3.  Sample Story/Encounter Materials 
 
Story/Encounter 1:  Example of a core cycle.  The following problems form a core cycle, the essential 
element of the structure outline mentioned above.  They center around Strontium, a huge photo array 
made up of identical rectangular panels containing large balls, small balls, and some partial balls. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Top half of Strontium by Gerhard Richter, a FAMSF site-specific commission  
Figure 4.  Strontium at opening of the new de Young Museum—October 15, 2005  ©Art Rogers 

 
Problem 1.  Count the fuzzy balls in Strontium (Fig. 3).7  We start with the large ones.   
Concept/Technique A:  (1) To count a rectangular arrangement of things, count one row and multiply 

by the number of rows.  (2) How about counting one column and multiplying by the number of columns?  
Concept/Technique B:  (1) To handle split half balls, count them and divide by 2.  (2) Quarter balls?  
Concept/Technique C:  (1) Count the small balls by using the same methods, as if the large balls 

weren’t there.  (2) Count the small balls by seeing how many belong to a large ball.   
Application to Problem 1, and refinement:  (1) How many rows are there in the full picture?  Do they 

each have the same number of balls?  Whole balls?  (2) How many columns are there?  Do they each have 
the same number of balls?  (3) So how many balls are there, by counting a row? by counting a column?  
(4) Is there an easier way to handle the half balls? quarter balls? small balls?  (5) What about counting by 
panel?  How many panels are there by using the methods?  Are all panels the same?  Is it easier or harder?   

 

Problem 2 (driven by math).  Count the number of items in a three-dimensional array.  Models of 
this can be a stack of cocktail sugar cubes, or Montessori cubes, but the abstract problem is the focus here.   

Application to Problem 2, and generalization:  Use the teaching and learning from Problem 1 to 
generalize to three dimensions.  Develop the approach of multiplying rows, columns, and layers by seeing 
that we can already count in each layer, and that each layer is the same size as the others.  

 

Problem 3 (driven by an image).  How many people are there in front of Strontium (Fig. 4)?   
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Application to Problem 3, and review:  The method of counting the fuzzy balls does not work 
immediately or directly here, because people are not standing in rows and columns (but, at a school 
assembly, that might work).  But dividing the picture into rows and columns of boxes would make it 
something like the panels in Problem 1.  What makes this work?  What keeps it from working very well?   
 
Story/Encounter 3:  introduction and worksheet fragment.  (TAG member Claire Potter with Pete and 
Doris)  There are many paintings in the de Young Museum that have lines or suggestions of lines that the 
artist has included to draw our eye to a focal point, or to have us look at a scene from a special angle.  The 
museum also has several staircases—their steepness, or pitch, makes them easier or harder to climb.  We 
can describe how a line appears in a painting by its slope, and can calculate this by measuring.  To find 
the pitch of a staircase, we can imagine it replaced by a ramp, and then calculate the slope of the ramp.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Wayne Thiebaud, Diagonal Freeway Figure 6.  Sol LeWitt, Lines from Points to Points 
 

How steep is this freeway (Fig. 5)?  Notice there are several lines to consider.  They appear to 
intersect outside the frame, somewhere below and to the left of it.  Do they all intersect at the same place?  
How does this affect your answer? 

 

Examine the picture by Sol LeWitt (Fig. 6).  1.  Which lines [labeled in the handout] slope upwards 
from left to right? List them.  Which labeled lines slope downward from left to right?  List them.   

2.  In your list of upward sloping lines, which line is the steepest?  Which line is the most flat?  Now 
sort these lines according to steepness, with the most flat first, and list them in order by letter.  In your list 
of downward sloping lines, which line is the steepest?  Which line is the most flat?  Now sort these lines 
according to steepness, with the most steep first, and list them in order by letter.   

Definition:  The slope of a line is the ratio of the vertical change to the horizontal change as you 
move from one point to another along the line.  Note that as you move along the line from one point to 
another, if you move up, the vertical change is positive and if you move down, the vertical change is 
negative.  The vertical change is called the rise and is the numerator of the ratio.  As you move along the 
line from one point to another, if you move to the right, the horizontal change is positive and if you move 
to the left, the change is negative.  The horizontal change is the run; it is the denominator of the ratio.   

3.  For each of the labeled line segments in the picture, use the coordinate grid superimposed on the 
picture to measure vertical and horizontal change between two points on the line where a grid line 
intersects the line.  Your teacher will demonstrate how to do this.  In measuring vertical and horizontal 
change, round your measurements to the nearest centimeter.  Remember to include the sign of the change.  
Fill in Table 1 [to be supplied] with your measurements, and use them to calculate the slopes of the lines.  

 

Here are some ideas for extension.  These studies about slope can lead to practical representations of 
the Pythagorean Theorem and computing missing parts of right triangles.  LeWitt’s minimal, procedural 
art lends itself to reimplementation and elaboration.  Students find it fun to make this sort of art.   
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Story/Encounter 4:  sample tasks.  (TAG member Gail Purtell)   
To do in the classroom: 

• Identify equilateral, isosceles, and scalene triangles; acute, obtuse, and right triangles. 
• Find the area of triangles. 
• Use pattern blocks to demonstrate how equilateral triangles can be tessellated various ways. 
• Find the surface area of pyramids. 
 

 
 
 
 
 
 
 
 
Figure 7.  Architects Herzog and de Meuron’s eucalyptus benches 

Figure 8.  Kane Kwei, Coffin in the Shape of a Cocoa Pod 
 
To do at the museum: 

• Notice that there are benches (Fig. 7) placed throughout the museum.  Notice that each bench 
module covers a triangular area of floor space, and each one is made up of three smaller triangles 
tilted into a pyramid facing up toward the ceiling or down toward the floor. 

• Identify the kind of triangle formed by the outside edges of the module.  Measure the lengths of 
the sides of one bench module. 

• Use the Pythagorean Theorem to find the height of the triangle. 
• Find the floor area of the bench, i.e. the amount of floor space it covers. 
• Notice the three smaller triangles that make up the pyramid within each bench module.  Are the 

three triangles congruent?  What kind of triangles are they? Measure the base and height of one. 
• Compute the surface area of one bench module. 

 

Strategies for finding the volume and surface area of the cocoa pod coffin (Fig. 8): 
• To estimate the surface area, you could divide the cocoa pod into a cylinder with cones on each 

end.  Find the surface area of each section and then add the three areas together. 
• Another suggestion might be to consider each of the lengthwise strips separated by grooves that 

go from tip to tip.  Estimate the area of each of these strips by dividing them into a rectangle with 
triangles at each end.  Count the number of strips, then multiply to estimate the total surface area. 

• The volume of the cocoa pod can be estimated by dividing it into a cylinder and two cones then 
finding the volume of each section.  Add the volume of the three sections.   

 
 

4.  Next Steps at USF and Beyond 
 
Teachers first; 7th graders next.  The de Young Museum had provided a framework (literally, too; see 
Figs. 9, 10, which go with Story 6) and the TAG was producing material, but we had no model for the 
next step.  A phone call to USF’s School of Education led to a conversation and an ongoing collaboration 
with Caryl Hodges, their Associate Dean for Teacher Training.  She proposed workshops for teachers and 
convinced us that it would be easy for FP to join Pete’s College of Arts and Sciences and her School in a 
way that facilitated obtaining grants to pay teachers for FP training and implementation.  We added Jeff 
Buckwalter, Associate Professor of Computer Science and Director of the two schools’ Dual Degree in 
Teacher Preparation program.  Then the de Young Museum offered facilities for the workshops and “Get 
Smart with Art” binders8 for Fusion Project materials.  
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Figure 9.  The Hamon Tower at the de Young Museum Figure 10.  Its hyperbolic paraboloid sheath 
 
 Interest in FP at USF has grown; in April, 2009, it is expected to move from Pete’s personal 
research project to a program of the College of Arts and Sciences.  We are still developing the proper 
structure at USF, but progress is steady.  In particular, the Deans of the College have enthusiastically 
endorsed FP, and the TAG members have agreed to act as instructors for the first rounds of workshops.  
We’ll use USF students and local peer teachers in FP-active classrooms.  The Israel Family Foundation 
has renewed their grant, and we have a list of middle schools and teachers interested in our workshops.  
There has been no classroom testing of FP materials yet, but we expect that to change by the next school 
year.  Best of all, we have found great resonance of FP with the USF Mission and Core Values [15]. 
 
FP Rev. 2.0.  We are already thinking beyond the FP in the Bay area and collaboration with the de Young 
museum.  We envision an enlarged Fusion Project concept that will: 
 

• Identify State by State those standardized math questions most frequently answered incorrectly in 
that State.  This will replicate the methodology used in the initial project to identify those math 
concepts most difficult for Bay Area students at risk to comprehend.  We anticipate that discovery 
of this data will be successful but require effort and strategic alliances. 

• Broaden the use of the term art to include animation, video games, or other media familiar to 
today’s 7th graders.  This extends the natural funding base to entertainment corporations as well 
as public and private sources. 

• Target cities with major museums and evaluate and use their collections as we did at the de 
Young Museum.  This will facilitate students’ grasp of art in a museum setting outside the 
classroom. 

• Use computer access to show works of art and enlarge them for the classroom, when no art 
museum is conveniently located near a school. 

 

The creation of printed guides for teachers and students will further this dissemination.  The portability or 
ability to adapt the program depends on having guides that can be retargeted to different art collections, 
preferably by Teachers’ Advisory Groups at each location.  Involvement in such a program must remain 
completely voluntary for schools and classes and be free to all students.  Teachers electing to use this 
enhancement program would attend training workshops and would be compensated.  As in the developing 
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USF pilot program, local college students and school students would be trained to assist in the classrooms 
utilizing the Fusion Project.  Students in these roles would also be compensated. 
 It is essential that the programs be assessed, with the results (positive and negative) shared freely and 
used to make improvements. 
 
Math, yes, but is it art?  We would like to clarify the role of art in the Fusion Project.  The evaluation of 
art in the de Young Museum’s permanent collections was based on its potential for teaching math.  Most 
of the site-specific commissions are especially appropriate, and the entire collection is world class.  But 
the artistic values were not assessed, nor are they directly a part of FP methodology.  Art teachers were 
excluded from the Teachers Advisory Group for much the same reason.  Our math classroom teachers are 
not required, expected, or recruited to teach art.  That said, the authors and our advisors love and 
appreciate art and are stimulated by the mathematics we see in art.  This will be shared by those attracted 
to join FP.   

All consultants feel that the heart of the Fusion Project is the art.  Some of us are collectors, some 
have used art in math and science courses, some have taught art, and some have been founders of the Art 
& Math movement.  We are sensitive to the needs of museums and of art programs in schools as well, and 
we intend to provide structural suggestions for including an art education aspect in the Fusion Project.  In 
particular, although the workshops will not train the math teachers in art education, they will certainly 
introduce them to the artistic dimensions, through guided tours by museum docents and references to art 
interpretation.  Of course, the reason we are at the de Young Museum is because they see us as an 
important activity for their own art education effort.  Similarly, we endorse the collaborative involvement 
of schools’ art teachers in FP classrooms.  With no emphasis on the appreciation of the art, the works in 
the first stories become little more than mathematical tokens to be counted and measured (but see Stories 
5–7 for surface development, perspective, and procedural art, which are topics in art school courses).  
That is far from our goal.  In fact, we believe that the interest in the mathematics that flows from the art 
will make the art that much more interesting and significant to the students, and we intend to help that 
flourish.  Obviously, this attitude extends beyond the pilot program and USF.   
 
The future unfolding.  Our future vision already verges on reality at USF.  USF has always had inquiries 
about online, distant learning, including two recent ones to the School of Education.  The developing USF 
Yale National Initiative offers innovation for school classrooms through the College of Arts and Sciences.  
A proposed Fine Arts Core course involving museum resources is about to be launched.  USF Teacher 
Education and our joint Dual Degree Teacher Preparation program (especially in math) are open to testing 
materials and jump-starting the Fusion Project for new classroom teachers.  The Fusion Project can work 
with all of these. 

Student tours of art museums are typically reserved, hands-off, and distant.  Our tours are planned to 
involve (polite) interaction with the art and hands-on activities with the architecture and furnishings.  For 
example, the de Young Museum can become more like San Francisco’s hands-on science museum, the 
Exploratorium.  In fact, the de Young Museum already has a reputation of being kid-friendly [16, 17], and 
this congeniality will be a helpful characteristic for other FP placements or similar programs. 
 Finally, the extension to visual media beyond the traditional art museum (or even art and science 
museums like the Exploratorium) suggest opportunities at USF and far beyond.   In particular, we have 
already had several areas of contact with Pixar Animation Studios in nearby Emeryville.  As one of the 
authors has said explicitly (and the other agrees but never put it into words):  “I was taught how to pass 
state exams and math SATs.  The same test questions were frequently repeated year after year.  But this is 
not ‘learning.’  Perhaps if the text or the teacher could have shown me the concepts visually, I would not 
have needed to memorize the answers.  But there was no Fusion Project available to me.”  We think this 
speaks to the question of the value of art and visual media.  Mathematicians—and math teachers—use 
“show” in a sense far removed from informed seeing.  Even illustrated textbooks often do not make the 
pictures engaging.9  Artists do. 
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Abstract 
 

In this paper visualizations of end rhyme patterns of poems, including sonnet sequences, are studied.  First, a 
notation for the grouping structure and end rhyme pattern types of poems and sonnet sequences is developed.  Then 
the rhyme patterns of poems with even rhymes are constructed and their counts computed.  Cascading this 
construction over rhyme groupings leads to counts for a variety of sonnet forms.  The structure and counts are 
visualized for two types of sonnets, as trees that are drawn in a circularly symmetric manner.  Finally, 
systematically generated rhyme patterns for sections of sonnets as well as rhyme patterns of sequences of sonnets 
from the literature are visualized as color bands.  These bands provide a holistic visual overview that can give 
insight into the structure of poem sequences that may span hundreds of lines.  Different color assignments can also 
be used to exhibit and enhance the visual beauty inherent in rhyme patterns (see website [6]).  Mathematica 6 is 
used to create counts, summary tables and images of end rhyme patterns. 

 
 

1.  Introduction 
 

In this paper principles and algorithms are described that can generate, count and visualize the number of 
possible end rhyme patterns for poems with paired rhyme patterns in general and sonnets in particular.  
Imposing different restrictions on the sound patterns for end rhymes and on the total number of end 
rhyme sounds in a poem allows counting and tabulation of a wide range of possible constructions of 
poems and sonnets that fit the specified end rhyme patterns.  Even though a number of poets across the 
centuries have lamented the constrictions that the sonnet form places on their creative powers, it turns out 
that types of end rhymes for sonnets, even those close to the traditional forms, permit large numbers of 
patterns.  Indeed the numbers are so large that they appear to contradict this sentiment expressed by some 
poets.  Thus two complementary goals guide this paper: first to understand why the number of possible 
end rhyme patterns is so large when the rules governing sonnets seem so strict, and secondly to provide 
visualizations for types of sonnets generally and for sequences of sonnets in the literature that permit one 
to see at a glance end rhyme patterns used by poets.  This may provide a new tool for literary criticism. 
 

In Section 2 the underlying concepts for the structure types of poems that are the topic of this paper 
are introduced.  I cite a number of sonnets that demonstrate the flexibility of this poetic form and provide 
a hint of the surprisingly large number of end rhyme patterns that 14 lines permit.  The sonnet form also 
sets the stage for developing a notation for the structure types of poems that takes into account the 
grouping into subsections as well as conditions for the end rhyme sound patterns.  I will discuss 
interrelationships and dependencies between some of the types. 
 

Section 3 first considers poems with an even number of lines and paired end rhyme sounds.  Since a 
poem of 2n lines can have between 1 and n end rhyme sounds, the counts of end rhyme patterns can be 
arranged to form a number triangle with rows denoting the length of a poem and columns denoting the 
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number of sounds occurring in the poem.  I describe an algorithm to generate all end rhyme patterns for 
poems with even rhymes and show tables of end rhyme counts.  Then I apply the algorithm to 
Shakespearean and Petrarchan sonnets and visualize their end rhyme structure and counts in trees. 
 

Section 4 presents the visualization of end rhyme patterns as bands of gray scale strips.  One end 
rhyme pattern is displayed on one line so that, for example, 14 horizontal squares visualize a sonnet, and 
the patterns of a sequence of poems are displayed as vertical columns of horizontal strips.  I show bands 
for all possible patterns of three particular end rhyme pattern types as well as bands for the rhyme patterns 
of a sonnet sequence from the romantic period in English literature. These visualizations extend into 
greater depth the visualizations created in [3]. 

 
In Section 5 I list formulas related to the counts of end rhyme patterns for even rhymed poems and 

suggest directions for further investigations. 
 

 2.  A Classification of End Rhyme Pattern Types in Poems and Sonnets 
 
A sonnet is a poem of 14 lines.  The analysis begins by assuming that an end rhyme sound is always 
paired with the end rhyme sound in another line.  In some traditions end rhyme sounds may appear in 
triplets; we will consider those rhyme patterns also.  I will follow the literary tradition that labels end 
rhyme sounds consecutively "a", "b", "c", etc., where "a" represents the first end rhyme sound in a sonnet, 
"b" the second, "c" the third, and so on.   
 

While I show in this paper that the possible variations in the 14-line rhymed poem are immense it is 
useful to mention the two major types of sonnets described in standard accounts of this poetic form.  In 
the Petrarchan sonnet pattern the 14 lines of the sonnet are commonly organized into a leading 8-line 
octave usually end-rhymed "abbaabba" followed by a final 6-line sestet that permits more variety but 
often is rhymed "cde cde" with three sounds or "ccd cdd" with two sounds.  In the Shakespearean sonnet 
pattern the 14 lines of the sonnets are commonly organized into three 4-line quatrains, usually end-
rhymed "abab cdcd efef", followed by a couplet, typically rhymed "gg".  I will refer to the end rhyme 
patterns stated above, "abba abba cde cde"  and  "abab cdcd efef gg", as the standard patterns.  If all poets 
adhered to these standards there would be no need for or interest in counting or studying all possible 
variations or actual poetic forms.  However, a variety of rhyming patterns have been used in both 
traditions as well as patterns that depart sharply from these forms, demonstrating that there are venues of 
expression within the sonnet form that are not apparent at first sight.  Indeed the number of possible 
rhyme patterns in a 14-line poem that a reader will recognize as a sonnet is surprisingly large as will 
become clear. 
 

Despite conventional accounts of the two standard sonnet forms, in practice the rhyme patterns in 
sonnets have varied widely.  A sonnet may not rhyme at all or use up to seven sounds.  Each of these 
cases actually have been used by poets.  Here are examples of each of the eight possible counts of end 
rhyme sounds with brief references: 

No rhyme sounds:  abcdefghijklmn  Christian Gryphius   (see [1]  p. 106) 
One rhyme sound:  aaaa aaaa aaaa aa  Sir Philip Sidney   (see [2]  p. 171) 
Two rhyme sounds: abba abba bba abb  Philander von der Linde  (see [1]  p. 104) 
Three rhyme sounds: abab baba acca cc  Sir Philip Sidney   (see [2]  p. 187) 
Four rhyme sounds: abba abba cdd ccd  William Wordsworth  (see [7]  p. 187) 
Five rhyme sounds: abba abba cde cde  Wolfgang von Goethe  (see [1]  p. 137) 
Six rhyme sounds:  abba cdcd  ebf ebf  Rainer Maria Rilke   (see [8]  p.   30) 
Seven rhyme sounds: abab cdcd efef gg  William Shakespeare  (see [11] p. 387) 

 

Höft
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Some terminology is required in order to be able to classify different types within the sonnet form.  
The first quatrain in a sonnet will be called the leading quatrain and any subsequent quatrain will be 
called an interior quatrain, even if it closes a sonnet.  When a sonnet is structured into an octave and a 
sestet then the octave tends to be the leading section of the sonnet.  Therefore, I will follow this literary 
preference and consider octaves as leading octaves.  In order to understand the complexity of counting 
end rhyme patterns I start with a visual arrangement of rhyme patterns for leading and interior quatrains 
with two end rhyme sounds “a” and “b”.  The left half of the symmetric tree represents the three 
possibilities for a leading quatrain.  Since an interior quatrain may start with sound designator “b” rather 
than “a” it is represented by six possibilities shown in the entire tree. 

 

aa ab ba bb

aabb abab abba baab baba bbaa  
Figure 1: Tree for Quatrains with Two End Rhyme Sounds. 

 
Counting possible end rhyme patterns for sonnets becomes much more intricate than the tree in 

Figure 1 may suggest since sonnets are divided into a number of sections of various lengths that 
determine the constraints on the end rhyme patterns.  The following five examples of the leading octave 
sectioned into two quatrains or taken as a whole with two (Examples 1, 2 & 3) or with four (Examples 4 
& 5) end rhyme sounds, respectively, demonstrate the structural possibilities and large variance in counts.  
The counts were computed using the algorithm described before Table 2 in the next section. 
1: two paired sounds in each quatrain: 18 possibilities from "aabb aabb" to "abba bbaa" 
2: paired sounds in each quatrain: 31 possibilities from "aaaa aabb" to "abba bbbb" 
3: two paired sounds across the octave: 63 possibilities from "aaaaaabb" to "abbbbbba" 
4: two paired sounds in each quatrain: 9 possibilities from "aabb ccdd" to "abba cddc" 
5: four paired sounds across the octave: 105 possibilities from "aabbccdd"  to "abcddcba". 

 
As noted above, the 14 lines of a sonnet usually are divided into several sections, for example, into 

the 4-4-6 or the 4-4-4-2 groupings of the Shakespearean sonnet, or into the 8-6 or 4-4-6 groupings of the 
Petrarchan sonnet, and these divisions determine different kinds of rhyme patterns.  In the remainder of 
this section I introduce a formal description for these (structured) divisions, count them and describe in 
more detail dependencies for those closely associated with sonnets. 

 
A poem may be thought of as a sequence of groups where a group is a sequence of contiguous lines. 

For a sonnet specifically, each group may be of length 2, 3, 4, 6, 8, 10, 12, and 14 with the constraint that 
the sum of the group lengths adds up to 14, the length of a sonnet.  I will refer to any such sequence of 
groups as a grouping type or, for short, a type for a sonnet.  In mathematical terms, a type is a partition of 
the number 14 into a set of k positive numbers {g1,…, gk} such that their sum equals 14.  For example, 4-
4-4-2 and 8-3-3 as well as 7-7 or 9-5 are partitions of the number 14 that have been used by poets as 
groupings in sonnets although the last two appear only rarely, see ([5], pp.210-211 and 283-284).  

 
Of  specific interest are grouping types that contain group lengths from the set {2, 3, 4, 6, 8}.  These 

five numbers represent group lengths that are commonly used in sonnets.  The computational task is to 
produce all possible ways, subject to the constraints imposed by the set of group lengths to be used for a 
type, to partition the number 14 into groups of smaller numbers that add up to 14.  In Table 1 the rows 
represent six sets of group lengths that may occur in a grouping type for a sonnet.  The five columns 
represent the maximum number of groups that may occur in a type and the last column indicates that any 
number of groups is permitted.  Each table entry is the number of different types for a given set of group 
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lengths and a maximum number of groups in a type.  For example, there are 7 different types using 
lengths from the set {2, 4, 6, 8} and consisting of at most 4 groups such as 8-6, 6-4-4 and 4-4-4-2.  Note 
that the counts of types in successive columns across a row from left to right subsume the counts from the 
previous column. 

1 <=2 <=3 <=4 Any

4, 6, 8 0 1 2 2 2

3, 4, 6, 8 0 1 3 4 4

2, 4, 6, 8 0 1 4 7 11

2, 3, 4, 6, 8 0 1 5 10 17

2, 4, ..., 12, 14 1 4 8 11 15

1, 2, ..., 13, 14 1 8 24 47 135   

8 -6

8 -3 -3 6 -6 -2 6 -4 -4 8 -4 -2

6 -3 -3 -2 4 -4 -3 -3 6 -4 -2 -2 4 -4 -4 -2 8 -2 -2 -2  
Table 1: Sonnet Types Classified by Groups. Figure 2: Dependency Structure of Some Sonnet Types. 

 
In order to see the different structures in the sonnet form I visualize the 10 common grouping types 

for sonnets represented in row 4, column 4 of Table 1 through their dependencies.  The fact that in this 
case there are 10 types of sonnets demonstrates the wide variety of structural constraints possible in this 
short poetic form.  I will use the concept of partial ordering together with its standard pictorial 
representation in Hasse diagrams to render the 10 types as a directed graph in Figure 2.  Grouping g2 is 
said to be directly below grouping g1 if g2 can be obtained by partitioning one number of g1 into two 
numbers.  For example, grouping 4-4-4-2  is directly below  8-4-2, but it is not directly below 8-6, 
though it is below 8-6 in a two-step refinement.  I normalize the notation for groupings so that the group 
lengths decrease or stay constant as one proceeds from left to right through the grouping type.  Therefore, 
I write  6-4-4, the type of the Petrarchan sonnet, that is written more commonly as  4-4-6  indicating the 
actual quatrain-quatrain-sestet sequence of the poem.  In the partial order of Figure 2 each vertex is 
labeled with its grouping pattern and the directed edges represent each direct refinement step.  
 

3.  Counting Rhymes in Poems and Visualizing Rhyme Count Structures through Trees 
 

The central topic of this section is the generation and enumeration of end rhyme patterns of poems that 
have an even number of lines in which end rhyme sounds have even multiplicity, that is, each sound 
occurs on some even number of lines in the poem.  Such rhymes are called even rhymes.  When an end 
rhyme sound occurs exactly twice that rhyme sound is called a paired rhyme.  Using the grouping 
notation introduced in the previous section, the sets of poems of 2n lines, for some integer n, that have 
exactly k or at most k end rhyme sounds are denoted by 

! 

(2n)
k

e  and 

! 

(2n)"k
e , respectively, where 1≤k≤n 

and the upper index “e” denotes “even”; the absolute value expressions |

! 

(2n)
k

e | and |

! 

(2n)"k
e | denote their 

counts.  When k=n all rhymes must be paired and a numeric upper index is used such as 

! 

(4)
2

2. 
 

The grouping types in the center of the partial order in Figure 2, particularly the two dependency 
chains 8-6 to 6-4-4 to 4-4-4-2 and 8-6 to 6-4-4 to 4-4-3-3 have special significance since these end 
rhyme patterns for sonnet types include and generalize the Shakespearean and Petrarchan sonnet forms. 
Furthermore, many poets who write rhymed verse use even multiplicities of the rhymed sounds with pairs 
dominating.  This suggests the following computing and visualizing tasks of possible end rhyme patterns 
in the sonnet form and their literary use: 
 
 (1) Generate all possible end rhyme sound patterns for all poems of 2n lines that contain between 1 and 
n end rhyme sounds of even multiplicity, that is, compute the set 

! 

(2n)"k
e  for 1≤k≤ n, specifically for n≤14, 

and provide the associated counts for the end rhyme sound patterns. 
(2) Generate all end rhyme patterns for the Shakespearean and Petrarchan sonnet forms.  Visualize 
counts of end rhyme patterns for those sonnet forms in a structural manner by trees. 
(3) Visualize all possible end rhyme patterns as colored bands for sections of poems such as sestets and 
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octaves as well as for end rhyme patterns of sequences of sonnets from the literature. 
 
For the first task I begin with a description of the generating process of end rhyme patterns.  The 

process starts with the set consisting of the single one-line pattern “a” and successively generates longer 
“partial” poems until the desired number of lines, 2n, for some chosen value of n is reached.  The 
essential test for extendibility of a partial poem pp with sound s consists of checking that (i) sound s either 
already occurs in pp or that it is the (next alphabetic) sound after the maximum sound occurring in pp, and 
(ii) that adding sound s still permits matching evenly all sounds in pp and sound s when the designated 
maximum length 2n for the poem has been reached.  For example partial poem “abba” may be extended 
with either “a”, “b”, or “c”, but not with “d”, while partial poem “abcadc” may be extended only with “b” 
or “d” if maximum length of the poem is 8 and end rhymes must be paired. 

 
Implementation of this algorithm produces the list of all end rhyme patterns.  Grouping the list by 

number of end rhyme sounds and counting the sizes of those lists creates the triangle of numbers 
displayed in Table 2.  Since the numbers in the table represent poems of even length up to 14 lines the last 
row in the table includes most types of evenly rhymed sonnets.  The entries in the last column of the table 
are the sums of all entries in the respective rows. 
 

 

1 2 3 4 5 6 7 sum

2 1 0 0 0 0 0 0 1

4 1 3 0 0 0 0 0 4

6 1 15 15 0 0 0 0 31

8 1 63 210 105 0 0 0 379

10 1 255 2205 3150 945 0 0 6556

12 1 1023 21120 65835 51975 10395 0 150349

14 1 4095 195195 1201200 1891890 945945 135135 4373461 
Table 2: The Triangle of Even Rhyme Patterns by Number of Distinct Sounds. 

 
A number of columns and diagonals in this Triangle of Even Rhyme Patterns are initial segments of 

sequences listed in The On-Line Encyclopedia of Integer Sequences (OEIS) [10].  If the entries in Table 2 
are labeled w(n, k), where n represents poems of length 2n and k the number of sounds in the poems, 
correspondences between some number sequences in the triangle and initial segments of sequences listed 
in OEIS exist as follows: 

column 2   w(n, 2) / 3  4n-1 – 1     sequence A002450, 
column 3   w(n, 3) / 15        sequence A002451, 

sum column  

! 

w(n,i)
i=1

n

"         sequence A005046, 

diagonal   w(n, n)   (2n-1)*(2n-3)*…*3*1  sequence A001147, 
sub-diagonal  w(n+1, n)        sequence A001880. 

 
For the remainder of this section I want to turn my attention to the rhyme pattern counts in the 

Shakespearean and Petrarchan sonnet forms.  The next two tables show counts of rhyme patterns for 
poems such as sonnets that are constructed as sequences of blocks.  The numbers were calculated by 
cascading the function that generates end rhymes patterns for a single group over the sequence of groups 
that form the indicated type of poem.  The two tables demonstrate the huge variety of end rhyme patterns 
that are possible even under the constraints of quatrain and sestet sequences. 
 

Table 3 shows the rhyme counts for poems that consist of sequences of quatrains 

! 

(4)
2

2 that have two 
sounds in each quatrain with repetition of sounds across quatrains permitted, that is, the poems satisfy the 
grouping type 4-4-…-4.  The rows in the table indicate the number of quatrains and the columns the 
number of end rhyme sounds in each grouping.  The counts in the table are listed through sequences of 
four quatrains, that is, 16 lines at maximum, since the counts for rhyme patterns of Shakespearean and 
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Petrarchan sonnets will fall between these numbers.  The columns in the table show the counts for 2 to 8 
end rhyme sounds in the entire poem.  The last column shows the sum of columns for the seven possible 
rhyme sounds.  Note that the count for the number of sounds starts at 2 since the leading quatrain for this 
rhyme pattern type must have two sounds.  
 

2 3 4 5 6 7 8 Total

1 3 0 0 0 0 0 0 3

2 18 36 9 0 0 0 0 63

3 108 864 1026 324 27 0 0 2349

4 648 16848 52812 46656 15228 1944 81 134217 
Table 3: The Triangle of Even Rhyme Pattern Counts for Sequences of Quatrains. 

 
Table 4 shows the total number of end rhyme patterns for five different grouping types that are 

related to various sonnet rhyme patterns and whose grouping types are shown in Figure 2.  The columns 
of the table are arranged in the same manner as in Table 3.  The rows represent five end rhyme pattern 
types: 1. the Petrarchan rhyme pattern 

! 

(4)"2
e
# (4)"2

e
# (6)"3

e  which has between two and six rhyme 
sounds, 2. the Shakespearean rhyme pattern 

! 

(4)
2

2
" (4)

2

2
" (4)

2

2
" (2)

1

2 which has between two and seven 
rhyme sounds, 3. an alternate Petrarchan rhyme pattern type 

! 

(4)2
2
" (4)2

2
" (6)3

2  which has between three 
and seven sounds, 4. a more general Petrarchan rhyme pattern 

! 

(4)"2
e
# (4)"2

e
# (6)"3

e , and 5. the most 
general rhyme pattern 

! 

(8)"4
e
# (6)"3

e  that is shown at the top of the partial ordering in Figure 2.   
 

1 2 3 4 5 6 7 Total

Petrarchan 0 360 2880 3420 1080 90 0 7830

Shakespearean 0 216 2700 4968 2646 486 27 11043

Q - Q - S paired 0 0 4860 14580 9990 2160 135 31725

Q - Q - S even 1 1023 12427 23328 12714 2385 135 52013

O - S even 1 2047 48003 139560 101850 23625 1575 316661  
  Table 4: Even Rhyme Pattern Counts for Five Grouping Types. 

 
A structural view of the numbers in the first two rows of Table 4 is presented in the next two figures. 

 Figure 3: Rhyme Pattern Counts by Grouping   Figure 4: Rhyme Pattern Counts by Grouping 
 in Petrarchan Sonnets  (7,830)     in Shakespearean Sonnets  (11,043) 
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They visualize the internal multiplicative and additive structure of the counts of the end rhyme 
patterns for the Petrarchan (4-4-6) and Shakespearean (4-4-4-2) sonnet forms.   The images are drawn as 
concentric trees with the root in the center representing the leading quatrain and each ring representing the 
next group in the grouping type.  Each node in the trees contains two indicators.  The upper set denotes 
the number of end rhyme sounds occurring in the sequence of groups that the node represents and the 
lower number gives the respective total count of patterns for that sequence of groups.  For example, the 
node 

! 

{2,2,3}

720[ ]  in Figure 3 denotes a count of 720 for sonnets with two sounds in the leading quatrain, two 

sounds across the first two quatrains and three sounds total for the sonnet.  Adding counts in appropriate 
nodes in the outermost rings of the two trees produces the counts in the first two rows of Table 4.  
 

 4.  Visualizations of End Rhyme Pattern Types and Sonnet Sequences as Bands 
 
In this section I show visualizations of two types of end rhyme patterns.  In one visualization all possible 
patterns subject to stated constraints are shown side by side.  The other visualization presents an actual 
sequence of sonnets from the literature to show how one poet used some of the rhyme patterns.  Each end 
rhyme sound in a poem is associated with one color and the same color assignments for the sequence “a”-
“g” of end rhyme sounds is used across sequences of poems.  Each poem is shown as a horizontal strip of 
colored squares with the color for the end rhyme sound of the first line on the left and for the last line on 
the right.  A sonnet will be represented as a strip of fourteen squares in at most seven colors.  The 
visualization of a sequence of poems is a vertical band of these strips.  Since the first end rhyme sound in 
a poem is always represented by sound symbol "a", a visualization of all poems in a sequence starts with 
the same color or gray tone when using a fixed color or gray scale assignment for each sonnet in a band.  
 

Figure 5 shows the gray scale bands for three different end rhyme pattern types, arranged from 
smallest to largest number of possibilities.  The left-most band represents the 27 possible rhyme patterns 
for sonnets of type 

! 

(4)
2

2
" (4)

2

2
" (4)

2

2
" (2)

1

2 that have seven end rhyme sounds (see Table 4, row 2).  The 
band shows the Shakespearean rhyme pattern “abab cdcd efef gg” right in its center as the 14-th strip.  It 
is interesting to speculate why Shakespeare chose the middle pattern #14 in the lexicographic ordering of 
the band.  One reason may be that it is the one pattern among the 27 rhyme patterns with the maximum 
number of 12 sound changes given the structural constraint of a final couplet in the sonnet.  The middle 
band shows the 31 possible rhyme patterns for sestets of type 

! 

6"3
e  with 1, 2 or 3 paired end rhyme sounds 

(see Table 2, row 3).  The right-most band shows the 36 possible rhyme patterns for a pair of quatrains 

! 

(4)
2

2 - 

! 

(4)
2

2 with three rhyme sounds (see Table 3, row 2). 
 

           
Figure 5: 7-Sound 4-4-4-2 Sonnets, ≤3-Sound  Figure 6: Wordsworth’s “Ecclesiastical Sketches” 
  Sestets & 3-Sound Quatrain Pairs     (as published in1822) 
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Figure 6 shows the gray scale bands for the three parts of William Wordsworth’s “Ecclesiastical 

Sketches”, published in 1822 (see [7], pp. 137-204).  The parts consist of 38, 36 and 28 sonnets, 
respectively, and the parts are shown as separate bands side by side.  This image represents 102 x 14 = 
1,428 lines of verse.  It is immediately apparent that the poet used the same rhyme pattern, with a single 
exception (III.7), for the leading quatrain and two patterns, with three exceptions (I.4, I.12, III.7), for the 
second quatrain.  The expressive rhyme variations occur in the concluding sestets of the sonnet sequence. 
 

 5.  Further Work and Acknowledgements 
 
In conclusion I would like to suggest two directions for further mathematical and literary inquiry.  The 
first is motivated by the numbers w(i+k, k), 0≤i and 1≤k, in Table 2.  The non-zero entries in the k-th 
column of that table appear as the initial values of the coefficients in the following power series: 

Gk(x) = 

! 

2 j "1

1" j 2x
j=1

k

#   = 

! 

1

2
k"1
k!
# ("1)k+ j

2k

k + j
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& 

' 

( 
) 

j=1

k

* + j
2( )

k+ i
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& & 

' 

( 
) ) x

i

i= 0

,

*  =  

! 

w(i + k,k)x
i

i= 0

"

#  for all 1 ≤ k. 

For example, coefficient w(2+5, 5), that is, the value in row 7 and column 5 of Table 2 evaluates in closed 

form summation as: w(2+5, 5) = 

! 

1

1920

 ( 210 * 17 - 120 * 47 + 45 * 97 - 10 * 167 + 257 ) = 1,891,890.  The 

numbers of even rhymed patterns need to be related to the closed-form expressions for the coefficients in 
this power series by a combinatorial argument.  The second direction would be to extract end rhyme 
words from poems and sequences of sonnets from a broad cross-section of the literature, to construct their 
associated colored bands and use the patterns evident in the bands as basis for comparative and 
interpretive studies.  

 
Finally, I would like to thank the reviewers for their comments and suggestions that helped me 

improve this paper significantly. 
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Höft

86



   
Tubular Sculptures 

 
Carlo H. Séquin 

CS Division, University of California, Berkeley, CA 
E-mail: sequin@cs.berkeley.edu 

 
 

Abstract 
This paper reviews ways in which many artists have constructed large sculptures from tubular elements, ranging 
from single cylinders to toroidal or knotted structures, to assemblies of a large number of bent tubes. A few 
parameterized generators are introduced that facilitate design and evaluation of a variety of such sculptural forms.  

 
 

1. Introduction 

Artists like Charles O. Perry have been able to build very large scale sculptures filling volumes of more 
than 30 feet in diameter at an affordable price by assembling pre-cut and bent tubular pieces. Stellar 
examples are Eclipse in the Hyatt Regency lobby in San Francisco, or Equinox at the Lincoln Center, 
Dallas, Texas (Fig.1a). But even much smaller assemblies of tubular elements can make very attractive 
sculptures. At the small end of this spectrum we find sculptures by Max Bill, e.g., Assembly of three equal 
cylinders (Fig.1b) [2], or the elegant tubular loops by José de Rivera (Fig.1c) [4]. Additional “minimal 
sculptures” will be discussed in Section 3.  
 

 
 

Figure 1: (a) Charles O. Perry: “Equinox;”   (b) Max Bill: “Assembly of 3 equal cylinder;” 
 (c) José de Rivera: “Construction #35.”  

 
With so many diverse ways of forming attractive sculptures from tubular elements, it seems worthwhile to 
try to compile an organized overview over the many possibilities and approaches used, and to explore in 
which ways computer-aided tools may be helpful to create additional, and potentially more complex, 
artistic structures. In addition, I have a personal, nostalgic reason to write this paper on Tubular 
Sculptures. It was the influence of Frank Smullin who started me a quarter century ago on this path of 
exploring “Artistic Geometry” at the intersection of computer science, mathematics, and sculpture.  
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2. Inspiration by Frank Smullin (1943 – 1983) 

On June 30, 1981, Frank Smullin gave a keynote talk at the 18th Design Automation Conference in 
Nashville, Tennessee [19]. He showed pictures of his tubular sculptures, often celebrating simple knots 
(Fig.2a). He explained how he had created a program running on his Apple II computer to help him 
design these sculptures and to calculate the elliptical cut lines that resulted at the angled junction between 
two or more tubular elements. His program produced simple outline drawings, which he then colored in 
by hand (Fig.2b). In this talk he extolled the merits of the Granny-knot, which has an artistically much 
more interesting, 3-dimensional structure than the functionally preferred, but much flatter Square-knot. 
When he mentioned that in the Granny-knot the four ends of the cropped “shoe laces” would stick out in 
the 4 tetrahedral directions (Fig.2c), something clicked in my brain. Four arms sticking out in tetrahedral 
directions reminded me of a carbon atom and of the way such atoms readily assemble into a diamond 
lattice. I immediately saw the possibility of assembling a large number of Granny-knots in the same way 
into a Granny-Knot Lattice (Fig.2d). I left the conference with the firm goal that I wanted to create such a 
structure, and that I would use the emerging power of computer graphics to help me in that venture. 
 

 
 

Figure 2: (a) Sculpture by Smullin;  (b) Smullin’s design program;  (c) Smullin: “Tetra-Granny;”   
(d) Séquin: “Granny-Knot Lattice.” 

 

Over the following twelve months, Paul Strauss, a one-year-on-campus Master student from Bell Labs, 
developed a first version of a rendering program, called Berkeley UNIgrafiX, which was able to render 
such structures with proper hidden-surface elimination; thus there was no need to shade in the visible 
surfaces by hand. In parallel I developed a program MakeWorm that created the properly mitered and 
joined prismatic segments that would form tight, knotted or linked structures, and within a few months I 
had a dramatic visualization of the Granny-Knot Lattice displayed in the {1 1 0} direction of the diamond 
lattice structure to reveal the well-known channels that run in that particular direction (Fig.2d).  
 

 
 

Figure 3: Tubular sculpture models by Séquin:  (a) “Standing Overhand Knot,”  (b) “Mitered 
Junction Models,”  (c) “Minimal Sticks Trefoil,”  (d) “Tetra-Tangle.”  

 

Inspired by Smullin’s sculptures, I also used this emerging programming environment to design some 
free-form knot models (Fig.3a), made from the 4-inch diameter cardboard tubes that carried the 3-foot 
wide Versatec printer paper. In that effort I used the mitering techniques explained by Smullin, and made 
many tutorial models (Fig.3b), which I then used in my class on Creative Geometric Modeling. Figure 3c 
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shows the 6-stick realization of the trefoil knot with shortest total axis length, which was obtained with a 
simple optimization procedure. I also was proud to discover a tight, highly symmetrical linkage of four 
mutually linked equilateral triangles (Fig.3d), but subsequently discovered that this link and many other, 
much more ingenious ones had already been described in the book Orderly Tangles [10].  
 

3. Minimal Geometries – Cylinders 

Trying to find a systematic approach to a classification of tubular sculptures, we start with the simplest 
tubular element: a straight, circular cylinder. In this raw form it shows up as an architectural element, e.g. 
in La Défense, near La Garenne-Colombes, France (Fig.4a) and in the chapel at MIT in Cambridge, MA 
(Fig.4b). When a single cylinder is used as a stand-alone sculpture, it normally is given some artistic 
enhancement. This may be achieved by painting its surface as in Max Bill’s Painting in form of a column 
(Fig.4c) or by cutting off its ends in some special way as in Bill’s Cylinder as a right-angled volume 
(Fig.4d).  Alternatively only part of the cylinder surface may be retained, as in John Goodman’s Unicorn 
Spirit (Fig.4e). 
 

 
 

Figure 4: (a) Cylinder in La Défense;  (b) Chapel at MIT; (c) Bill: “Painting in form of a 
column;”  (d) Bill: “Cylinder as a right-angled volume;” (e) Goodman: “Unicorn Spirit.”  

 
Many large-scale sculptures are formed by groups of simple un-decorated cylinders, e.g., FUNtain 
Hydraulophone at the Ontario Science Centre [7] or Roger Berry’s Rising Wave at Oyster Bay [1]. 
 

 
 

Figure 5: (a) Hart: “72 Pencils – CMYK;”  (b) Séquin: “Skewed Tangle of 12 Cylinders;”  
 (c) Snoeyink: “30 Aluminium Tubes;”  (d) Snelson: “Needle Tower.”  

 
When cylinders are packed in tight, tangled configurations, we obtain very intriguing geometrical 
configurations. An example of such a cylinder packing, well known to Bridges attendees, is George 
Hart’s 72 Pencils – CMYK (Fig.5a) [8]. Figure 5b shows a tangle of 12 cylinders derived from the 
TetraTangle structure (Fig.3d). A more elaborate version of such a skewed arrangement has been 
constructed by Jack Snoeyink; it is made from 30 identical aluminum tubes, colored and grouped as five 
twisted, interlocking tetrahedral frames (Fig.5c). This sculpture celebrates a research result that shows 
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that this arrangement, made from simple straight cylinders, cannot be divided into two groups that can 
then be separated with a rigid-body motion [20]. In the context of cylinders used as sculptural elements, I 
would also like to reference the tensegrity structures pioneered by Kenneth Snelson (Fig.5d), which may 
be perceived as collections of cylinders seemingly floating free in space. 
 

4. Tori and Chain Links 

If we allow bending the tubular elements, then the simplest most regular shape we can form is the torus. 
Tori have been celebrated by many artists in many different ways. In the science museum in Vienna there 
is an archeological artifact in bronze representing a simple toroidal shape of more than a foot in diameter 
(Fig.6a), dating back about 5000 years! Given more than one torus – they just want to be interlinked. A 
beautiful tight linking of two tori has been created by John Robinson with Bonds of Friendship in Sydney 
Cove, Australia (Fig.6b). Three interlocking tori can be seen in a giant inflatable sculpture Torus! Torus! 
erected by Joseph Huberman (Fig.6c) [11]. 
 

 
 

Figure 6: (a) 5000 year old bronze torus;  (b) Robinson: “Bond’s of Friendship;” 
 (c) Huberman: “Torus! Torus!”  

 
Helaman Ferguson even has accomplished the feat of interlocking two tori made of different types of 
stone (Fig.7a). – Of course, they are not really complete tori, but rings with beveled gaps, depicting the 
self-intersecting surfaces of two Klein bottles; these two open chain links can then be assembled with a 
clever twisting maneuver. Stretched toroidal loops can readily be linked into longer chains. Tight-fitting 
plastic chain links have been assembled into deformable chains and then modeled into catenoids standing 
upside down in my sculpture model Defying Gravity (Fig.7b). Such tubular ovals are also the basis for a 
configuration of the Borromean rings cast by Alex Feingold (Fig.7c). In 1999 I created a Borromean 
tangle with five oval loops (Fig.7d). Interlinking ever more tubular loops in ever more intricate ways 
leads to a plethora of interesting configurations, as depicted in Orderly Tangles [10]. Some of these links 
would make quite dramatic large-scale sculptures. On a small scale (Fig.3a in [15]) they make bouncy 
dog toys or colorful “Nobbly Wobblys” [5]. 
 

 
 

Figure 7: (a) Ferguson: “Four Canoes;”  (b) Séquin: “Defying Gravity;”  (c) Feingold: 
“Borromean rings;” (d) Séquin: “Borromean Tangle 5.”   
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5. Ruled Surfaces and Iterated Hula-Hoops 

The simple geometrical elements that made up the sculptures discussed so far maintain some 
individuality. Now we look at configurations where the individual cylinder or torus has little meaning, 
and where it is a relatively large collection of such elements that then create the dominant form of the 
sculpture. As a first example we look at a large collection of long, skinny cylinders to form a more 
complex geometrical shape. Such geometry is reminiscent of String Art and of many mathematical 
models depicting hyperbolic paraboloids and other ruled surfaces. Tubular elements forming such ribbed 
surfaces are particularly useful when “transparency” is required. This is the case when we try to depict 
mathematical models with intersecting surfaces and would like to provide a look to the inside, to see 
interesting features such as triple points. Figure 8a and b show tubular models of a hemi-cube and of a 
hemi-dodecahedron. These are non-orientable, generalized polyhedra (or 2D cell-complexes) that can be 
obtained by taking surface elements of the cube or of the dodecahedron and identifying antipodal points, 
edges, and faces. Thus my model of the hemi-cube has just three bilinearly warped “squares,” and the 
hemi-dodecahedron is composed of six (differently colored) warped pentagons forming a tetrahedral 
structure with six angled edges. The latter is the basic building block of the 4-dimensional 57-Cell [17]. 
 

 
 

Figure 8: Non-orientable 4-dimensional cells:  (a) hemi-cube,  (b) hemi-dodecahedron.  
Iterated circles:  (c) twisted goblet,  (d) cross-cap model  of the projective plane.  

 
Similarly, a large assembly of skinny tori can produce interesting shapes. Just rotating such a “hula-hoop” 
around one of its diameters and simultaneously sweeping it along that diameter creates a twisted goblet 
(Fig.8c). If instead the hula-hoop is iteratively scaled from size 1.0 to size 2.0 and back to size 1.0 while 
we rotate the hoop through 180°, we obtain a rendering of a cross-cap – a model of the projective plane. 

These iterative constructions, which are particularly amenable to generation with a computer 
program, can be generalized to Ribbed Surfaces, where the iterated ribs need not be straight cylinders nor 
tori, but may be a sequence of procedurally specified curves. One versatile approach first defines two 
Guide Rails and then suspends a collection of equally spaced Bézier curves or circular arcs between them.  
 

6. Perry’s Ribbed Sculptures 

Charles O. Perry has created several large Ribbed Sculptures [14] that can be modeled with this paradigm; 
and his sculptures were the inspiration for this work and for this paper. A sculpture that is particularly 
fascinating to the mathematical mind is Solstice (Fig.9a) because its generating principle is so simple and 
elegant, yet the result is intriguing and spectacular in the variety of vistas it offers from different angles. 
Solstice has a thick rail that forms a (3,2) torus knot embedded in the surface of a fat virtual torus with a 
rather small central hole. Each minor circle of that torus has 3 symmetrically located points, 120° apart, 
through which the thick rail passes. These three points are connected with three thin ribs that form a 
“hyperbolic” triangle with inward-bending concave sides (Fig.9e). This triangular cross section now 
twists through 240° as it travels once around the major loop of the torus.  (Helaman Ferguson has created 
a similar geometry in a bronze cast called Umbilic Torus NC; however, in his sculpture the twist of the 
triangular cross section is only 120°.)  
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Understanding the mathematics behind Solstice allows us to create a close computer emulation (Fig.9b). 
This generator program, written by James Hamlin, can now be parameterized so that we can readily 
change the number of ribs and their diameter or curvature to fine-tune the look and feel of the sculpture. 
But we can also introduce more dramatic changes by altering the integer parameters (p,q) that define the 
torus knot formed by the supporting rail. Figure 9c shows a sculpture that results from a (4,3) torus knot 
with all other parameters left unchanged. Figure 9d is yet another variation, based on a (2,3) torus knot; 
however, in this sculpture the ribs no longer lie in the planes of the minor circles of the torus, instead they 
are spiraling a significant distance forward or backward around the major loop of the torus. An additional 
parameter in the program allows us to control the amount of this angular offset around the major circle of 
the torus; in Figure 9d this value was –45 degrees.  
 

 
 

Figure 9:  “Solstice”: (a) Perry’s sculpture;  (b) computer  emulation;  (c) (4,3) torus knot 
variation; (d) (2,3) torus knot  variation.  (e) Principle of swept ‘hyperbolic’ triangle.   

 
Early Mace (Fig.10a) is another sculpture by Charles O. Perry that uses ribs in the shape of circular arcs 
connecting two guide rails. In this case the rails are two pairs of (almost) great semicircles on an invisible 
sphere, held together by two small semicircles at both ends. The ribs form inwards-bending quarter arcs. 
Figure 10b shows an emulation of this sculpture with a program written by James Hamlin. Figures 10c 
and 10d then demonstrate what happens when the ribs are straightened and finally bent outward to follow 
the surface of the sphere. 
 

 
 

Figure 10:  “Early Mace”: (a) Perry’s sculpture;  (b) computer emulation;  (c,d) rib variations.    
 

7. Generalized Sweeps 

Tubular elements provide broad artistic freedom of expression if free-form guide curves are used for the 
sweeps of circular or of more elaborate cross sections. Very simple free-form shapes have appeared as 
icons on musical album covers (Fig.11a) [13] or have been used by artists such as José de Rivera for 3D 
metal sculptures (Fig.11b). Free-form shapes typically need customized bending of tubes, and this may 
require tools and methods not readily accessible to many people. In 1982 Richard Zawitz introduced the 
Tangle®-Toy, a series of pipe segments, each curbed through 90°, connected into a loop and able to pivot 
at each joint (Fig.11c). This pliable assembly now allows anybody to become an instant tubular artist and 
to create attractive free form sculptures (Fig.11d). 
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Figure 11:  (a) “Tubular Bell” album cover;  (b) de Rivera: “Construction #5B.”   
(c) Zawitz: “Museum Tangle;”  (d) modified shape by Séquin.   

 
Conceptually, a freeform sweep can use any cross section. Figures 12a and 12c show two wood sculptures 
by Brent Collins [3], where the cross section consists of the union of two overlapping discs. Figures 12b 
and 12d show emulations and further developments of this theme, modeled in the Berkeley SLIDE 
environment and fabricated on a rapid prototyping machine. As shown, these models do not use any 
standard tubular stock that could be readily bent in the way depicted, and thus they do not offer a ready 
pathway for making large-scale sculptures. One might perhaps try to start with just one tube and bend it in 
the required way. To this primary tube one would then add a second tube from which about one sixth of 
its mantle has been cut away. However, it is not clear how well such a cut-open cylinder could be bent 
into the exact shape required to make a good fit to the primary tube. Such sweeps can, of course, readily 
form knotted structures as depicted by Figures 12c and d. 
 

 
 

Figure 12:   Sweep surfaces:   (a) Collins: “Muscularity;”  (b) Séquin: “Galapagos-6.”  
Knotted sweeps:   (c) Collins: “Trefoil;” (d) Séquin: “Figure-8 Knot.”  

 
8. Knotty Sculptures 

 
 

Figure 13:  Regular Knotty Sculptures:  (a) “Hilbert Cube 512,”  (b) “DodecaPentafoil Tangle,”  
(c) “Recursive Trefoil Knot 2D,”  (d) “Cubic Lattice of Figure-8 Knots.” 
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At other occasions I have talked extensively about Knotty Sculptures [16]. Conceptually most of my 
previously described knotty structures (Fig.13) belong to the family of tubular sculptures. But most of 
them were small-scale models that have been realized on different types of layered manufacturing 
machines, a process that is not amenable to fabricating large sculptures. However, these highly regular 
structures favor a modular approach. They each have just a few generic geometric elements, which could 
all be prefabricated individually and then assembled into the larger structure. In particular, “Hilbert Cube 
512” (Fig.13a) only needs a single element: a 90° pipe elbow. The Recursive Trefoil Knot 2D also needs a 
small number of different elements (Fig.13c). The other two structures, however, may present some tough 
assembly problems, even though the number of individual types of elements is also rather low. 
 

 
 

Figure 14:  Séquin: (a) “Chinese Button Knot” (copper tubing),  (b) “Three Intertwined Loops,”  
 (c) “Chinese Button Knot” (drier duct),   (d) “Glow-Worm.”   

 
Another approach to make such knotty structures is to use some easily bendable material. Figure 14a 
shows a realization of the Chinese Button Knot (Knot 940 in the standard knot tables) from thin copper 
tubing. For the three intertwined loops shown in Figure 14b, half-inch thick vinyl tubing has been used. 
The two structures shown in Figures 14c and 14d were realized with 6″-aluminum  and 4″-vinyl drier 
duct; they depict again the Chinese Button Knot and a similar braided, but more complex 12-crossing knot 
(with internal lighting), respectively. A bigger challenge is posed by truly recursive knot structures such 
as the one presented by Robert Fathauer [6] where the pipe diameter is gradually reduced with subsequent 
recursion steps so as to allow arbitrarily many recursion steps without suffocating in the ensuing tangle. 
 

9. Branching Tubular Assemblies 

In the sculptures discussed so far, the assemblies of tubular elements followed individual poly-line paths 
or closed loops, and thus the mitering geometry at the “corners” was rather straightforward. But of course, 
tubular structures can have branches and may form much more complicated 3D graphs. If the tubular 
elements are skinny enough, then the details of the junctions escape the attention of the viewer; this is the 
case in Max Bill’s Construction with 30 Similar Elements (Fig.15a) [12]. However, when tubes of larger 
diameter are joined, then careful attention has to be paid to the geometry of the mitered corners, as 
explained in Frank Smullin’s keynote talk and demonstrated by the tutorial models shown in Figure 3b. 
 

 
 

Figure 15:  (a) Bill: “Construction with 30 Similar Elements;”  (b) Liberman: “Olympic Iliad;”  
(c) ‘shade’: “Steam pipe sculpture”;  (d) Séquin: “Branching Drain Pipe.” 
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However, this kind of carefully calculated general mitering is rarely found in large-scale sculpture. Often 
large tubular elements are just left open-ended and connected to one another on their sides, as in 
Alexander Liberman’s Olympic Iliad (Fig.15b). Another frequently found solution for creating tubular 
branches is to use the readily available “T”-junctions found in plumbing supply stores (Fig.15c) [18]. I 
have used more general and more complex junctions of three or more tubular elements in my Branching 
Drain Pipe (Fig.15d) and in my models of the projections of the 4-dimensional regular polytopes. 
 

10. 3D Calligraphy 

 
 

Figure 16: (a) Serra: “Lead Piece;”  (b) Hein: “Changing Neon Sculpture;”  
(c) RuBert: “Positronic Neural Net;”  (d)  Culbert: “SkyBlues.” 

 
If the tubular material is thin and pliable enough, such as the lead pipe used by Richard Serra (Fig.16a), 
then it becomes a medium for “calligraphy” in 3-dimensional space. This becomes particularly apparent 
when neon tubes are used to form actual words as in large-scale advertisement and business logos. But 
neon tubes have frequently been used for purely artistic purposes. Since they can be turned on and off, 
they permit one to make dynamic time-varying sculptures, such as Jeppe Hein’s Changing Neon 
Sculpture (Fig.16b), or Russ RuBert’s Positronic Neural Net (Fig.16c) which changes in response to the 
viewers who walk around the sculptures. Neon tubes have also been used to make truly large-scale 
sculptures, such as Bill Culberts SkyBlues (Fig.16d), or Michael Hayden’s installation at Chicago O’Hare 
airport [9]. 
 

11. Extensions to Organic Forms  

 
 

Figure 17:   (a) 1994 Ad: “Absolut Scudera Vodka;”  (b) Tunger: “Oh, Beautiful Life!”  
 (c) Cragg: “Statue;”   (d) Borofsky: “Dancers;”  (e) Ochsner: “Libellotto”.   

 
Most of the sculptures discussed so far have been completely abstract shapes. However, tubular elements 
can readily be used to approximate familiar natural shapes. Figure 17 shows a variety of sculptures that 
play with humanoid forms, ranging from advertisements of absolute vodka (Fig.17a) to John Tunger’s 
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celebration of dance (Fig.17b). Tony Cragg has taken the modular approach one step further with his 
Statue (Fig.17c) in which he uses a large number of aluminum manikins made from tubular elements to 
assemble a giant sculpture in the shape of two persons, thus introducing an element of recursion. As the 
tubular elements become more varied or are blended together more smoothly, the resulting humanoid 
forms can be made ever more life-like, as in Jonathan Borofsky’s Dancers (Fig.17d). At this end of the 
spectrum, tubular sculptures seamlessly transition into purely free-form shapes, as exemplified by Claire 
Ochsner’s Libellotto (Fig.17e). 
 

12. Conclusions 

Tubular elements are a surprisingly expressive and cost-effective medium. Assembling stock elements, 
such as segments of rods, bands, or tubes is a much less expensive way to make large durable metal or 
plastic sculptures, than casting individual free-form bronze pieces, welding them together, and then 
smoothing the surfaces across the various joints. CAD tools are a big help in the conception, detailed 
design, and aesthetic optimization of any sizeable sculpture, and they play a crucial role in creating the 
necessary shop drawings. Parameterized procedural descriptions of such geometries can turn this domain 
into a fertile playground for artistic experiments. 
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Abstract
During the 2008–2009 academic year, the author embarked on an extremely non-standard curriculum path: devel-
oping comic books with embedded mathematics appropriate for 3rd through 6th grade students. With the help of an
education professor to measure impact, an elementary-school principal, and talented undergraduate illustrators, this
project came to fruition and the comics were implemented in elementary classrooms at Cumberland Trace Elemen-
tary in the Warren County School System in Bowling Green, Kentucky. This manuscript gives the history of this
idea, the difficulties of developing the content of the comics and getting them illustrated, and the implementation
plan in the school.

1 Introduction

In September 2008, I attended an Idea Kentucky meeting (www.ideakentucky.com) where the organizers
had hired a professional cartoonist, Keith Bendis (keithbendis.com), to take notes of the meeting. He had
three large pieces of white paper taped to the wall of the room, and a table full of markers. Throughout
the meeting, he was taking in the salient points being made and then illustrating these points with small,
humorous scenes capturing the essence of the conversation (Figure 1). When finished, I remember thinking
that even people that did not care about the meeting would still be interested in the notes that he had crafted,
and an idea was born. What if you could present mathematics in such a way that even people who did not
care much about it would still be interested in the way it was presented, and take away the salient points?

Thus was born the idea of comic books that would teach mathematics. As a university mathematics
teacher, I would develop the stories, embedding mathematics appropriate for the 3rd through 6th grade level,
according to the National Council of Teachers of Mathematics (NCTM) standards. I contacted two graphic
design/art professors that I knew at my university, Matt Tullis and Jeff Jensen, for help in identifying some
students that could illustrate the comics. Determined to show that this approach had promise, I enlisted the
help of an education professor at my university, Dr. Janet Tassell, to help measure the impact of the comics
on the students who used them. I was lucky to find a elementary school principal, Dr. Mary Evans, who was
supportive of the idea, and who agreed to involve her third grade through sixth grade teachers and students
at Cumberland Trace Elementary in the project. And finally, I was able to wrangle $4,000 loose from my
provost to cover printing costs. Operation Comics was in business.

In the interest of full disclosure, I must mention that this is not a completely original idea. Larry Gonick
uses cartoons in his instructional books (see [2] as an example), Colin Adams has a comic book about knot
theory [1], and mathematics (arithmetic, really) was a frequent antagonist in the Calvin and Hobbes comic
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Figure 1: Cartoonist at the Idea Kentucky Think Tank.

strips by Bill Watterson, to name a few related works. Still, none of these works or any others I found were
simultaneously plot-driven and instructional.

2 The Basic Premise of the Story Line

My basic idea for the story line in the comic was that we would have a superhero-type, Wonderguy, who
is super-strong, but not necessarily super-smart, and that two elementary school students, Claire and Dillon,
that he befriends will be the real heroes of the story. Having a superhero character helps disguise the fact
that these are not standard comic books, and makes them look very much like a standard comic. Having
the students be the real heroes gives the students positive role-models – one for each sex – who are good at
mathematics, and a character through which they can “live vicariously”.

Mathematics is not the driver of the main story line or even the individual stories in each episode of
the comic. Rather, the stories are developed to stand on their own in terms of literary value. However,
at some point during each of the stories, our heroes are able to “save the day” by knowing and applying
mathematics. Developing stories for the different episodes where the use of mathematics is both plausible
and necessary has been difficult, and has required some careful character development and planning. Having
a character who can pick up a car eliminates situations where brute force removes the need for brains. And
many situations are such that someone could use mathematics to resolve them, but they would not have to do
so. I have had to be careful to develop situations where the use of brute force is irrelevant or even detrimental
to the resolution of the situation.

The following is a description of the main characters that recur in each of the episodes, and some of the
plot points I have added to make the addition of the mathematics content both plausible and entertaining.
The line art in Figures 2, 3, 4, and 5 is the work of Anne Erskine, with the author taking partial credit for the
drawing of Wonderguy in Figure 2.

∗This work was made possible by a Provost’s Initiatives in Excellence grant from the Western Kentucky University’s Office of
the Provost, PIE #O-09-039.
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Figure 2: Cover to the first edition of Operation Comics.

Wonderguy. Wonderguy is the supposed “lead” character of each of the stories, which will be centered
around his adventures in crime-fighting. Wonderguy is incredibly strong, but his brains do not match his
brawn, a fact that is not part of his public perception. He is an immensely popular public figure, even
perhaps a bit of a celebrity. His origins are left purposefully vague, although it is clear from the way that he
carries himself that he has always had his super-powers.

Claire and Dillon. The real heroes of each story are the students, Claire and Dillon. Claire is an African-
American student who is wise beyond her years, and not as star-struck with Wonderguy as Dillon is. Dillon
looks studious and not too athletic. Both are on the school’s academic team, and Principal Willoughby
considers them the “best math students in the school”.

Principal Willoughby. Miss Willoughby (she currently has no first name) is the principal at Best Elementary
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Figure 3: Our “hero”, Wonderguy.

Figure 4: The real heroes, Dillon (left) and Claire (right).

School, where Claire and Dillon are students. She acts as an enabler in the story line. She first introduces
Claire and Dillon to Wonderguy when he needs mathematical assistance, and will provide them excused
time out of class to help Wonderguy when he needs it. She has some connection to Wonderguy that is not
immediately clear, but hints of how they know each other appear in the different episodes.

3 Sample Episode: Captain Confusion’s Revenge

In Episode 1, we meet the diabolical Captain Confusion, who apparently was a student at Best Elemen-
tary School as a child. He had also been on the academic team at that time, and suffered an event that caused
him embarrassment during a match. Extremely arrogant and condescending to those he perceives as not as
smart as him, even as a child, he sees his chance to discredit Wonderguy, whom he abhors, and get back at
the school that had treated him unfairly.

Captain Confusion, who is now an inventor, encloses the entire school, including the visiting Wonderguy,
in an indestructible bubble of his own design. He threatens to expose everyone in the school to a lethal dose
of confusion gas, also invented by him, if Wonderguy can not solve three elementary-level math problems
in five minutes without giving any incorrect answers. His assessment of Wonderguy’s mathematical abilities
are not far from the truth, so Principal Willoughby decides to put Claire and Dillon “into the game” to help
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Figure 5: Miss Willoughby, the principal of Best Elementary School.

the muscle-bound hero.
The three problems and the content that they illustrate are given below, along with sections of the script of

the episode. All three problems address both the standard for problem solving and the standard for reasoning
and proof, for all grade levels, as provided by the NCTM [3]. Additional standards addressed are given with
each problem.

Number Sense and Divisibility Theorems. The first problem can be solved by trial-and-error, but given
the fact that time is ticking away rapidly, the better path is a reliance on divisibility theorems. The stated
problem is

“Insert a digit in the blank so that 4268 is divisible by 9.”

The dialog that follows the introduction of the problem is given below.

Wonderguy: I have already ruled out 1. (Showing messy work on a sheet of paper.) I’ll rework it for 2 and 3.
You do 4, 5, and 6, and you do 7, 8, and 9. We’ve got to hurry!
Claire and Dillon: 7! The answer is 7!
Wonderguy: We can’t guess, guys! Any wrong answer, and were in trouble.
Claire: We’re not guessing! To be divisible by 9, the sum of the digits has to be a multiple of 9!
Dillon: (Showing his work on paper.) Think about the 3-digit number “abc”, where the “a”, “b”, and “c” are
the hundreds, tens, and ones digits, in that order. That means that

“abc” = (a×100)+(b×10)+(c×1).

Then pull one of each thing out of each place:

(a×99+a)+(b×9+b)+ c.

Claire: So, put all of your singles together:

(a×99)+(b×9)+(a+b+ c).

The first two parts are divisible by 9, so if the last part, the sum of the digits, is divisible by 9, then the whole
thing has to be divisible by 9! 4+2+6+8 = 20, so to get the next larger number that is divisible by 9, you
have to add a 7.
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Wonderguy: Great googly-moogly! Alright, here goes nothing! (Types in 7 and hits enter.)

This problem addresses the NCTM standard for numbers and operations for grades 3–5, which says that
“in grades 3–5, all students should understand the place-value structure of the base-ten number system and
be able to represent and compare whole numbers and decimals”, “recognize equivalent representations for
the same number and generate them by decomposing and composing numbers”, and “describe classes of
numbers according to characteristics such as the nature of their factors” [3].

Least Common Multiple The second problem has a similar bend, in that it can be solved by listing all
factors of each number and comparing lists until a common number is found on each list, but there is a more
efficient path to the correct solution using the prime factorizations of the numbers. The stated problem is

“What is the smallest number divisible by both 24 and 28?”

The dialog that follows the introduction of the problem is given below.

Wonderguy: Okay, I have a plan for this one. Brainy-Dude, you start writing out multiples of 24, and IQ-
Girl, you start writing out multiples of 28. I’ll watch both of you and wait for the same number to appear on
both lists!
Claire: That would work, but given the shortage of time, can I suggest that we use the prime factorizations?
Wonderguy: (A very confused look on his face.) Er . . . , that could work . . . How exactly would that work?
Dillon: Break each number into its prime factors. 24 is 2 times 12, or 2 times 2 times 6, or 2 times 2 times 2
times 3. We write it like this.

Claire: And 28 is 4 times 7, and 4 is 2 squared. You keep going until all of the factors are prime numbers.

Dillon: Now, in order for our number to be a multiple of both, we have to have enough of each prime so that
both of these numbers will divide into it, so we need at least 3 factors of 2, one of 3, and one of 7.
Claire: But to make it the least multiple of both, thats all of those factors that you want. So, the answer is

23×3×7 = 8×3×7.

Wonderguy: Okay, that’s 24×7. (Starts working the multiplication problem on paper.)

Claire: Wait! It’s quicker in your head: 8 times 7 is 56.
Dillon: Then 50 times 3 is 150, and 6 times 3 is 18, so . . .
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Wonderguy: The sum is 168! Yeah, baby, . . . (entering the answer into the computer.)

This problem addresses the NCTM standard for numbers and operations for grades 3–5, which says that
“in grades 3–5, all students should develop fluency with basic number combinations for multiplication and
division and use these combinations to mentally compute related problems, such as 30× 50” and “select
appropriate methods and tools for computing with whole numbers from among mental computation, estima-
tion, calculators, and paper and pencil according to the context and nature of the computation and use the
selected method or tools”. It also addresses the standard for numbers and operations for grades 6–8, which
says that “in grades 6–8, all students should use factors, multiples, prime factorization, and relatively prime
numbers to solve problems” [3].

Common difference. The last problem is an inverse problem, in that we are given a “black box” that outputs
a number for each one that they enter, and they have to deduce what the formula is. The dialog that follows
the introduction of the problem is given below.

Wonderguy: Holy moley, that could be anything!!
Claire: Wait. Remember that he said that only math taught at this school would be needed.
Dillon: Try a few numbers for x, and see what y is. And I recommend that you try some consecutive whole
numbers, to help us see the pattern of the answers.
Wonderguy: Okay, when I give it “1”, it gives me a “5”. (Claire and Dillon are keeping track of the results
on a piece of paper.) A “2” gives me a “7”. A “3” gives me a “9”. A “4” gives me an “11”. This is going to
take forever!
Claire: No, no! I see it! I see the pattern!
Dillon: Me, too! Each time we increase x by 1, the y is increased by 2. That means the formula has a “2x” in
it.
Wonderguy: But its not “2x”. Two times four is eight, not eleven.
Claire: Right, but if you notice, all of the values are three more than “2x”. Check by putting a 0 in for x.
Wonderguy: Hey, you’re right! Its a three! So the formula is . . . (Hesitates, looking at the kids.)
Claire and Dillon: (Together.) 2x+3!!

This problem addresses the NCTM standard for algebra for grades 3–5, which says that “in grades 3–
5, all students should describe, extend, and make generalizations about geometric and numeric patterns”,
“represent the idea of a variable as an unknown quantity using a letter or a symbol”, “model problem situ-
ations with objects and use representations such as graphs, tables, and equations to draw conclusions”, and
“investigate how a change in one variable relates to a change in a second variable”. It also addresses the
standard for data analysis and probability for grades 3–5, which says that “in grades 3–5, all students should
collect data using observations, surveys, and experiments” and “propose and justify conclusions and predic-
tions that are based on data and design studies to further investigate the conclusions or predictions”. It also
addresses the algebra standard for grades 6–8, which says that “in grades 6–8, all students should represent,
analyze, and generalize a variety of patterns with tables, graphs, words, and, when possible, symbolic rules”
and “use symbolic algebra to represent situations and to solve problems, especially those that involve linear
relationships” [3].

4 Usage and Measuring Impact

While I am comfortable developing mathematics curricula for elementary school students and teachers,
elementary pedagogy and assessment are not something I feel qualified to address. Acknowledging my
limitations, I have turned complete control of the classroom implementation of the comic books over to Dr.
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Evans and her staff of teachers. Likewise, I have given Dr. Tassell complete control over the assessment of
the effectiveness of the comics with the students.

Implementation in the classroom. At the time of this submission, the comics have not yet been introduced
to the classrooms. My understanding of the implementation plan is that they will be introduced in a “fun
and playful” context, perhaps as a part of center time or as a reward for good behavior or achievement.
They will not be presented as a textbook – the whole idea is that the students see this as a comic first, that
just happens to have some math ideas in it. I have been asked by Dr. Evans and members of her staff to
develop some accompanying worksheets for students and teacher’s guides to give an in-depth discussion on
the mathematical content of the comics and how it relates to NCTM standards, which I will gladly develop.
It has also been suggested that we let the students invent their own stories involving Wonderguy, Claire, and
Dillon, and submit them to me for future comics, which I also believe is a marvelous idea. The back cover
of each comic will solicit these types of ideas from the reader, and provide my contact information.

I am sure that actual classroom usage will suggest changes to improve the implementation plan. Again,
I feel that giving my experts in elementary education control over this aspect of the project is crucial to its
success.

Effectiveness of the Comics in the Classroom. While I or any other observer might think that this idea is
innovative, “cool”, etc., if it does not achieve the goals that we have set forth, then we need to either

• revise our product and/or its implementation, or

• let the project run its course and try something else.

We have Human Subjects Board approval for Dr. Tassell to have the students in the 3rd through 6th grade
classes at Cumberland Trace Elementary take surveys, measuring their initial attitudes toward mathematics.
Students will take a post-project survey at the end of the school year. We will also be collecting assessments
from the teachers using comics to gauge their opinions about how well the comics were received by students
and whether it helped and motivated their learning of mathematics. If these results are positive, then we may
pursue funding to continue producing comic books on a larger scale.

5 Conclusion

Regardless of the outcome, I can truly say that this has been one of the most enjoyable grant projects I
have ever undertaken. At present, that enjoyment comes from the artistic process of writing the stories, and
then drawing out the scenes, and then turning them into the finished color comic books. The pride that I
felt with the first completed comic is comparable to the pride I felt with my first accepted paper in a peer-
reviewed journal. I hope to feel that same pride when the results from using the comics in the classrooms is
known.
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Abstract
Nonlinear projection is a current area of research in computer graphics. It provides a meeting place between science
and art. After describing motivations for use of nonlinear projection, we provide a brief survey of different techniques
for nonlinear projection described in computer graphics literature. We then examine several cases of how and when
artists choose to use nonlinear projection, as opposed to perspective projection, and how these might be achieved
with current computer graphics techniques. Lastly, we provide a synopsis of the Flexible Projection Framework and
then describe how it was used in a collaborative project between an artist and a computer scientist.

1 Introduction

One of the most difficult aspects of creating images is determining how to represent three dimensional scenes
on a two dimensional medium. This process of moving from three dimensions down to two dimensions is
known as projection and it is not easy. The specific type of projection (if any) and our adherence to this
type can drastically affect the impression an image makes. Some projections can make images seem very
realistic; others can make the images surrealistic. Use of particular projections can create images that make
you feel like you are within or close to the image; other projections create images that exaggerate a divide
between you, the viewer, and the scene being portrayed [9].

Projection is an interesting meeting point between art and science. The scientific approach to projection is
to view it as the mathematical reduction of dimension and organization of the reduced dimension’s space.
From here formulae, geometries, and spaces are theorized and derived. Artistically, projection is a means of
organizing space, relationships between objects, and the observer’s presence in an image.

By far the most familiar type of projection is perspective projection. This is the type of projection produced
by most cameras and is seen widely in Western art. However, both before and after the discovery and
formalization of perspective projection, artists have made use of other types of projection. The most prevalent
examples are the many projections that have been developed to represent the earth on a flat surface. A long
history of cartographic development has been explored by Snyder [15].

In computer graphics, projection has mostly been limited to projections that are linear in nature; that can
be represented as linear transformations. The two common examples of such projections are perspective
and orthographic. Recently a number of researchers have begun exploring other possibilities for nonlinear
projection.

In this paper we begin with a brief survey of current computer graphics approaches to nonlinear projection.
Then we look at some examples of the use of nonlinear projection in art and discuss how these might be re-
produced with computer graphics techniques. We then describe our nonlinear projection technique, Flexible
Projection [3] and how this technique was used in a collaborative art project.
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2 Nonlinear Projection in Computer Graphics

Salomon [12] describes a wide variety of nonlinear projections including a variety of panoramas as well as
fisheye, false perspective, telescopic, and microscopic projections. Wyvill and McNaughton [19] describe
projections used in ray-tracing as a mapping between image space and rays that define and sample a volume.
They demonstrate how this mapping can be defined to produce fisheye and panoramic projections. Similarly
Glassner [6] defines ray tracing projections with two NURBS (Non-Uniform Rational B-spline) surfaces;
one surface positioning the rays’ origin, the other surface providing direction.

Nonlinear ray-tracing allows light to follow curved paths based on vectors fields [7, 18]. These projections
have been used to visualize the behavior of dynamical systems [7] and to visualize relativistic effects [18].

Yu and McMillan [21] describe a framework capable of reproducing a wide variety of linear projections; that
is, projections with linear equations. Linear projections such as orthographic and perspective have useful
features such as mapping straight edges to straight lines in the image and are easily implemented in graphics
hardware. Subsequently Yu and McMillan provide a framework [20] for creating nonlinear projections by
using many of these linear projections together to create a single image. Image continuity is maintained
by careful construction and selection of neighboring projections. A similar approach is that of Trapp and
Döllner [16] where planar projections and non-planar projections are combined by placing tiles that cover
the image. Each tile corresponds to a planar or non-planar projection that is used to fill in the area of the tile.
These approaches can be considered multi-camera projections.

Multi-camera projections combine images produced by several cameras into a single image. The simplest
example of this is putting together a collage of images such as that expertly done in David Hockney’s Pearl-
blossom Highway No. 2, 1986 [9]. Examples in computer graphics that make use of this sort of technique
include Cubist Style Rendering [5], Automating Joiners [22], and Photographing Long Scenes with Multi-
Viewpoint Panoramas [1]. Rademacher and Bishop [11] provide an interesting variation where an image is
created by moving a camera along a path. At regular points along this path columns of pixels are captured
and placed beside one another to form an image.

A more advanced multi-camera approach, instead of combining images, is to combine objects in normalized
device coordinates after projection. Agrawala et al. [2] do exactly this, allowing each object to be individually
projected by a different perspective camera. These projections are then combined in normalized coordinates
where depth testing and clipping operations occur. Singh [14] and Coleman and Singh [4] expand upon this,
allowing objects to be projected by several cameras at once. Objects projected by more than one camera are
only projected once, with a camera that interpolates between camera settings.

The Flexible Projection Framework [3], discussed in more detail in Section 4, operates by using parametri-
cally modelled surfaces to define a viewing volume. We refer to Flexible Projection as a framework because
it provides common techniques and tools for creating a wide variety of linear and nonlinear projections. This
framework is able to reproduce all of the previously mentioned projections that incorporate a single viewing
volume (excluding most multi-camera techniques). It also allows curved paths through the volume that allow
for reproduction of the effects seen in nonlinear ray tracing.

Deformation is the manipulation, warping, or bending of the geometry of virtual objects. While often both
nonlinear projection and deformation can be used to achieve the same result, the major difference is that
nonlinear projection works with the camera; the geometry of the scene remains undisturbed and lighting
features such as shadows remain true to the geometry. An interesting work halfway between nonlinear
projection and deformation is that of Rademacher [10] where deformation is made dependent upon viewing
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direction.

3 Nonlinear Projection in Art

Nonlinear projection has been used widely in art, beginning with cave art and continuing to the present day.
In this section we investigate a few examples of nonlinear projection from the fine arts. We have chosen
these examples as they provide insight into why and how artists choose to use nonlinear projection in their
own creations.

Nonlinear Projection from Optics. In Secret Knowledge [9] David Hockney examines a variety of evidence
that leads him to conclude that many artists used concave mirrors and later lenses to construct images from
the early fifteenth century and onward. While these primitive lenses would allow artists to paint from a
moving image, a key limitation was the small size of the projected images. In general these images could be
no larger than 30 cm across.

As a consequence, if an artist wished to create a larger image, the artists would either have to try to repaint
the image larger without aid of optics, or project the scene a piece at a time and then blend the pieces
together into a unified whole. Images constructed in this fashion no longer strictly adhere to perspective
projection. Rather each object appears to be directly viewed (i.e., projected as if positioned in the center
of the field-of-view of a perspective projection). Hockney [9] points out that these composite projections
present a compelling closer view of the world because all parts of the scene are viewed straight on.

It seems quite clear that this type of nonlinear projection performed by artists is the inspiration for the multi-
camera projection systems discussed in Section 2. As this technique was originally created to bypass the
technical restrictions of early optics, one wonders if this truly is a good technique for composing nonlinear
projections. On the other hand, these techniques tie their approach to perspective projection, are based upon
a clear, physical metaphor (that of constructing a collage) and, lastly, they allow the user to concentrate on a
specific sections of the image, one at a time.

Van Gogh. Heelan [8] proposed that many of Vincent Van Gogh’s paintings from 1888 onwards portray the
subjective perception of constant curvature hyperbolic geometry; one such painting is that shown in Figure
1. In these paintings the projection is divided into three zones: near, intermediate, and far. In the near zone
of Figure 1 vertical and horizontal surfaces such as the bed’s footboard and the near chair appear to protrude
in a convex bulge. In the intermediate zone, containing the bed and the nightstand, objects appear much as
they do in a perspective image, while in the far zone, vertical and horizontal surfaces appear to be concave
and depth differences (e.g., foreshortening) become less noticeable, as seen in the far chair and the back
wall. Another difference is that the horizon will appears at a finite distance from the observer, rather than
at infinity as in a perspective projection [8]. Heelan maintains that Van Gogh’s paintings provide a visual
embodiment of the subjective spatial perception of binocular vision.

To examine how this sort of projection could be handled with graphics techniques, the key point is that the
projection changes as a function of the depth of the image, between the foreground, middle, and background.
This is well suited to Flexible Projection where the viewing volume can be altered to produce these changes
in projection at the desired depth in the scene. Additionally continuity of the viewing volume will ensure
smooth changes between the differing areas seen in the painting.

Creative Perspective. Watson’s book, How to use Creative Perspective [17] provides interesting insight
into techniques used by illustrators to create perspective projections as well as to modify them for various
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Figure 1: Vincent van Gogh, Dutch, 1853-1890,
The Bedroom, 1889, Oil on canvas, 29 x 36 5/8
in. (73.6 x 92.3 cm), Helen Birch Bartlett Memorial
Collection, 1926.417, The Art Institute of Chicago.
Photography c© The Art Institute of Chicago.

Figure 2: Top: a painting for an advertisement for
the Association of American Railroads. Image from
[17]. Bottom: an image where we have extended
lines from each pair of rails to examine the vanish-
ing points. In a perspective projection, assuming
that the rails are parallel, the rails should all con-
verge to the same point; our drawn lines show that
this is not the case.

purposes. He calls such modified projections creative perspective and notes that an artist who uses “per-
spective creatively [can] bend it to his uses rather than be limited always to strict conformity” [17]. These
manipulations are used: to allow the viewer to see structures that should be hidden, to change the scene
(usually by manipulating vanishing points) and improve its overall composition, to allow the viewpoint to
shift to more closely re-create human visual experience, and, lastly, to make the illustrations more dramatic
and interesting. This last point, while somewhat vague, is important. Manipulating the projection allows
illustrators to present objects in precisely the way they feel will have the desired impact.

We will examine two examples from this text. The first is the illustration of trains shown in the top of
Figure 2. According to Watson [17] the artist has purposefully altered the vanishing point of the rails in the
projection to compensate for eye movement across the picture; consequently this change makes the scene
seem more natural.

The second example, shown in Figure 3, has a diagram showing how objects within the illustration have been
moved and reoriented. In the diagram we can see that the illustrator has slightly altered the orientation of
the wagon in relation to the horses, as well as the orientation of the horses to one another in order to present
the most dramatic views of each [17]. With these subtle changes the illustrator has maintained realism while
improving the produced image.

These two examples are difficult to describe as being best handled by any single computer graphics tech-
nique. The first example can be achieved with a multi-camera approach but care needs to be taken to achieve
a smooth transition between changing viewpoints. Flexible Projection could also be applied as its parametric
nature makes continuity easily achieved; however, adjusting the viewing volume to achieve the exact change
in vanishing points requires finesse. The second example is interesting in that it could be achieved through
a multicamera projection (one camera for the horses, the other for the engine), through Flexible Projec-
tion (where the viewing volume is shaped to produce a bend between the horses and engine), or through
deformation of the models and then using perspective projection.
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Figure 3: Left: illustration by Fred Freeman. Middle: sketch by Watson presents the illustration as if wagon
and horses are travelling in the same direction in perspective. Right: top down diagram of the horses’
position relative to the wagon as interpreted from the left image, assuming it was created with a perspective
projection. This diagram indicates how Freeman has positioned and adjusted the size of the horses from the
expected orientation of parallel to the engine. All images from [17].

4 Flexible Projection

This Section provides a synopsis of the Flexible Projection Framework as described in [3]. We have included
this to assist in understanding of how Flexible Projection was used in the project described in Section 5.

Flexible Projection is unusual as it approaches projection, a rendering technique, with modelling tools. The
primary concept is to define the viewing volume (the 3D volume that will appear in the 2D image) as a
parametric volume Q(u,v, t). This volume is defined so that the parameters u,v, and t correspond to the
width, height, and depth positions that will result in the projected image. This volume can be stretched and
reshaped to affect the projection and consequently the image.

While this volume can be defined in any manner whatsoever; we recommend using familiar surfaces to aid
in the definition. For example, consider perspective projection. This projection uses a frustum as its viewing
volume and is usually defined by an eye position, near surface, and far surface as shown. Such a frustum is
shown in Figure 4 with the axes for the u,v, t parameters marked. Due to the familiarity of this construction,
it makes sense to define Flexible Projections by defining a near and a far surface. We can then create our
volume by interpolating between these two surfaces:

Q(u,v, t) = (1− t)S0(u,v)+ tS1(u,v) umin ≤ u≤ umax,vmin ≤ v≤ vmax,0≤ t ≤ 1

where S0 and S1 are the near and far surfaces respectively. We do not include an eye position as many
projections do not feature a single eye position.

Interesting variations on projection can be obtained by altering the interpolation between surfaces. For
instance, by adding surface(s) between the near and far surfaces we can use Bézier curves to interpolate
between the surfaces, consequently obtaining greater control over the volume, as is shown in Figure 5. This
results in a definition of our volume as:

Q(u,v, t) =
n−1

∑
i=0

Bi,n−1(t)Si(u,v)

where Bi,d(t) is the Bernstein polynomial
(

d
i

)
t i(1− t)d−i and Si is the ith surface (making Sn−1 the far

surface). Certainly other curve schemes could prove useful for this interpolation, however the ability of
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Figure 4: A perspective projec-
tion’s viewing volume. The vol-
ume is bounded by the near and
far planes (green) and the sides
of the frustum (yellow).

u

v

t

Figure 5: Flexible projection using nonlinear interpolation. Left: the
projection volume. The large green curved surface is the near surface, the
red rectangle in front of the car is used to curve the volume, and the green
rectangle behind the car is the far surface. Right: the projected result.

Bézier curves to interpolate the near and far surfaces makes this curve scheme a useful place to start. Figure
5 shows how a curved volume can be created to show the front, back, and side of a car at the same time.

Projection in the volume occurs based on surface parameterization. We can imagine projection occurring
by following light paths through the volume. The paths the light follows are iso-curves within the volume,
known as projectors, that are defined by fixing u,v values Q(u,v, t) = Qu,v(t). For surfaces that flatten easily,
image creation is a matter of scaling parameter values by the desired pixel dimensions of the image. For
surface parameterizations that do not map directly to an image (i.e., the case of a hemisphere parameterized
by polar coordinates) an additional step of reparameterization is necessary. This reparameterization step can
additionally be used to apply distortions to the final image (e.g., zooming into particular areas, etc).

In implementation, projection of these viewing volumes occurs in one of two ways. The first and simplest is
through ray tracing. Upon determining the parameter values u0,v0 that correspond to a particular pixel, the
corresponding ray is the projector Qu0,v0(t). If the volume has not been linearly interpolated, the projector
is not a linear curve and thus not suitable for the usual ray-tracing algorithm. There are two options to
proceed, the first as Gröller [7] suggests, is to break the curve into linear pieces that approximate the curve
and proceed with ray-tracing. The option suggested by Brosz et al. [3] is to limit our volumes to quadratic
curves and compute object-quadratic intersections.

The other approach to implementation is to derive projection equations by finding the inverse of Q:

Q−1(x,y,z) = (u,v, t).

While such an inverse is not always possible to derive analytically, there are several cases where analytical
solutions are possible. Once a projection equation has been determined, projection can then be performed by
vertex or geometry shaders in graphics hardware to achieve realtime rendering through rasterization. One last
note is that rasterization makes use of linear interpolation, causing inaccuracies when triangles are deformed
to curved shapes. These inaccuracies can be minimized with the use of high resolution models.
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5 Using Flexible Projection in an Art Installation

As a part of a collaborative course between the Alberta College of Art and Design (ACAD) and the University
of Calgary Hao Wang and John Brosz set out to complete a project combining artistic and scientific purposes.
The project’s goal became an art installation, Perspectives, that aimed to explore the 2008 confrontation
between Tibetans and the Chinese authority. In particular, this project portrayed news images from distorted
viewpoints representing the biases that exist in the media as well as between the involved parties. The
produced images do not just represent pictorial organization but are instead intended to reflect different
constructions of this issue and the world in general.

The scientific aspect of this project was the use of Flexible Projection to provide a variety of distorted
outlooks in realtime. Flexible Projection was particularly useful in creating projections for this purpose
in two ways. The first was that these projections could be adjusted to affect different depths of the scene
differently; as a result, the background of the scene could feature a different kind of distortion than the
foreground. Another aspect was that Flexible Projections can be animated by moving the projection surfaces
over time. This added an extra impression of change and distortion. Together, this allowed creation of
projections that provided very different outlooks into the 3d virtual world.

As our goal was to produce realtime renderings, we needed to derive projections equations (i.e., Q−1(x,y,z) =
(u,v, t)) allowing us to take an arbitrary point p = (x,y,z) and then project it into device coordinates. As
mentioned, for arbitrary volumes, finding Q−1 is difficult or impossible. To solve this, we limited ourselves
to projection with viewing volumes where t (depth) can be easily calculated given p. With t determined in
the viewing volume Q(u,v, t) we can extract a parametric surface Qt(u,v). The next step is to find the specific
values of (u,v) such that Qt(u,v) = p. This leads to solve for two variables given three equations (one for
each coordinate: x, y, and z). This can be solved for many parametric surfaces including the two that we
made use of: parametrized spheres and bilinear patches.

To ensure we could calculate t, we relied upon two scenarios. The first is to define the viewing volume
with surfaces that are pieces of spheres with a common center. Then t can be calculated by comparing the
distance of p from this center, to the spheres’ radii. The other scenario is to use surfaces that are planar and
have a common surface normal. Then by projecting p onto this normal, and calculating distances between
the surfaces, t can again be determined.

Sixteen different projections were developed. The only projection making use of parameterized spheres
was a hemispherical projection (also known as fisheye) that was defined by a small hemisphere as the near
surface and a larger one as the far surface. The other projections were defined by bilinear patches that, in
turn, were defined by their corner points. The simplest projection recreated a perspective projection using
two rectangular surfaces as shown in Figure 6(a).

The remaining fourteen projections were essentially chosen to be variations on perspective projection. This
was a deliberate decision, made because it allowed the resulting projections to be different enough to be
noticeable and eye-catching, but retain enough familiar characteristics to be intelligible. The modifications
we made included: swapping the near and far surfaces to create an inverse perspective projection, moving
the far surface relative to the near surface to create off-axis perspective projection, making the tops of the
near and far surfaces narrower than the bottoms to expand the top of the image, and decreasing the height
of the near surface as shown in Figure 6(b) to cause stretching of objects close to the near surface. More
complex modifications were created by adding an intermediate surface between the near and far surfaces to
allow for nonlinear projectors. In one projection, shown in Figure 6(c), this intermediate surface has been
placed below the near and far surfaces causing projectors to travel downward before curving upward to reach
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(a) Perspective projection (for comparison). (b) A projection where the near surface is a line, same
view position as (a).

(c) Projection that causes the ground to appear to bulge
upwards, same view position as (a).

(d) Twisted projection; causes rotation around the center
of projection, view position near to that of Figure 7.

Figure 6: Projection diagrams (left) and resulting images (right). In the diagrams the near and far surfaces
are green, the viewing volume is yellow, and projectors are shown with lines. The red middle surfaces in (c)
and (d) are used to curve the volume.

the far surface. This produces an upward bulge in the midground of the produced images. A more exciting
result is caused by introducing this intermediate surface and then rotating the far surface by ninety degrees.
This, as shown in Figure 6(d), results in a twisting through the depth of the image.

Two animated projections were created. The first simply increased and decreased the size of the far plane
over time. The second, shown in Figure 7, translated an intermediate surface around the center of projection.

The project itself made use of a game-like 3d environment with limited interaction. The environment, shown
in Figure 8, was textured with news stories and images related to recent events in Tibet and related protests
in Canada. Two modular ambient display screens [13] were used, each presenting a different virtual camera
with a different projection of the environment. Each camera is then translated and rotated along a cyclical
path through the environment. The interactive element of the projection was a button that randomly changed
the projections used on both screens. Realtime rendering was at a rate of approximately 25 frames per
seconds on two display devices of 1280 by 1024 resolution with an Intel Core2 6600 CPU, an NVIDIA 7800
video card, and 2 GB of system RAM. For the installation, the two displays with different projections were
placed side by side at eye level. The installation setup is shown in Figure 9 and was presented at the ACAD
graduation show in May 2008.

6 Conclusions and Future Work

In this work we have provided motivation for use of nonlinear projection. We have described specific exam-
ples where artists have used nonlinear projection. Additionally we have provided a short survey of current
nonlinear projection techniques developed for computer graphics and shown how these technique could be
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Figure 7: Keyframes of an animated projection. The middle rect-
angle that controls the curving of the volume is moved in circles
causing the middle ground of the produced images to bend in a
circular motion.

Figure 8: The virtual environment used
in the project.

Figure 9: The Perspectives installation.

used to reproduce the artist created examples. We also have described a collaborative art and science project,
describing how it made use of Flexible Projection to create a wide variety of visual effects.

In Section 5 we attempt to ensure that our projections are visually understandable by only introducing vari-
ations on perspective projection. This ensures that visual cues such as foreshortening and vanishing points
are present (to some degree) in the resulting images. In particular we noted that the inverse perspective
projection that causes a reversal of foreshortening, causing near objects to appear smaller than far objects,
caused viewers of the installation difficulties. Further experimentation into restrictions or guidelines that
allow freedom, while ensuring intelligibility of the resulting image, is a definite area for future study. Also
of pertinence is that viewing of the animation (as opposed to a single image) as well as a known environment
(such as city sidewalks) assists viewers in interpreting the images.

Another interesting area would be to further explor the use of animated projections; that is, projection where
the projection surfaces move over time. One could imagine a camera rotation where near objects came into
view first, followed by the appearance of objects further away. The could be achieved by rotating the far
surface at a slower rate than the near surface. We were not able to achieve this in Flexible Projection due to
the current limitation on calculating Q−1. This is also an area of exploration for multi-camera projections.
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Abstract

In [1], Fernandez outlined an algebraic approach to the construction of Azulejo patterns. An open problem listed in 
this paper is “to describe the geometric features of these designs that account for their aesthetic properties.” This 
paper points to a direction to answer this problem. We identify aesthetic pleasantness with aesthetic challenge and
present two definitions of aesthetic challenge: (1) Aesthetic challenge can be partially defined and quantified by the 
number of English phrases needed to describe an Azulejo pattern; (2) We can also define aesthetic challenge as
equal to the number of primitive figures – isolated points and lines – in the fundamental octant of the Azulejo
pattern. We show that these two definitions correlate and that they provide an alternative to Fernandez’s purely 
algebraic approach for construction of Azulejo patterns. Several examples are presented showing that both 
approaches – the algebraic approach of Fernandez and the aesthetic challenge approach of the author - yield 
aesthetically pleasing designs. Future directions of research on the definition of aesthetic challenge are presented. 

1. Azulejo Patterns

Azulejos are the traditional designs used by Spanish artisans for many generations. They typically have a 
blue and white design painted on a ceramic tile. Federico Fernandez, a professional architect, described 
the mathematical properties of these varied and beautiful designs in [1]. Some examples of Azulejo and 
related patterns are presented below in Figure 1 which the reader is encouraged to review now.

    Intuitively, most people would consider the aesthetic pleasantness of the patterns in Figure 1 to increase 
as one goes from the two patterns in the leftmost column to the two patterns in the rightmost column.  
Fernandez’s goal, in his paper, was to find an algorithm that would exclusively produce patterns
considered aesthetically pleasing by most people.  The Fernandez algorithm does not, for example, 
produce the two patterns in the leftmost column of Figure 1. There are however, two areas for 
improvement in the Fernandez algorithm: (1) The Fernandez algorithm may occasionally produce patterns 
that are not considered aesthetically pleasing; the algorithm user must simply discard those patterns and 
produce new ones. (2) The Fernandez algorithm simply produces patterns without in any way 
distinguishing those patterns that are more aesthetically pleasing than others. For example, the Fernandez 
algorithm does not distinguish between the aesthetic appeal of the patterns in the middle and rightmost
columns of Figure 1.

    In an attempt to remedy these problems, in Sections 3 and 4 we present two definitions of aesthetic
pleasantness or aesthetic challenge, both definitions involving numerically quantifiable entities. We show 
that these two definitions highly correleate. Using these two definitions we proceed, in Section 4, to 
present an alternative to the Fernandez algorithm for producing Azulejo patterns. The patterns produced 
by the algorithm presented in this paper seem comparable in aesthetic pleasantness to the patterns
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produced by the Fernandez algorithm.  Nevertheless, as with the Fernandez algorithm, the algorithms 
presented in this paper occasionally produce patterns that most people would not consider pleasing.

    In this introductory section, we briefly sketch some important features of the Fernandez algorithm and 
indicate major areas where the approach presented in this paper differs.

    Fernandez starts Azulejo construction by computing the orbits of certain matrices acting on the integer 
lattice Z x Z and then extends the resulting sets by closing them under the actions of a subgroup of the 
dihedral group, D4. Fernandez’s method also allows elimination of the “simplistic” patterns presented in 
the leftmost column of Figure 1. As already pointed out the resulting Fernandez algorithm occasionally 
produces patterns that are not considered aesthetically pleasing and which must be discarded and replaced

    In a closing section of his paper Fernandez points to certain constructs, the fundamental octant and the 
fundamental N-square, which he says may point the way to a solution of the problem of defining 
aesthetic pleasantness.

                         
Figure 1: Six patterns with varying levels of aesthetic challenge.  Figures 1(b),(c),(e) and (f) follow the 
method in the Fernandez paper. Figures 1(a) and (d) are rejected as Azulejos by the Fernandez method 
but are brought here for purposes of contrast. More detail is presented in the text.

    The approach presented in this paper differs in two ways from the approach of Fernandez. First, in this 
paper we reverse the sequence in the Fernandez algorithm: Our approach to construction of Azulejo
patterns, presented in Section 2, starts with the construction of a fundamental octant, a subset of Zn x Zn,
and then proceeds to extend this set of points by closing them under the actions of the dihedral group, D4. 
This gives us a fundamental n x n square from which we can build up the entire Azulejo pattern by a 
process of translation. The second and major innovation introduced in this paper is that we do not use 
algebraic methods to construct the fundamental octant. Instead, we use complexity, a numerical quantity, 
defined in Sections 3 and 4, that seems to correlate with aesthetic pleasantness.

  
2. The Azulejo Algorithm

In this section we present an algorithm for construction of Azulejo patterns that is equivalent to the
Fernandez algorithm.  We also indicate which algorithm steps are modified by our approach. To facilitate
the readability of this section which is addressed both to mathematicians and to a less technical audience 
we first describe the algorithm visually and then present the algorithm formally.
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Figure 2: Fundamental octant (c) and fundamental N-square (d) for the Azulejo presented in Figure 1(b).

Informal visual description. The Fernandez algorithm has five steps. They will be illustrated using the 
Azulejo presented in Figure 1(b). Figures supporting the algorithm description are presented in Figure 2. 
1. Pixelation: It is important to emphasize that the Fernandez algorithm begins by perceiving the plane 

as represented by a grid of pixels. Each pixel has a unique address given by the Cartesian coordinates 
of its lower right corner. This is illustrated in Figure 2(a).  As is traditional, we identify each pixel 
with its address. For example the pixel in the lower left corner in Figure 2(a) is identified with the 
“address” (1,-3). Fernandez introduced pixelation since it powerfully allows the description of 
complex figures and patterns using simply computed arithmetic functions. For computational reasons 
we use a square with positive x coordinates and negative y coordinates.

2. The fundamental octant:  To begin Azulejo construction one starts with an n x n square of pixels as 
illustrated in Figure 2(a).  Here, n is an arbitrary integer selected by the algorithm user. We then select 
the pixels in the lower half of the lower right quadrant, illustrated in Figure 2(b). We call this lower 
half of the lower right quadrant the fundamental octant.

3. The octant pattern: The Fernandez algorithm requires filling-in, or coloring black, certain pixels in the 
fundamental octant.  The addresses of the pixels to be colored black are given by arithmetic 
functions.  Figure 2(c) illustrates one such octant pattern. Details are provided in the next subsection.

4. The N-square pattern: If the reader carefully studies the relation between Figures 2(c) and (d) (s)he 
will see that  the octant pattern in Figure 2(c) is simply reflected vertically, horizontally and 
diagonally in Figure 2(d). More precisely, Figure 2(c) consists of the pixel in the lower right corner, 
with an additional three-pixel pattern, while Figure 2(d) consists of the pixel in the lower right corner 
and an eight-fold repetition of the three-pixel pattern. This eight-fold repetition is accomplished by 
applying all combinations of horizontal, vertical and diagonal reflections. A formal description of the 
symmetries that transform Figure 2(c) into Figure 2(d) is given in the next subsection. 

5. The Azulejo pattern: If the reader carefully studies the relation between Figure 1(b) and Figure 2(d) 
(s)he will see that the Azulejo presented in Figure 1(b) is simply a “translation” of Figure 2(d) 
throughout the plane.

Formal Description. The formal description of the five steps listed in the last subsection are as follows:
1. Pixelation:  We use a traditional Cartesian system. The pixel associated with address (x,y) is the 

unique pixel whose lower right coordinates are (x,y) – e.g. (1,-3) is the lower left corner of Figure 2(a)
2. The fundamental octant:  To formalize the algorithm we suppose that  n  is a positive integer with 

positive divisor d and k is an integer with 0 ≤  k ≤ d - 1. The fundamental octant is defined as the 
collection of pixels whose addresses (x,y) satisfy the fundamental octant inequality, n/2 ≤ x,-y ≤   n.
Throughout this section we illustrate with n = 10, d = 10 and k = 3.

3. The octant pattern:  
a. To describe the pixels that will be colored black in the fundamental octant, Fernandez begins 

with the function x(d,0) + y(k, n/d) where x and y are arbitrary integers. For example, when  
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x = 6 and y = 7 this function equals 6(10,0) + 7(3,10/10) = (81,7).  
b. We next introduce the function [ ] defined as follows: if x and y  are integers, then we define 

[(x,y)] = (a,b), with 1 ≤ a,-b ≤ n and x ≡ a, y ≡ b (mod n).  For example, [(81,7)] = (1,-3). 
Heuristically, [ ] maps each pixel to its translate in the [1,n] x [-1,-n] square. 

c. We need a function to take the pixel (1,-3) to its “related pixel” in the fundamental octant. 
Formally, for 1 ≤  x,-y ≤ n, we define a function by <(x,y)> = (a,b), with n/2 ≤ a,-b ≤ n and 
(a,b) is a member of {[(±x, ±y)], [(±y, ±x)]}; e.g., <(1,-3)> = (9,-7).

d. Summary: Fernandez, by applying the functions [ ] and < > to the function x(d,0) + y(k, n/d),
where x and y are arbitrary integers, associates each x and y with a pixel in the fundamental 
octant which is to be colored black.

4. The N-square pattern:  Finally, we need an arithmetic method to take each pixel in the fundamental 
octant, and give all “related pixels” in the fundamental N-square.  Formally, for n/2 ≤ x,-y ≤ n we 
define <<(x,y)>> = {(a,b): <(a,b)> = <(x,y)> and 1 ≤  a,-b ≤ n}. For example, <<(1,-3)>> = {(1,-3), 
(1,-7), (9, -3), (9, -7), (7,-9), (7,-1), (3,-1), (3,-9)}.  The mathematical reader will recognize << >> as 
giving the orbit of a pixel modulo n under the actions of the dihedral group, D4. Heuristically, the 
dihedral group takes the pattern in the fundamental octant and reflects it in all 8 combinations of 
vertical, horizontal and diagonal symmetry.

5. The Azulejo pattern: Let O(n,d,k) denote the set of pixels in the fundamental octant. We define the 
fundamental N-square, N(n,d,k) = <<O(n,d,k)>>.  Here the function << >> applied to a set is simply 
the union of << >> applied to all members of that set. Heuristically, N is the orbit of O under the 
actions, modulo n, of the dihedral group, D4, and consequently N lies in the rectangle of pixels
[1,n] x [-1,-n]). Finally,  we define,  A(n,d,k)  = U {N(n,d,k)  + (x,y)): x and y varying over all 
integers,} (that is, A is the union of all integral translates of the N square)

    To increase richness and variety of patterns Fernandez allowed construction of Azulejos based on a set 
of integers K. Here, O(n,d,K) is simply the set-theoretic union of the O(n,d,k) as k varies over members of 
K.  We then define N(n,d,K) and A(n,d,K)  in the obvious ways. Examples are given in later sections.

The author’s algorithm: The author’s algorithm differs from the Fernandez algorithm only in step 3: 
Whereas Fernandez used the function x(d,0) + y(k, n/d) to generate the pixels in the fundamental octant
pattern, the author allows a random selection of pixels to be colored black provided the selected set of 
pixels has sufficient complexity. Complexity is defined in the next two sections.

3. Aesthetic Pleasantness

In this and the next section we outline our approach to the definition of aesthetically pleasing. We first 
identify aesthetic pleasantness with aesthetic challenge. In this section we explore the informal heuristic 
that the aesthetic challenge of an Azulejo pattern can be numerically quantified by the number of English 
phrases needed to describe it. We illustrate this approach using the three columns of Azulejo patterns 
presented in Figure 1:

 The leftmost column has aesthetic challenge 1: This corresponds to the fact that we would 
describe Figure 1(d) as a lattice of squares and Figure 1(a) as a lattice of diamonds. The 
numerical value of aesthetic challenge equal to one comes from the single underlined term 
needed to describe the figure. (Fernandez ruled out these patterns as Azulejo patterns by using 
algebraic criteria. However our approach will be to allow all patterns, classify them, and then 
only use the more complex ones.)

 The middle column has aesthetic challenge 2: This corresponds to the fact that we would describe 
Figure 1(b) as an alternating lattice of circles and points, or as an alternating lattice of octagons
and points, and we would describe Figure 1(e) as a lattice of diamonds with inscribed squares.
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The numerical value of aesthetic challenge equal to two comes from the two underlined terms 
needed to describe the figure. Notice that these descriptions are not complete. For example, the 
diamonds in Figure 1(e) use punctured lines for their sides. However, the basic bird’s-eyeview 
description of the figure is diamonds with inscribed squares. As indicated above, this method of 
measuring aesthetic pleasantness by counting phrases, is informal.

 The rightmost column has aesthetic challenge 3+: To describe either pattern in the rightmost
column we need at least three descriptors, possibly more. For example, Figure 1(c) has the 
following subthemes: (1) octagons of points with a point in the center, (2) four sets of a pair of 
solid rectangles surrounding a blank square and (3) two opposing sets of solid rectangle pairs
surrounding a point. There are of course other ways of describing the Azulejo pattern but they all 
involve a reference to at least three subthemes.  Similarly Figure 1(f) may be described using the 
following subthemes: (1) A white square with a central dot, (2) two opposing solid rectangles
with a white slit separating them and white center, (3) a white dot, inscribed in a black square, 
inscribed in a rounded white square with ornaments. Again, other descriptions are possible but 
they all would use at least three basic subthemes. Also note that the above descriptions of Figure
1(c) and Figure 1(f) are informal in the precise sense that an outside person could not reproduce
the Azulejo pattern from the three subthemes because there is further richness to the pattern.

    Frequently, in a mathematics paper, definitions are presented as is without further defense. However, in 
this paper we are using a definition to capture a human concept - aesthetic pleasantness. We therefore 
review the heuristic arguments for number of English phrases capturing aesthetic pleasantness:  

    The basic psychological assumption used is that the challenge to the viewer to identify patterns in a 
figure creates a sense of accomplishment, satisfaction, and aesthetic pleasantness. The viewer of Figures 
1(a), (b), (d), and (e) can instantly recognize and understand these patterns; there is no further challenge; 
hence these patterns are not aesthetically challenging. By contrast, Figures 1(c) and (f) are more 
challenging, since more sub-patterns must be identified. Note particularly that a random array of dots 
would not be as challenging. The important point to emphasize is that there is challenge coupled with 
partial accomplishment. Consequently, Figures 1(c) and (f) are very challenging because the viewer 
trying to discern the multiple underlying patterns only achieves a partial success by identifying several 
various subthemes which however only cover a significant part of the pattern.

    For purposes of this paper we will suffice with (arbitrarily) categorizing challenge levels as equal to 1,
2 and 3+. In the next section, we continue our attempt to numerically quantify aesthetic challenge.

4. Fundamental Octant Complexity

As explained in the last section, Figure 1(b) requires two English keywords to describe the pattern. 
Heuristically, we would like to argue that the fundamental octant for this figure, exhibited in Figure 2(c),
is overly simplistic, containing one line segment and 2 pixels; this octant simplicity gives rise to the 
simplicity of Figure 1(b). To facilitate formalizing this intuition of octant complexity we first present a
simple lemma describing the relation between the fundamental octant and the full Azulejo pattern.

    Lemma 1: Let O be the fundamental octant with fundamental square N, of an Azulejo pattern,
A(n,d,K).

(a) A singleton pixel, (n,-n) in the set O gives rise to one pixel in N. Similarly if n is even then 
(n/2, -n/2) in the set O gives rise to one pixel in N.

(b) A singleton pixel (m,-m) in the set O, with m ≠ n, m ≠ n/2, gives rise to 4 pixels in N.
(c) A singleton pixel (n,-k) in the set O, with k ≠ n,   k ≠ n/2   gives rise to 4 pixels in N.
(d) A singleton pixel (j,-k) in the set O, with j ≠ k, j,k ≠ n,   j,k ≠ n/2,  gives rise to 8 pixels in N.
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(e) If n is even then the singleton pixel (n, -n/2) in O gives rise to 2 pixels in N.

    Proof: Parts (a) - (e) all follow from the the definition of << >> and the fundamental octant inequality. 
For example <<(n,-n)>> = {(n,-n)} since [(±n, ±n)] = (n,-n) by our conventions of representatives of Zn. 
Similarly for case (d) the << >> function produces the orbit of (j,-k) under the dihedral group, D4, which 
has 8 pixels.

    We now define, C = C(n,d,K), the octant complexity level, as follows:
a) For each vertical, horizontal, diagonal and anti-diagonal “line” with two or more pixels in 

O – {(n,-n)} we assign a value of one; (if a pixel in O - {(n,-n)} is shared by two such lines then 
both lines are assigned a value of one); here, by the term “line” we mean any collection of filled-
in pixels, not necessarily consecutive, whose addresses satisfy a linear equation (note, since we 
only allow horizontal, vertical and (anti)-diagonal lines the slope must be 0,1,-1, or infinity).

b) For each remaining pixel not on any of the lines enumerated in (a) we assign a value of one.
C is defined as the sum of assigned values.

                               
Figure 3: The fundamental octants and their complexities, for the six Azulejo patterns in Figure 1.
The verification of the numerical complexities is left as an exercise for the reader.

    Three points should be noted about our definition of complexity: (1) The numerical complexity, C,
increases as one goes from the leftmost column to the rightmost column in Figure 1. (2) The octant 
complexity, C, correlates with the number-of-English-phrases complexity introduced in the last section.  
(3) Our definition of complexity surprisingly avoids any mention of symmetry! The Section-2 description 
of the Fernandez algorithm shows an ingenious separation of a symmetry component (Step 4) from a non-
symmetry component (Step 3). That is, the octant pattern (Step 3) need not have any symmetry since by 
applying the dihedral group symmetries (Step 4) the resulting Azulejo will have symmetry.

   We are now ready to identify the non-algebraic criteria used in this paper for constructing octants.

    Definition: An octant is said to be minimally aesthetically challenging if its octant complexity is at least 
3. An octant is said to be very aesthetically challenging if its octant complexity is at least 10 (this choice 
of 10 in the definition is somewhat arbitrary). The corresponding Azulejo pattern is said to be minimally 
or very aesthetically challenging if its octant is minimally or very aesthetically challenging.

    As already indicated at the end of Section 2, Fernandez constructed the fundamental octant using 
certain simple linear arithmetic functions. The position of the author is that a random approach to octant 
pattern construction is equally capable of producing aesthetically pleasing patterns.
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5. Aesthetically Pleasing Azulejos Based on Random Octants

The goal of this section is to compare the aesthetic pleasantness of Azulejos whose octant construction is
based on complexity vs. an algebraic definition. The octants and corresponding Azulejos are presented in 
Figures 4 and 5 respectively which the reader is invited to review now. The reader can readily compare 
the aesthetic pleasantness of these Azulejos to verify the thesis of this paper that a complexity approach to 
octant construction is a viable alternative to Fernandez’s algebraic approach. The following additional 
points should be made:

    Figures 5(a) and 5(d) use Fernandez’s algebraic approach. The octants each have C > 20. As can be 
seen the Azulejos are indeed very aesthetically challenging. By contrast, Figures 5(b), (c), (e) and (f) use 
a pure complexity approach without an underlying algebraic generation.  Figures 4(b), (c), (e) and (f)
should be approached as follows:

   Figure 4(b) was a first attempt at aesthetic challenge without algebra. The octant has one pixel, one 
diagonal (left to right upward) and one vertical line. Its complexity is five (there are two extra downward 
diagonals (left to right). Figure 5(b) shows the corresponding Azulejo.  It can be described with three 
English phrases: (1) a pixel (2) inscribed in a diamond, (3) inscribed in a 4-corner-square. The three 
English phrases needed to describe the Azulejo clearly correspond to the three connected components of 
the octant: by lemma 1, the pixel in the lower right corner remains a pixel in the Azulejo, the upward (left 
to right) diagonal becomes a diamond, and the vertical line becomes a 4-corner-square. 

    Figure 5(b) is only minimally aesthetically challenging. It can be completely described with three 
English phrases. Figures 4(c), (e), and (f) are attempts to remedy this simplicity.
 Figure 4(c) “fixes” Figure 4(b) by adding an extra dot and an extra upward diagonal. The 

resulting Azulejo now requires five English phrases to describe it: a (1) pixel (2) inscribed inside 
a diamond (3) inscribed in a 4-pixel square (4) inscribed in a 4-corner square. Each set of four of 
these four-fold nested patterns forms a square with (5) a diamond in the center. Although this
Azulejo has complexity nine it is too transparent in the precise sense that it can be completely
described by the five phrases.

 Figure 4(e) “fixes” Figure 4(b) by adding a “random” assortment of dots. The resulting Azulejo 
pattern, Figure 5(e), is more aesthetically challenging in the precise sense that it can’t be 
completely described.

 Figure 4(f) goes one step beyond Figure 4(e) by providing a pure random assortment of dots 
without any lines.  Although C = 5, this pattern appears more aesthetically challenging than 
Figure 5(c) whose complexity equals 9.  The observation that many people consider Figure 4(f), 
with C = 5, more aesthetically challenging than Figure 4(c), with C = 9, strongly suggests that the 
definitions of aesthetic challenge presented in this paper are only useful approximations and that 
further research into a better definition of aesthetic challenge is needed.

    The above remarks suggest the following future directions of research, which were already raised in 
[1]. (1)  Do random dot assortments which miss lines produce aesthetically pleasing Azelujos? – if so, is 
there a way of numerically quantifying the complexity of random dot patterns?   (2) When there are 
competing lines, diagonals and pixels in an octant which ones will stand out in the resulting Azulejo?  
(3) What algebraic and graph theoretic properties of octants result in Azulejos that are completely 
describable?  (4) Figures 4(e) and 4(f) use knight jumps (1 diagonally down and 1 over) to produce the 
random dot configurations; is this method generalizable?
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Figure 4: Comparison of octants based on an algebraic definition (Figures a,d) vs. a complexity                                                

approach (Figures b, e, c, f). The corresponding Azulejos are presented in Figure 5.

                  
Figure 5: Azulejo patterns for the fundamental octants of Figure 4.
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Abstract 

 
Although mathematicians often use coordinates for the vertices of the Platonic solids, a physical sphere is not a priori 

situated within this same coordinate system.  In this paper, we describe how to locate points relative to one another on the surface 
of a sphere, in order to mark vertices and edges of each of the spherically projected Platonic solids without first coordinatizing.  
While certain methods for the cube and octahedron are standard and the tetrahedron method is known in the temari community, 
and is clear to any mathematician, in this paper, one procedure that leads to all three is given as a necessary first step to finding 
the dodecahedron.  The author believes the dodecahedron and icosahedron procedures to be original to Western language 
scholarship.  While some steps are theoretically exact, others only approximate; however at one step the approximation can be 
made as exact as one desires.  Furthermore, the procedures allow for making adjustments to account for the fact that physical 
balls always fail to be perfect spheres.   
 

1. Art---Motivation and Applications 
 
Humans are drawn to the spherical form and to symmetrical division.  What could be more natural than 
artists wishing to divide spheres into congruent regions for the purpose of decoration?  Indeed, this occurs 
across media with wood, ceramics, painting, and embroidery to name but a few.  This author can imagine 
many other applications.  For examples of existing artwork incorporating exact subdivision of spheres, 
see Figure 1.  
 

             
 
Figure 1:  From left to right---Roads Untaken, by George Hart, wood tiled fiberglass sphere [3]; Sphere 

of Influence, by Richard Weber, carved ceramic spherical rattle [11]; Which Way, by Dick Termes, 
painted sphere [7]; temari ball with cube/octahedral symmetry, by the author. 

 
Only one of the pieces in Figure 1 was divided into a projected Platonic solid.  Yet Hart’s piece is 
fundamentally based upon a truncated Platonic solid. [4] Termes’ piece comes from taking a projected 
icosahedron, dividing each triangle into three subtriangles by connecting the incenter with the vertices, 
and then forming diamonds by pairing triangles across the original trianglar boundaries.  Auxiliary 
triangles have been drawn that obscure this construction.   To learn about his multiperspective technique, 
consult his website. [8]  Weber’s ceramic sphere relies only on sectors, but one can imagine him using 
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Platonic projection to inform future designs, given the large variety of divisions he has already employed.  
[11]  
 

This author frequently works within the medium of wrapped and embroidered Japanese thread balls, 
called temari balls.  The inspiration for this paper came from the mathematical impurity of the standard 
method for dividing the sphere for a projected dodecahedral/icosahedral subdivision, known as a C10 
subdivision in the temari literature. Hence, the goal was to find a simultaneously theoretically more exact 
and technically purer method for making this subdivision. The techniques used here are derived from the 
traditional Japanese techniques of measuring with paper tape, and directions are given as though pins can 
be pushed into the sphere, as if it were made of Styrofoam.  If this is not possible, such as if the sphere is 
made of glass or metal, perhaps the pinheads can be affixed to the sphere pointing outwards with glue.   
However, with smooth media it may be easiest to use only one pin (the North Pole on which the paper 
tape swivels) and to mark all other pinpoints and edges with pencil or other erasable marker. Nonetheless, 
any artist interested in dividing his or her spherical region into those given by a projected Platonic solid 
will be able to do so by following the essence of these directions.   
 

2.  Geometric Applications---Math in the Wild 
 

Imagine holding in your hand a ball, or better yet, go get a ball---a super ball, tennis ball, Styrofoam ball, 
metal ball, or any other ball.  Notice that what you have is round, but not a perfect sphere.  Observe that 
finding the diameter is not immediate.  Finding the circumference is much more natural, but this too poses 
a challenge.  How will you know when you have the circumference rather than something close?  What 
will you use to find the circumference?  A rubber band?  A piece of string? A paper tape?  Using our 
methods, we will not need to measure distances per se, but will use only relative distances.  Therefore, we 
will not need a ruler.  However, we will need to be able to record distances for future reference, such as 
for division.  Therefore, a rubber band will not work for our purposes.  The string will only work if it has 
no elasticity.  A paper tape, a thin strip of paper, will work best, because it has no elasticity, and we will 
be able to record our observations directly onto our measuring device with a pen or pencil. 
 

In what follows, we describe a procedure to divide a ball into sections defined by the central 
projection of an inscribed Platonic solid onto the surface of the ball.  With paper tape, origami techniques, 
two colors of pins (black and white), a pen, and thread, we can mark the surface of a ball with the vertices 
and edges of any Platonic solid.   We make no attempt to use the known coordinates of the Platonic solids 
or to situate the ball within a coordinate system.  
 

3.  Finding the Circumference of the Sphere 
 

How do we determine the circumference of the given sphere? Near one end of a paper tape, place a black 
pin through the paper tape and into the ball.   Wrap the tape around the sphere, attempting to form a great 
circle, and make a fold in the tape where the paper meets the pin.  If the paper really constitutes a great 
circle at this point, then this is the longest the tape will be and still lie flat around the ball.  If not, then 
when the loop of tape is swiveled around the ball, there will be some other position at which the tape will 
need to be longer in order to reach the pin while lying flat around the ball.  So, to check that the paper is 
the right length from pin to fold, turn the ball around the pin, holding the paper tape fixed and reflattening 
the tape as the ball is turned.  If the tape continues to just reach the pin exactly, then the initial 
circumference estimate was correct. However, if the length of tape undershoots the pin at some points as 
the ball is turned, then make sure to straighten the tape and refold it to lengthen the distance to the fold so 
that the new distance just reaches the pin.  Remember that because we want a great circle, the tape will 
always be lengthened, never shortened.   
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4.  Marking a North/South Pole Pair on the Sphere 
 

All of the Platonic solids except for the tetrahedron have antipodal vertex pairs.  Therefore, we wish to 
mark one such pair.  We may rename the pin already placed through the paper tape (used to find the 
circumference of the ball) the North Pole.  The antipodal point to this is the South Pole, which is halfway 
around the ball. To find this new point, fold the distance on the paper tape measuring the circumference in 
half, and then we can easily measure the distance from the North Pole to the South Pole. Swiveling the 
tape any direction is valid, as all great circles should have the same length. Place a black pin, not through 
the paper tape, at the South Pole, as shown in Figure 2.  Because the ball is not perfectly spherical, 
prudence suggests checking pin placement by measuring the half circumference from the North Pole by 
swiveling the ball and holding onto the paper tape, as before.  The South Pole pin may have to be moved 
slightly a few times until it is in a suitable spot from all directions, that is, it is close to being equidistant 
from the North Pole measured in all directions.  This adjustment may be necessary be due to thickness of 
the paper obfuscating initial pin placement as much as ball defect.   

  

 
 

Figure 2: Fold the circumference length in half, flatten the tape against the sphere, and place the 
South Pole pin at the center end of the tape.  

 
5.  Marking a Projected Cube, Octahedron, or Tetrahedron 

 
In the temari literature, the projected octahedron marking, known as C6 is commonly marked separately 
from the projected cube marking, known as C8.  However, because our ultimate goal is to mark the 
projected dodecahedron, for which we will need to know the cube side length, we will not mark these 
separately here.  Rather we refer the reader to standard sources. [1,2,6,9,10,13]  Nevertheless, to begin the 
construction process, consider the six vertices of the octahedron shown in Figure 3:  there are three 
antipodal pairs, one of which we have already placed.  The other two pairs, made up of four points, we 
call equator points.  

 

 
 

Figure 3:  Octahedron with vertices marked as pole or equator points. 
 

equator 
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equator
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North 
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To place equator points, first fold the circumference tape (which should still be securely anchored at the 
North Pole) into fourths, and measure one half distance down the ball, placing eight to ten pins 
approximately equally spaced around the equator of the ball---that is, on the great circle lying equidistant 
between the North and South poles.  See Figure 4(a).  Now make a small cut through one half of the paper 
tape to the pin at the North Pole allowing removal of the paper tape without requiring disturbance of the 
pin placement.  Divide the circumference length into eights by folding.  This will be most accurate if 
halving folds are made one at a time rather than allowing paper thickness to build up.  Using the equator 
pins as a guideline, place the paper tape around the equator, abutting each pin from the same side of the 
ball, with circumference ends matching up, as in Figure 4(b).  
 

(a)               (b)  
 

Figure 4:  (a) Place equator pins by measuring one fourth of the distance down from the North Pole.    
(b) After placing a number of equator pins, use these arbitrarily spaced pins as guides to place the 

circumference tape around the middle of the sphere, like a belt.  This tape, divided into eighths, will be 
used to repositions the pins equally around the equator of the sphere. 

 
Place a pin at every fold mark, alternating colors (black and white), simultaneously removing the 

pins used simply to mark the equator.  (It is helpful to simply move the pins that do not correspond to a 
fold mark to a point rather than introducing a whole new set of pins.)  We now have ten pins on the ball---
the six black vertices correspond to the six vertices of the octahedron, and the four white vertices further 
divide the equator.  
 

Next choose a pair of opposite black vertices on the equator and reconceptualize the ball so that 
those are the poles. Use the four pins already lying on the equator with respect to the new poles to place 
the paper tape around the new equator. Keeping those pins in place, use the paper tape to place four more 
(white) pins on the equator, dividing it into eighths.  Finally, locate the unique pair of (black) antipodal 
pins on the initial equator that can be used as poles so that the equator corresponding to this pair will be 
perpendicular to both of the other equators.  Then repeat the procedure of putting in four additional 
(white) pins to divide this third equator into eighths.  

 
Both the vertices and the edges of the cube can now be marked by strategically wrapping thread 

around the ball, guided by the pins.  For each pole pair, one at a time, tightly wrap all four great circles 
passing through both poles and one pair of opposing equator points.  See Figure 5(a). From the 
perspective of the pole, doing so divides the ball into eight equal sectors, looking something like an 
orange.  As this division is completed for the three pole pairs, the sector lines cross.  Indeed, at eight 
points on the ball, three sector lines cross at the point, as exhibited in Figure 5(b).  These points are the 
vertices of the cube.  They may be marked with a pin, if desired.  Note also that the points are already 
joined by sectors, which form the edges of the cube.  Hence, the cube has been completed, and the 
octahedron has been completed, as well.  
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(a)           (b)  
 

Figure 5:  (a) Four great circles pass through each octahedral vertex guided by the marking pins. 
(b) As a result, three great circles meet in the center of each octahedral triangle to form the vertices of 

the cube. 
 
To make a tetrahedron, note that by taking alternating upper and lower vertices of a cube you have 

an inscribed tetrahedron, and this remains true when projected onto the sphere.  Simply join the vertices 
to obtain the edges. 

 

 
Figure 6:  Tetrahedron lying in cube.  Six tetrahedral edges are marked with irregular dotted lines 

and four tetrahedral vertices are marked with small circles. 
 

6.  Marking a Projected Dodecahedron or Icosahedron 
 
To make a projected dodecahedron or icosahedron is slightly more difficult.  On your existing paper tape, 
mark off the side length of the cube you have made.  The paper tape is now spent in terms of folding, but 
it contains important distance information.  So cut a new tape, longer than the ball circumference, 
marking the new tape with the circumference length approximately one centimeter from one of the ends.  
We now divide the circumference into tenths, which can be done in several ways. Use the Fujimoto 
approximation technique, an origami technique beautifully described by Hull [3], to divide the 
circumference into fifths.  Repetition of the technique allows for as much accuracy as one desires.  Or, 
use a ruler and compass construction to divide the length into fifths.  After satisfactory division into fifths, 
use folding to further subdivide the circumference into tenths.  Choose an existing pole pair and use its 
equator pins to accurately wrap the newly divided paper tape circumference around the equator.  Repin 
the equator so that pins mark each tenths subdivision.  Remove all pins other than these twelve (poles and 
equator) and all marking threads.  Now wind threads to mark five new great circles through the five pairs 
of antipodal points on the equator and passing through the poles.  This divides the ball into ten equal 
sectors from the perspective of the poles, as in Figure 7(a).   
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(a)     (b)  
Figure 7: (a) Five equally spaced great circles placed around an invisible sphere; (b) The solid 

cube, two grey faces and one white, inscribed in the dodecahedron.  The fact that one edge of the cube 
spans two edges of the dodecahedral pentagon is key to the construction.  

 
The two poles represent centers of two projected pentagonal faces of the dodecahedron. The other ten 
centers of the faces of the dodecahedron will lie on the sector lines, but they alternate up and down some 
distance from the equator.  Thus knowing the distance between two adjacent projected centers is essential 
to marking the remainder of the ball.   
 

Now choose any one of the sector lines and go up near a pole.  Using your paper tape, marked off 
with half of the edge of the cube length, measure orthogonally over from your latitude line until your 
length hits the latitude line two over, as shown in the middle of Figure 8.  Do so by moving the straight 
folded edge of the paper tape nearer or farther away from the pole on the latitude line, not by changing the 
angle of the tape! Note that the ninety degree angle here is local, and originates from the interaction of the 
folded edge of the paper tape with the straight guideline (marking thread). Mark the intersection point of 
the mark on the tape with the latitude line two over with a pin.  See Figure 9(a).   
 

 
Figure 8: Diagrams for steps involved in locating adjacent centers on the dodecahedron. 

 

(a)      (b)      (c)  
 

Figure 9:  (a) Using the half cube side length tape; (b) Determining distance d; (c) Marking off a new 
distance d. 
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If the most recent step has been done accurately, the new pin is at one of the vertices of the pentagon 
surrounding the pole.  Now mark the distance from the pole to this pin on a piece of paper tape and call 
the distance d, as depicted in Figure 9(b).  Mark the distance d with a pin on a second latitude line two 
over from the one already marked off by the pin.  This is illustrated in Figure 9(c).  This marks off a 
second vertex.  Use these two vertex pins and either a piece of paper tape or a piece of string pulled tight 
to mark off (with a pin) the intersection of the line segment they generate, which is an edge of the 
dodecahedron, with the latitude line between them, shown on the right side of Figure 8.  Now measure the 
distance between the pole (one center of the dodecahedron) and this latest pin.  This distance is the 
projected perpendicular distance between the center of a pentagonal face and one of its edges.  Then 
double that distance along that same latitude line and place another pin, also shown on the right side of 
Figure 8.  This new pin represents the center of an adjacent face on the dodecahedron. Now that we have 
solved the problem of finding the distance between adjacent centers on the projected dodecahedron, we 
have theoretically completed our solution.  

 
Practitioners may like to have the steps for marking the dodecahedron and icosahedron spelled out; 

therefore, we do so below.  Begin by measuring and copying the distance between two adjacent centers 
onto a piece of paper tape.  Mark this distance from the North Pole on every other sector line.  Next mark 
the same distance, but this time from the South Pole, on the remaining sector lines.  Now all centers have 
been marked onto the ball. See Figure 10(a).  Checking that the distance between the centers is indeed 
constant can ensure accuracy.  Ten of the centers do not have five great circles emanating from them, 
namely the ten just placed on the sector lines.  However, for symmetry of the ball, and to mark edges, 
these great circles should be marked with thread.  Choose any one of these ten centers and its antipodal 
pin.  One of the great circles is already present---the sector line upon which the pin lies.  The other four 
great circles will be guided by the eight remaining centers, divided into antipodal pairs.  Continue for 
each of the other four pairs, noticing that fewer and fewer great circles are needed at each next pin pair to 
complete the five great circle set.  When each center has 10 sector lines equally dividing the ball from the 
perspective of the center, the entire ball will appear to be divided up into twelve pentagons.  This is the 
projection of the dodecahedron.  These twelve pentagons will be themselves divided up into 10 triangles.  
Alternately, the ball could be seen as being divided into 20 triangles, which are subdivided into six 
subtriangles. This is the icosahedron, as depicted in Figure 10(b).   

 

(a)         (b)  
 

Figure 10:  (a) Pins on spindle lines repositioned;  (b) Completely marked projected dodecahedron 
and icosahedron. 
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7. Notes on the Procedures 
 
The methods in this paper extend those given in the temari sources available to the author 
[1,2,6,9,10,13,14] and are analogous in many ways to straight edge and compass constructions rather than 
ruler use.  The author’s goal was to find a way to make a C10 subdivision using “rules” of temari, which 
she took to mean measuring with paper tape and using traditional paper folding techniques.  As a 
mathematician, she was also prepared to use straightedge and compass techniques.  She did not, however, 
allow herself rulers or protractors.  This eliminated the usual techniques for C10 subdivisions. The 
methods for the octahedron and cube are standard and available in any book on making temari balls (cf. 
[2,6,10,13]), as well as on temari websites (cf. [1,9])  Less common, but obvious to any mathematician, is 
the method given for the tetrahedron, which was included in the author’s previous work. [14] The 
methods for the first three Platonic solids were collapsed here for brevity, but included as a necessary step 
to making the projected dodecahedron/icosahedron. Via the method in this paper the most multifaceted of 
the Platonic dual pairs is marked simultaneously, but the edge length of the cube projected onto the same 
sphere is needed in order to complete the construction. 
 

The existing temari literature contains two other techniques for marking the projected 
dodecahedron/icosahedron.  The first accepted technique is based on using the radius times an 

approximation of the radian measure of the 

� 

arccos 1
5

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  as the distance between centers. The second 

ordinary technique involves using a v-ruler (a special tool combining a protractor constantly set at 
seventy-two degrees with metric rulers on its sides) and an approximation of side length from a chart, 
which essentially does the same as the first approximation, though possibly more accurately. As much as 
possible, the method set forth in this paper is akin to a classical construction—it may not always be the 
fastest, but it exhibits a purity of form. 
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Abstract 
 

In this paper, we discuss a method of arriving at colored three-dimensional uniform honeycombs. In particular, we 

present the construction of perfect and semi-perfect colorings of the truncated and bitruncated cubic honeycombs. If 

G is the symmetry group of an uncolored honeycomb, a coloring of the honeycomb is perfect if the group H 

consisting of elements that permute the colors of the given coloring is G. If H is such that [G : H] = 2, we say that 

the coloring of the honeycomb is semi-perfect. 

 

 

Background 

 
In [7, 9, 12], a general framework has been presented for coloring planar patterns. Focus was given to the 

construction of perfect colorings of semi-regular tilings on the hyperbolic plane. In this work, we will 

extend the method of coloring two dimensional patterns to obtain colorings of three dimensional uniform 

honeycombs. There is limited literature on colorings of three-dimensional honeycombs. We see studies on 

colorings of polyhedra; for instance, in [17], a method of coloring shown is by cutting the polyhedra and 

laying it flat to produce a pattern on a two-dimensional plane. In this case, only the faces of the polyhedra 

are colored. In [6], enumeration problems on colored patterns on polyhedra are discussed and solutions 

are obtained by applying Burnside's counting theorem. The works [14, 19] highlight edge-colorings of the 

platonic solids. There are studies on colorings of three-dimensional space using an algorithm that makes 

use of the group structure of the Picard group [1, 2, 21]. Cross sections of the colored three-dimensional 

patterns were used to produce colored two-dimensional Euclidean patterns. 

 

We find the occurrence of colored honeycombs (space filled with polyhedra) in different places; for 

instance, as representations of geometric constructions, or as models of chemical structures. Shown in 

Figures 3(a), 3(b) and 4(b) are illustrations of colored honeycombs. Interestingly, the colorings shown are 

representations of three different uniform constructions of the bitruncated cubic honeycomb, a 

honeycomb consisting of truncated octahedra. For example, the coloring with two colors in Figure 3(a) 

represents two types of truncated octahedra: half are obtained from the original cells of the cubic 

honeycomb and the other half are centered on vertices of the original honeycomb. In Figure 4(b), this 

colored honeycomb is referred to as the cantitruncated alternate cubic – there are 3 types of truncated 

octahedra in 2:1:1 ratios. In Figure 3(b) there are 4 types of octahedra in 1:1:1:1 ratios; each type is 

represented by a different color. In [18], a bitruncated honeycomb is used to represent a spongy graphite 

network of carbon atoms in 3-dimensional space. 

 

In this paper, we present the construction of colored honeycombs where an entire cell gets one color. 

Bridges 2009: Mathematics, Music, Art, Architecture, Culture

131



In recent works [8, 16], a method for determining subgroups of three-dimensional symmetry groups 

in spherical, Euclidean or hyperbolic 3-space was discussed. The approach, based on concepts on color 

symmetry theory, allows for the characterization of each subgroup in terms of the symmetries it contains.  

This development is helpful in the construction of colorings of honeycombs especially in hyperbolic 

space, since the subgroup structure of hyperbolic symmetry groups is not widely known. As will be seen 

in this work, the subgroup structure of the symmetry group of a given honeycomb plays a significant role 

in arriving at colorings of the honeycomb. 

 

 

Uniform honeycomb 

 
We start the discussion by defining uniform honeycombs. A polyhedron is called uniform if its faces are 

regular polygons and it satisfies the property that its group of symmetries acts transitively on its vertices. 

A uniform honeycomb is a three dimensional honeycomb with uniform polyhedra as its cells and where 

the symmetry group of the honeycomb acts transitively on its vertices. Uniform honeycombs are also 

called Archimedean honeycombs. 

 

In three-dimensional Euclidean space, twenty-eight such honeycombs exist: the cubic honeycomb 

and seven truncations thereof; the alternated cubic honeycomb and four truncations thereof; ten prismatic 

forms based on the uniform plane tilings (eleven if including the cubic honeycomb); and five 

modifications of some of the mentioned by elongation or gyration [11, 13]. In this paper, we illustrate the 

concept of arriving at colored honeycombs using two examples of uniform honeycombs, the truncated 

and the bitruncated cubic honeycombs, shown in Figures 1(a) and (b) respectively. Both of these 

honeycombs are directly constructed from the only regular honeycomb in three-dimensional Euclidean 

space – the regular space filling of cubes [4]. Interestingly, the centers of the cells of the bitruncated cubic 

honeycomb coincide with the body centered cubic (BCC) lattice. 

 

The symmetry group of both the truncated and bitruncated cubic honeycombs is the group [4, 3, 4] 

generated by four reflections P, Q, R and S satisfying the following relations 

 

P
2
 = Q

2
 = R

2
 = S

2
 = (PQ)

4
 = (QR)

3
 = (RS)

4
 = (PR)

2
 = (PS)

2
 = (QS)

2
 = e . 

 

The planes of reflections P and Q, R and S intersect at an angle of π/4; the planes of reflections Q and R 

intersect at an angle of π/3 and the planes of reflections P and R, P and S, Q and S intersect at an angle of 

π/2. The planes of the reflections P, Q, R and S are shown in Figures 1(a) and (b), respectively, for the 

truncated and bitruncated honeycombs. 

 

 

A method for coloring symmetrical patterns 

 
The following method given in [12], will be applied to arrive at colorings of uniform honeycombs. 

 

Let G denote the symmetry group of the uncolored honeycomb and X the set of cells in the 

honeycomb. If C = {c1, c2, …, cn} is a set of n colors, an onto function f : X → C is called an n-coloring of 

X. To each x ∈ X is assigned a color in C.  The coloring determines a partition P = {f 
-1

(ci ): ci ∈ C} where 

f 
-1

(ci) is the set of elements of X assigned color ci. 
 
Let H be the subgroup of G which consists of symmetries in G that effect a permutation of the colors 

in C. Then h ∈ H if for every c ∈ C, there is a d ∈ C such that h(f 
-1

(c)) = f 
-1

(d). This defines an action of 

H on C where we write hc := d if and only if  h(f 
-1

(c))  = f 
-1

(d). 
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Figure 1: The (a) truncated and (b) bitruncated cubic honeycombs with the  

planes of the reflections P, Q, R and S. 

 

 

Since H acts on the set C of colors of X there exists a homomorphism σ from H to Perm(C) where 

Perm(C) is the group of permutations of C. 

 

Let ci ∈ C and denote by Oi the H-orbit of ci, that is Oi = Hci. Suppose Ji = {h ∈ H : hci = ci} is the 

stabilizer of ci in H. From each H-orbit of X with an element colored ci, pick one such element. Put these 

elements together in a set Xi. Then the set of all elements of X that are colored ci is JiXi = {jx : j ∈ Ji, x ∈ 

Xi}, that is, f 
-1

(ci) = JiXi. A one-to-one correspondence results between the sets Oi = Hci and {hJiXi : h ∈ 

G} where hJiXi denotes the image of JiXi under h. 

 

As a consequence of the orbit-stabilizer theorem given the assumptions above, we have the following: 

 

Theorem: 

1. The action of H on Oi is equivalent to its action on {hJi : h ∈ H} by left multiplication. 

 2. The number of colors in Oi is equal to [H : Ji]. 

 3. The number of H-orbits of colors is at most the number of H-orbits of elements of X. 

 4. If x ∈ Xi and StabH(x) = {h ∈ H : hx = x} is the stabilizer of x under the action of H on X then 

  (a) StabH(x) ≤ Ji . 

(b) |Hx| = [H : Ji] ⋅[Ji  : StabH(x)] 

 

Thus, using the above framework, we outline the steps to obtain a colored uniform honeycomb, 

where H permutes the colors of the resulting coloring. 

 

 1. Pick a cell t from an H-orbit of the elements of X. 

 2. Determine the finite group S* of isometries in H which stabilizes t, that is, S* = StabH(t). 

 3. Choose a subgroup J of H such that S* ≤ J. 

 4. Apply color c to cell t and to all the cells in the set Jt. If [H : J] = k, then Jt is 1/k of the cells in the 

H-orbit where t belongs. 

 5. Assign a color to every element of the set {hJt : h ∈ H}. The set Jt is given color c and each of the 

remaining k – 1 elements of the set gets a different color. In this coloring of the given H-orbit of cells, J 

will be the stabilizer in H of color c. 
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To obtain a coloring of a given uniform honeycomb, we consider each H-orbit of cells separately, 

coloring each orbit with a given set of colors such that H permutes the colors. If two H-orbits of cells are 

to have a color in common, the subgroup J used should contain the stabilizers of representative tiles from 

the two H-orbits. Combining the colored orbits of cells will give a colored honeycomb where all elements 

of H effect a permutation on the set of colors. 

  

Constructing perfect colorings of the truncated and bitruncated cubic honeycombs 

 
In this part of the paper, we discuss the construction of perfect colorings of the truncated and bitruncated 

cubic honeycombs. Given either a truncated or bitruncated cubic honeycomb, we apply the framework to 

arrive at colorings where the symmetry group G = [4, 3, 4] of the honeycomb effects a permutation of the 

colors in the coloring.  

 

In coloring the honeycombs, we will make use of the subgroups of G. (Table 1 gives a list of low 

index subgroups of G up to conjugacy in G obtained from [8, 16]). In this work, we obtain all perfect 

colorings where the number of colors used for each G-orbit is at most 4. Any other perfect coloring 

satisfying the given restriction on the number of colors may be obtained by a symmetry of the 

honeycomb, a one-to-one change of colors or a combination of both. We consider those colorings where a 

G-orbit of tiles gets at most 4 colors.  

 

 

Index Generators of the subgroup Index Generators of the subgroup 

2 A = <Q, R, S, PQP> 4 F = <P, RQ, SRSQ> 

2 E = <P, RQ, S> 4 B = <Q, R, S, PQRPQP> 

2 <P, RQ, SQ> 4 <Q, R, PQP, SRS> 

2 C = <P, Q, R, SRS> 4 <Q, R, PSQP, SRQP> 

2 <Q, R, SP> 4 <QP, RP, SRSP> 

2 <QP, RP, S> 4 <RQ, S, PRQP> 

2 <QP, RP, SP> 4 <RQ, SP, PRQP> 

3 <RPR, RQR, RSR, S, QPQ> 4 <RQ, SQ, PRQP> 

4 D = <P, Q, R, SRSQRS> 4 <RQ, PQS> 

Table 1: The index 2, 3, 4 subgroups of G = [4, 3, 4] up to conjugacy in G. 

 

 

Perfect colorings of the truncated cubic honeycomb. The truncated cubic honeycomb has two G-orbit 

of cells: the orbit X1 of octahedra and the orbit X2 of truncated cubes. The perfect colorings that we will 

discuss first will involve those colorings where the G-orbits of cells do not share a color; that is, a color 

that is used in X1 will not be used in X2. We will color X1 first, then X2. 

 

In coloring X1, we start with the cell labeled t in Figure 2(a). The stabilizer of t in G, StabG(t), is the 

group generated by Q, R, S, a group of type Oh, also known as the octahedral group. We need to select a 

subgroup J1 that satisfies the condition that StabG(t) ≤ J1. Using Table 1 we find that the groups A = <Q, 

R, S, PQP> and B = <Q, R, S, PQRPQP> are suitable choices for J1. 

 

To obtain a perfect coloring of X1 using A, we assign At the color light grey. To color the rest of the 

orbit, we apply the 2-fold rotation (PQ)
2
 about x on At to obtain a coloring of two colors shown in Figure 

2(a). A perfect coloring of X1 using B = <Q, R, S, PQRPQP> is given in Figure 2(b). The coloring is 

obtained by assigning all cells in Bt light grey. Then we assign the colors grey, black and white to the 

other cells by applying the 4-fold rotation PQ about x. 
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Next, we color the orbit X2 of truncated cubes. We start with the cell labeled t′ in Figure 2(c). The 

stabilizer of t′ in G, StabG(t′) is the group <P, Q, R> of type Oh. From Table 1, the groups C = <P, Q, R, 

SRS> and D = <P, Q, R, SRSQRS> contain StabG(t′), thus either C or D may be used to color X2. Using C 

and D, we obtain the colorings shown in Figures 2(c) and (d) respectively. 

 

Note that the group G can also be used to color X1 or X2 since it contains the stabilizer of every cell.   

Consequently, all the octahedra or the truncated cubes, respectively, will get one color. 

 

The perfect colorings of the truncated cubic honeycomb where the two G-orbits of cells do not share 

colors will be obtained by considering the perfect colorings of the octahedra in orbit X1 and the perfect 

colorings of the truncated cubes in orbit X2. Using G, A and B, there are 3 colorings of orbit X1 and using 

G, C and D, there are 3 colorings of orbit X2 that will give rise to 9 perfect colorings of the truncated 

cubic honeycomb where the orbits X1, X2 do not share colors and both X1 and X2 get at most 4 colors. 

 

 

 

 
Figure 2: Perfect colorings of X1 using: (a) A and (b) B; perfect colorings of X2 using: (c) C and (d) D.  

 

 

Perfectly colored honeycombs may also be arrived at by constructing colorings where the G-orbits of 

cells share colors. If a subgroup Ji is used to color one orbit of cells Xi, it can be used to color another 

orbit Xj as long as Ji contains the stabilizer of a tile in Xj. Moreover, if a color used to color cell t ∈ Xi is 

used to color cells in Xj then the tile t′ ∈ Xj  that will be assigned the same color as tile t should have a 

stabilizer contained in Ji.  

 

We wish to remark that in constructing non-trivial perfect colorings of the truncated cubic 

honeycomb, the G-orbits of cells X1 and X2 cannot share colors. The subgroups A and B, for example 

cannot be used to color cells in X2 since these groups do not contain a stabilizer of a cell in X2. Similarly, 

the subgroups C and D cannot be used to color cells in X1 since these groups do not contain a stabilizer of 

a cell in X1. 

 

 

Perfect colorings of the bitruncated cubic honeycomb. To color the bitruncated cubic honeycomb, we 

first note that this honeycomb has only one type of cell – the truncated octahedron. The symmetry group 

G of the bitruncated cubic honeycomb is cell-transitive. This means that we only have one G-orbit of cells 

to color. Since the symmetry group of the uncolored bitruncated cubic honeycomb is also G = [4, 3, 4], 

we will use the list provided in Table 1 to choose the subgroups that we can use to color. 

 

First, consider the truncated octahedron labeled t in Figure 3(a). The stabilizer of t in G is <P, Q, R> 

a group of type Oh. Aside from G, the groups C = <P, Q, R, SRS>, D = <P, Q, R, SRSQRS> contain <P, 

Q, R> and may be used to arrive at perfect colorings of the bitruncated cubic honeycomb. The colorings 

of the entire honeycomb using C and D are given in Figures 3(a) and (b), respectively. 
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Figure 3: Perfect colorings of the bitruncated cubic honeycomb using (a) C and (b) D. 

 

 
 

Semi-perfect colorings of the bitruncated cubic honeycomb 

 
In this part of our work, we illustrate the construction of semi-perfect colorings of the bitruncated cubic 

honeycomb. In this case, the group H consisting of elements that permute the colors in a given coloring is 

an index 2 subgroup of G. Following the framework presented earlier, the first step is to choose an index 

2 subgroup H and determine the H-orbits of cells. Then we proceed by coloring each H-orbit of cells 

separately. 

 

For our first example, let us construct a semi-perfect coloring where in particular the subgroup C = 

<P, Q, R, SRS>, permutes the colors in the given coloring. There are two C-orbits of cells. As shown in 

Figure 4(a), the set of “patched” cells is the C-orbit X1, while the set of white cells is the C-orbit X2. 

 

To color X1, we first choose our starting cell t labeled in Figure 4(a). Note that StabC(t) = <P, Q, R> 

of type Oh. The subgroup D = <P, Q, R, SRSQRS> of C contains <P, Q, R>, so that we let J1 = D. We 

assign the color light grey to the set Dt and black to the set aDt, to obtain the coloring shown in Figure 

4(b) (a is the two-fold rotation with axis x labeled in Figure 4(b)). 

 

To color X2, note that if t′ ∈ X2 then StabC(t′) ≤ C, so we can use C to color X2 and X2 gets a single 

color. Assuming the color white is used to color X2, the semi-perfect coloring we obtain is the coloring 

given in Figure 4(b). 

 

As a second example, let us construct a semi-perfect coloring where E = <P, RQ, S> is the group 

consisting of elements that will permute the colors of the coloring. In this case, all the truncated octahedra 

in the honeycomb will form one orbit of cells under E, so we only have one E-orbit to color. Consider the 

cell labeled t in Figure 4(c) where StabE(t) = <P, RQ>. The subgroup F = <P, RQ, SRSQ> of E has <P, 

RQ> as a subgroup, so that we may use F to color the honeycomb semi-perfectly. The resulting semi-

perfect coloring is shown in Figure 4(c). 
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Figure 4: (a) Two C-orbit of tiles of the bitruncated cubic honeycomb (C = < P, Q, R, SRS>); 

(b)-(c) Semi-perfect colorings of the bitruncated cubic honeycomb. 
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Abstract
We describe how to construct map-colored mosaics. When viewed from afar, they resemble familiar images. When
viewed from up close, they look like properly colored maps.

1 Introduction

After a long day of coloring maps, a cartographer might view a grid of squares (Figure 1(a)) as an uncolored
map. To color this map, the cartographer would follow the traditional map-coloring protocol and assign
colors to countries in such a way that no two countries (squares) that share a border (edge) receive the
same color. The Four Color Theorem states that, at least in the plane, four colors suffice; never will the
cartographer need more. When coloring a grid of squares, one needs only two colors, as in Figure 1(b). But
with four (or more) colors, much more interesting and aesthetically pleasing results can be achieved. For
example, with four colors a grid of squares might take on the likeness of the Mona Lisa’s right eye, as in
Figure 1(c).

Figure 1: (a) an uncolored map, (b) colored with two shades of gray, (c) colored with four shades of gray

In this paper, we describe how to produce pictures like Figure 1(c). We call themmap-colored mosaics.
When viewed from afar, they resemble familiar images. When viewed from up close, they look like properly
colored maps. In a properly colored map, no two countries that share a border can share a color. In a
map-colored mosaic, no two tiles that share an edge can share a color.

2 The Map-Colored Mosaic Design Problem

We begin with a user-supplied target image, a map (a tiling of the plane with copies of one or more tiles), and
a small set of colors (usually between four and eight). We first assume that our target image is in grayscale,
our map is a grid of squares, and all of our colors are different shades of gray.
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Furthermore, we assume that our target image consists ofm rows andn columns of pixels and that our
map is a grid that consists ofm rows andn columns of squares. We denote the brightness of the rowi,
column j pixel—pixel (i, j)—by βi, j ∈ [0,1], where 0 stands for completely black, 1 stands for completely
white, and intermediate values stand for intermediate shades of gray.

Finally, we assume that we only haveχ colors. (We refer to them as colors even though they are just
shades of gray.) We denote the brightness of colorc∈ {1, . . . ,χ} by bc, using the same 0-to-1, black-to-white
scale we use for the pixel brightnesses.

Our goal is to construct anm×n mosaic that (1) when viewed from afar, resembles the target image as
much as possible, and (2) when viewed from up close, looks like a properly-colored map. To attain this goal,
we use integer programming formulations as in [2-4].

3 A Simple Integer Programming Formulation

For each square(i, j) and each colorc, we must decide if we will paint square(i, j) with color c. We model
this with binary variables, settingxi, j,c equal to 1 if we do indeed paint square(i, j) with color c, and setting
xi, j,c to 0 if we don’t. We need a total ofχmn such variables.

Given that we want our mosaic to resemble our target image as much as possible, we need to be able to
measure our mosaic’s “goodness of fit” with our target image. Our strategy is to compute a separate error
term for each square of the mosaic and then add them all up. If we paint square(i, j) with color c, then it
will have brightnessbc, whereas pixel(i, j) has brightnessβi, j. So one possible error term for square(i, j) is

χ

∑
c=1

∣

∣bc −βi, j
∣

∣xi, j,c,

and another is
χ

∑
c=1

(bc −βi, j)
2 xi, j,c.

We use the first one, which gives us the goodness-of-fit measure

m

∑
i=1

n

∑
j=1

χ

∑
c=1

∣

∣bc −βi, j
∣

∣xi, j,c

for our model’s objective function.
To force ourselves to paint square(i, j) with precisely one colorc, we incorporate the following equation

into our model:
χ

∑
c=1

xi, j,c = 1.

We need a total ofmn such equations.
To force ourselves to paint squares(i, j) and(i, j +1) with different colors, we introduce, for each color

c ∈ {1, . . . ,χ}, the inequality
xi, j,c + xi, j+1,c ≤ 1.

This inequality prohibits us from painting both square(i, j) and its right neighbor, square(i, j + 1), with
color c. We need a total ofχm(n−1) such inequalities.

Similarly, to force ourselves to paint squares(i, j) and(i + 1, j) with different colors, we introduce, for
each colorc ∈ {1, . . . ,χ}, the inequality

xi, j,c + xi+1, j,c ≤ 1.
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This inequality prevents us from painting both square(i, j) and its lower neighbor, square(i + 1, j), with
color c. We need a total ofχ(m−1)n such inequalities.

We end up with the following integer programming formulation:

minimize z =
m

∑
i=1

n

∑
j=1

χ

∑
c=1

∣

∣bc −βi, j
∣

∣ xi, j,c

subject to
χ

∑
c=1

xi, j,c = 1 for each 1≤ i ≤ m, 1≤ j ≤ n

xi, j,c + xi, j+1,c ≤ 1 for each 1≤ i ≤ m, 1≤ j ≤ n−1, 1≤ c ≤ χ
xi, j,c + xi+1, j,c ≤ 1 for each 1≤ i ≤ m−1, 1≤ j ≤ n, 1≤ c ≤ χ
xi, j,c ∈ {0,1} for each 1≤ i ≤ m, 1≤ j ≤ n, 1≤ c ≤ χ .

This formulation is simple and fast but yields low quality mosaics for small values ofχ . Each of the mosaics
displayed in Figure 2 was produced in a fraction of a second by CPLEX [8] on a 3.2 GHz Pentium IV PC.

Figure 2: The Mona Lisa’s Eyes, simple formulation (m = 18, n = 54) (a)χ = 4, (b)χ = 8

The four-color mosaic (Figure 2(a)) is recognizable, but crude. The eight-color mosaic (Figure 2(b))
achieves a better likeness. We encourage the reader to view both of these mosaics (and all of the others
displayed in this paper) from two vantage points: from up close and from afar (e.g., from across the room).
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4 An Alternate (Block) Formulation

The problem with the simple integer programming formulation is that it measures the mosaic’s goodness of
fit by comparing each individual square with its corresponding pixel. Recent research on matrix rounding
and digital halftoning [1,5] suggests another approach: comparing each two-by-two block of squares with its
corresponding two-by-two block of pixels.

Consider them× n matrix M whose row-i, column-j entry gives the number of the color in the row-i,
column-j position of our mosaic. LetQ equal the set of all 2×2 matrices thatcould bea 2×2 block ofM.
Note thatQ =

(q11 q12
q21 q22

)

∈ Q if and only if each entry ofQ belongs to{1, . . . ,χ} and no two adjacent entries
are equal (in other words,q11 6= q12, q11 6= q21, q12 6= q22, andq21 6= q22).

In this formulation, for each 1≤ i < m, each 1≤ j < n, and eachQ =
(q11 q12

q21 q22

)

∈ Q, we setyi, j,Q equal
to 1 if we place the upper-left corner of blockQ in square(i, j), painting square(i, j) with color q11, square
(i, j + 1) with color q12, square(i + 1, j) with color q21, and square(i + 1, j + 1) with color q22. So, in this
formulation, setting a variable equal to 1 paints an entire two-by-two block of squares. It turns out that we
need a total of[χ(χ −1)2 + χ(χ −1)(χ −2)2](m−1)(n−1) such variables.

Here is our alternate (block) formulation:

min z =
m−1

∑
i=1

n−1

∑
j=1

∑
Q∈Q

∣

∣(bq11 + bq12 + bq21 + bq22)− (βi, j + βi, j+1 + βi+1, j + βi, j+1)
∣

∣ yi, j,Q (1)

s.t. ∑
Q∈Q

yi, j,Q = 1 for each 1≤ i ≤ m−1, 1≤ j ≤ n−1 (2)

∑
Q∈Q:

q12=u,q22=v

yi, j,Q = ∑
R∈Q:

r11=u, r21=v

yi, j+1,R for each 1≤ i ≤ m−1, 1≤ j ≤ n−2, (3)
and 1≤ u,v ≤ χ : u 6= v

∑
Q∈Q:

q21=u,q22=v

yi, j,Q = ∑
R∈Q:

r11=u, r12=v

yi+1, j,R for each 1≤ i ≤ m−2, 1≤ j ≤ n−1, (4)
and 1≤ u,v ≤ χ : u 6= v

yi, j,Q ∈ {0,1} for each 1≤ i ≤ m−1, 1≤ j ≤ n−1, Q ∈ Q.

The objective function, (1), measures goodness of fit by comparing the total brightness of each two-by-
two block of squares (bq11 + bq12 + bq21 + bq22) with the total brightness of the corresponding two-by-two
block of pixels (βi, j +βi, j+1+βi+1, j +βi, j+1). The type (2) equations make sure that we paint each and every
two-by-two block of squares, and the type (3) and (4) equations make sure that we paint the two-by-two
blocks in such a way that they overlap with each other both horizontally and vertically.

q21 v r22

q11 u r12

i+1

i

j j+1 j+2

r21 r22

u v

q11 q12

i+2

i+1

i

j j+1

Figure 3: (a) horizontal overlapping, (b) vertical overlapping.

When thinking about the type (3) equations it helps to consider Figure 3(a), and when thinking about
the type (4) equations, it helps to consider Figure 3(b). The left-hand side of a type (3) equation counts how
many blocksQ of the form

(q11 u
q21 v

)

we place in square(i, j). The right-hand side counts how many blocks

R of the form
(u r12

v r22

)

we place in square(i, j + 1). Note that each side is either 0 or 1 (due to the type (2)
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equations and the fact that the variables are binary.) By setting the left-hand and right-hand sides equal, we
force the blocks to overlap horizontally.

The block formulation does have its drawbacks. It is certainly harder to understand. It has many more
variables and constraints than the simple formulation (on the order ofχ3 times the number of variables, and
on the order ofχ times the number of constraints). And it is slow. It is so large that to solve it, we had to
divide the problem into sections, creating a dozen columns of the mosaic at a time. Still, the advantage of the
block formulation is that it produces high quality mosaics even for small values ofχ . The four-color mosaic
displayed in Figure 4 (which required about a minute for CPLEX) is much nicer than the one in Figure 2(a).
In fact, we strongly prefer it to the eight-color mosaic displayed in Figure 2(b). It uses half the number of
colors, yet when viewed from a distance, it still achieves a better likeness of the target image.

Figure 4: The Mona Lisa’s Eyes, block formulation (m = 18, n = 54, χ = 4)

5 Modifying the Mosaic

Once we have created a map-colored mosaic that pleases us, we can modify it by replacing its square tiles
with other tiles that behave like squares. By doing this, we obtain images that are reminiscent of Escher-like
tessellations [6,10] or Huff-like parquet deformations [7,9] when viewed from up close, yet still look like
familiar images when viewed from a distance. See Figures 5 and 6.

Figure 5: The Mona Lisa’s Eyes, block formulation, propeller tiles (m = 18, n = 54, χ = 4)
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Figure 6: The Mona Lisa’s Eyes, block formulation, parquet deformation (m = 18, n = 54, χ = 4)

6 Other Tilings

One can adapt both the simple and block formulations for non-square tilings based on hexagons, equilateral
triangles, rhombuses, etc., but it is usually much easier to adapt the simple formulation. Figure 7 displays a
six-color map-colored mosaic, based on a hexagonal tiling, that we created by solving a hexagonal version
of the block formulation. Figures 8-10 display what happens when we replace the hexagons with pinwheels,
a Mongolian three-pronged arrow design, and Escher-like lizards.

Figure 7: The Mona Lisa’s Eyes, block formulation, hexagons (χ = 6)

7 Color

It is also possible to adapt the formulations so that they work with different color palettes. The main difficulty
is that the user needs to specify the color palette in advance. A palette that works well for one target image
may fail spectacularly for another. See Figure 11 for a successful example.
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Figure 10: The Mona Lisa’s Eyes, block formulation, lizards (χ = 6)

Figure 11: Girl With A Pearl Earring, simple formulation, parquet deformation (χ = 25)
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Abstract 
 

This paper will explore an eleven-pointed star polygon design known as Catalog Number 42 of the Topkapı 
Scroll.  The scroll contains 114 Islamic architectural and ornamental design sketches, only one of which 
produces an eleven-pointed star polygon.  The design also consists of “nearly regular” nine-pointed star 
polygons and irregularly-shaped pentagonal stars. We propose one plausible “point-joining” compass-and-
straightedge reconstruction of the repeat unit for this highly unusual design. 

 
 

Introduction 
 
The Topkapı Scroll, thought to date from the 15th or 16th century (and so named because it is now housed 
at the Topkapı Palace Museum Library in Istanbul), is a 96-foot-long scroll containing 114 Islamic 
architectural and ornamental design sketches.  Believed to be the earliest known document of its kind 
(and also the best-preserved), most of the sketches in this manual show only a small portion, or repeat 
unit, of an overall pattern, contained, for the most part, within a square or rectangle.  Thus, to achieve the 
entire pattern, these repeat units may be replicated by reflection across the boundaries of the rectangles or 
by rotation about the vertices of the squares.  Since this scroll contains no measurements or 
accompanying explanations for the creation of these idealized Islamic patterns, it is believed by Harvard 
professor Gülru Necipoğlu, the recognized authority on the scroll and the author of The Topkapı Scroll – 
Geometry and Ornament in Islamic Architecture:  Topkapı Palace Museum Library MS H. 1956, that the 
drawings most likely “served as an aide-memoire for architects and master builders who were already 
familiar through experience with the coded graphic language used in them” [1, pages 10-12].  
 
How, then, using only the traditional drafting tools of the medieval period – the compass, straightedge, 
and set square [1, page 138] – were the original patterns (from which the repeat units were generated) 
conceptualized and created?  More specifically, how did the designer of the only eleven-pointed star 
polygon pattern of the Topkapı Scroll (known as Catalog Number 42 or CN42 for short) determine, 
without mensuration, the proportion and placement of the polygons comprising the design?   Some hints 
for answering this question are provided by the scroll itself.  This paper will explore these and propose 
one plausible “point-joining” compass-and-straightedge reconstruction of the repeat unit for this very rare 
design.     
 
Topkapı Scroll, Catalog Number 42  
 
The original repeat unit for CN42 was drawn in black ink on cream-colored rag paper [1, page 29], a 
facsimile of which is reproduced in [1, page 309].  The author’s reproduction of CN42, made by tracing 
the image and producing its copy using the Geometer’s Sketchpad software program [2]), is shown in 
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Figure 1a.  The repeat unit contains two halves of eleven-pointed star polygons along its vertical edges 
and two halves of nine-pointed star polygons along its horizontal edges.  Between the half-star polygons 
are eight irregularly-shaped pentagonal stars and two arrow-like polygons.  Underlying the black-inked 
drawing of CN42’s repeat unit are faintly embossed “dead” construction lines, scratched on the paper 
with a pointed tool such as a compass or stylus “so as not to detract from the inked patterns they generate” 
[1, page 31].  Figure 1b, which is a reconstruction of what appears on page 255 of [1], shows the inked 
pattern (as dashed line segments) superimposed on the uninked “dead” construction lines (in bold).  Note 
that all of the star polygons (the “nearly regular” nine- and eleven-stars as well as the irregularly shaped 
pentagonal ones) drawn in black ink in Figure 1 are constructed using inscribed and circumscribed circles.  
The remaining polygonal shapes may be achieved by joining certain intersection points with line 
segments in such a way that the uninked “dead” lines do form the basis for most of the pattern.  Also, 
notice that the pattern in the repeat unit has 180 degree rotational symmetry about the center of the 
rectangle.  This is useful in the construction of the pattern.  
 

        
 

Figure 1a.  Author’s reconstruction,    Figure 1b.  Author’s reconstruction       
of CN42 [1, p 309] produced using    of the overlay for CN42 [1, p 255]  
the Geometer’s Sketchpad software    produced using the Geometer’s Sketchpad 

    
The repeat unit of the Topkapı Scroll’s only eleven-pointed star polygon design is extraordinary for 
several reasons.  First, the vast majority of Islamic star designs have an even number of points, and CN42 
has none of these.  Second, the repeat unit contains both nine- and eleven-pointed star polygons, 
presumably created from an underlying grid consisting of nine-gons and eleven-gons.  As discussed in 
more detail in the next section, neither nine-gons nor eleven-gons are constructible using the traditional 
drafting tools of straightedge and compass, so most likely an approximation was utilized to create them.  
Third, the position of the stars in the repeat unit is remarkable as well.  Usually the major stars appear 
centered at either corner vertices or at the midpoints of the edges in the repeat units of Islamic star 
patterns in the Topkapı Scroll.  But for CN42, the centers of the large stars are not located in these 
standard positions.   

 
Constructing Star Polygon Designs Inscribed within Regular Polygons 
 
One of the most straightforward techniques for creating geometric “heavenly star” patterns found 
throughout the Islamic world (and for which there is evidence that this method was used [3]) is to initially 
construct an n-gon (a polygon with n sides) and then draw in the corresponding regular n-pointed star 
polygon by methodically joining the vertices of the n-gon with line segments (diagonals) or by 
methodically joining midpoints of the n-gon’s edges.  For example, every second vertex of a regular 
pentagon is connected with line segments to form the regular pentagonal star polygon shown in Figure 2a 
on the following page.  By connecting alternate midpoints of edges of the same regular pentagon, a 
smaller regular pentagonal star polygon is formed, as shown in Figure 2b.  Similarly, star polygons with 
n points may be created within any n-gon, where every second (or third or fourth or kth, 
where 2 / 2k n≤ ≤ ) vertex (or midpoint) is connected. 
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Figure 2a.     Figure 2b. 
 

The most common geometric regular star polygon designs have n points where, n is 4, 5, 6, 8, 10, 12, 15, 
16, 20, 24, and so on.  It should be noted that these regular n-gons are constructible in the Euclidean 
sense; that is, they may be constructed using only a compass and straightedge.  For n = 7, 9, 11, 13, 14, 
18…, the regular n-gons (and likewise, the corresponding regular n-star polygons) may only be 
constructed approximately using these tools.  Of these non-constructible star polygons, master builders in 
the eastern regions of the Islamic world did regularly create star patterns with n = 7, 9, 14 and 18.  
 
Construction of a Nearly Regular Eleven-Sided Polygon and its Inscribed Star Polygon 
 
One way to construct a very good approximation of a regular eleven-gon is to follow the method that the 
author adapted from an origami folding procedure [4].  (For those interested in the mathematics behind 
this construction, the angle constructed may be calculated to be 0.4 arctan(7), based on a double 
approximation – first that π  is approximately equal to 22/7 and second, that tan (π /22) is approximately 
1/7 for small angles.  For more information see [4].) 
 
Starting with a square, construct a diagonal and its midpoint.  Then draw a line segment from the 
midpoint to one of the remaining vertices of the square (Figure 3a).  Bisect this segment with a 
perpendicular line segment that terminates on the edges of the square (Figure 3b).  Repeat this procedure 
twice more so that there are now three perpendicular segments parallel to the diagonal as shown in Figure 
3c.   Now draw a line segment from the midpoint of the square’s diagonal to one of the endpoints of the 
perpendicular line segment constructed last.  This segment and one of half of the square’s diagonal form 
an obtuse angle, shown in Figure 3d.  Bisect this angle as shown in Figure 3e.  This angle bisector and 
the line segment that is the other half of the square’s diagonal form a second obtuse angle (Figure 3f).   
 

     
Figure 3a.      Figure 3b.    Figure 3c. 

 

     
Figure 3d.      Figure 3e.    Figure 3f. 
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Bisect this angle as shown in Figure 3g, then bisect the angle that is formed by this second angle bisector 
and the same segment of the square’s diagonal, as shown in Figure 3h.  The resulting angle (shown in 
Figure 3i) measures approximately 32.733 degrees (as measured by the Geometer’s Sketchpad software 
program), which is roughly one-eleventh of a circle’s angular measure.  (One-eleventh of 360 degrees is 
exactly 32.727272… degrees, or approximately 32.723 degrees, hence the measure of this constructed 
angle differs by only one hundredth of a degree from the exact central angle measure.)   
 

      
Figure 3g.      Figure 3h.    Figure 3i. 

 
Once we have the requisite angle we may replicate it to form an eleven-spoked circle (Figure 4a) which 
leads to the construction of the inscribed eleven-gon (Figure 4b).  Constructing the midpoints of the 
eleven-gon’s edges (and erasing the circumscribing circle) yields the image in Figure 4c.   
 

     
Figure 4a.       Figure 4b.     Figure 4c. 

 
The construction of the eleven-pointed star polygon is now straightforward.  Connect every 9th point along 
the perimeter (there are 22 points – 11 vertices and 11 midpoints) as shown in Figure 4d.  This produces 
a 22-pointed star, but highlighting every other point, as shown in Figure 4e and erasing the remaining 
dashed line segments yields the eleven-pointed star polygon with the same proportions as those found in 
the repeat unit of CN42 (Figure 4f). 
 

    
Figure 4d.       Figure 4e.     Figure 4f. 
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A Plausible Construction of the Original Eleven- and Nine-pointed Star Polygon Design 

 
Now that we have constructed a “nearly regular” eleven-pointed star polygon inscribed within an eleven-
gon and a circle, we may use this to recreate a very close approximation of the repeat unit shown in CN42 
of the Topkapı Scroll.  Start with a horizontal ray and a vertical ray meeting at a common vertex. These 
rays will define the top and right edges of the repeat unit rectangle.  Construct two congruent circles of 
any radius, the first centered at the top right corner of the rectangle, and the second tangent to the first 
circle and centered on the right edge of the rectangle, shown in Figure 5a.  Construct the eleven-pointed 
star polygon within the second circle using the method described previously (Figure 5b).  Now construct 
three equispaced rays emanating from the center of that polygon by using existing intersection points, as 
shown in Figure 5c. 
 

     
 

Figure 5a.       Figure 5b.      Figure 5c. 
 

The top constructed ray intersects the top of the rectangle.  From that intersection point, construct a line 
perpendicular to the constructed middle ray, as shown in Figure 5d.  This perpendicular line segment 
intersects both the middle and lower constructed rays.  At the lower intersection point, construct a line 
parallel to the top edge of the rectangle; this defines the lower edge of the rectangle.  The intersection of 
the perpendicular with the middle ray is the center of the rectangle.  With this point as center, construct a 
circle through the center of the eleven-gon; this circle intersects the middle ray.  At that point of 
intersection, construct a line parallel to the right edge of the rectangle, completing the rectangle (Figure 
5e).  This point of intersection is also the center of the second star eleven-gon, which can be constructed 
as before (Figure 5f).  These last two steps exploit the 180 degree rotation symmetry of the repeat unit. 

    
Figure 5d.       Figure 5e.        Figure 5f. 
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Erasing the circles, their inscribed eleven-gons, and the halves of the star eleven-gons outside the repeat 
unit and constructing two additional line segments from the center of the left eleven-star to the points of 
intersection of the diagonal with the upper and lower edges of the rectangle yields a repeat unit partially 
filled with two halves of star eleven-gons and a large rhombus touching each side of the rectangle (Figure 
6a).  Next bisect the four angles that are formed by the upper edge of the rectangle, the two upper edges 
and the diagonal of the rhombus (Figure 6b).  Extend the upper edges of the eleven-stars that are parallel 
to the edges of the rhombus until they intersect the upper edge of the repeat unit.  The point where these 
lines intersect the long diagonal of the rhombus define the radius of a semicircle centered at the endpoint 
of that diagonal (Figure 6c).      
 

     
Figure 6a.      Figure 6b.       Figure 6c. 

 
The points where the angle bisectors intersect these new line segments define the radii of two additional 
semicircles, both concentric with the one just created (Figure 6d).  These three semicircles will be used to 
construct half of the nine-pointed star polygon.  Constructing line segments between certain points on the 
three semicircles and extending two existing segments that are parallel to the diagonal of the rhombus 
yields two half nine-star polygons, one within the other (Figure 6e).  After erasing these semicircles and 
some segments, construct a line segment from the upper right corner of the rectangle to the midpoint of 
the long diagonal of the rhombus.  The point where this segment intersects the right upper edge of the 
rhombus defines the radii of two new tangential semicircles, a large one centered at the eleven-star and 
the smaller one centered at the nine-star.  The smaller semicircle also intersects the upper left edge of the 
rhombus thereby defining the radius of a second larger semicircle centered about the other eleven-star.  
Construct a line segment through this new point from the midpoint of the long diagonal to the edge of the 
rectangle.  The point where this line intersects the upper segment parallel to the upper left edge of the 
rhombus defines a second semicircle centered about the nine stars, but slightly smaller (Figure 6f).   
 

        
Figure 6d.       Figure 6e.      Figure 6f. 
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To complete the rosettes of the nine-star construct a line from the center of the right eleven-star to the 
upper left corner of the rectangle.  Construct a second line from the center of the left eleven-star through 
the point of tangency between the two semicircles to the right of the diagonal.  Join existing points of 
intersection between segments and semicircles and extend line segments to produce half of the nine-star 
rosette (Figure 7a).  After erasing the now-dispensable semicircles and line segments, construct an 
additional semicircle, centered about the right eleven-star and defined by the point of intersection between 
the segment connecting the upper right corner with the midpoint of the rectangle and the innermost 
segment parallel to the upper right edge of the rhombus.  Similarly, a congruent semicircle may also be 
constructed centered about the left eleven-star.  By extending segments and joining existing points, the 
outlines of the pentagonal stars and the rosettes of the eleven-star rosettes begin to form (Figure 7b).  
Extend two additional segments to construct the upper halves of the two arrow-shaped polygons in the 
center of the rectangle (Figure 7c).   

 

    
Figure 7a.       Figure 7b.       Figure 7c. 
 

Figures 7d and 7e show the upper half of the repeat unit before and after the now unnecessary semicircles 
and line segments are erased.  To construct the lower half of the repeat unit, replicate the procedure 
previously described and illustrated by Figures 6b – 7e, thereby taking advantage of the two-fold 
rotational symmetry of the repeat unit. The completed repeat unit design is shown in Figure 7f.   
    

     
Figure 7d.       Figure 7e.       Figure 7f. 

 
A colored rendition of sixteen copies of the repeat unit, replicated by reflection across the rectangle’s 
edges, is provided in Figure 8 on the next page.  The symmetry of the pattern is unusual, with obvious 
vertical reflection mirrors bisecting the large eleven-stars, and horizontal reflection mirrors bisecting the 
smaller nine-stars.  But, the 180 degree rotation centers at the corners and the center of the repeat units 
induce horizontal and vertical glide-reflections as well.  The symmetry group of the pattern is cmm. 
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Figure 8.  Sixteen copies of the repeat unit, colored and  
replicated by reflection across the rectangle’s edges 

 
 

Discussion 
 

CN42 is the only idealized recorded pattern in the Topkapı Scroll containing eleven-pointed star 
polygons; there are no other such recorded pattern templates of which the author is aware. There are no 
eleven-pointed star polygons to be found in two rich published sources of Arabic geometric designs:   
Bourgoin’s manual of 190 Islamic patterns, Arabic Geometrical Pattern and Design [5], and David 
Wade’s collection of over 4000 images, now online [6].  Clearly CN42 is a very rare pattern.   
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Abstract
We describe a method for combining a foreground image and a background image to make digital mosaics using
duotone tiles. Unlike the tiles of thumbnail images used in photomosaics, our duotone tiles each consist of precisely
two colors. Our method uses diffusion limited aggregation (DLA) to approximate via a curve the foreground image
which is then composited over a pixellated enlargement of the background image.

1 Introduction

The current popularity of digital mosaics is surely due to the success of Silvers’ well publicized, and widely
marketed, Photomosaic technique [11]. Computer generated mosaics such as those by computer artist Robert
Bosch that rely on sophisticated optimization algorithms [1] continue to advance the state of the art.

An ongoing challenge in digital mosaics is to make the resulting imagery more visually exciting by,
for example, embedding messages, motifs, or subliminal images. The original Photomosaic technique of
Silvers accomplishes this to a limited extent by (1) constructing high resolution mosaics, (2) using a large
database of tiles, and (3) using a database all of whose images have the same thematic content. However, if
we restrict ourselves to working with small sets of tiles as in the case of the domino mosaics of Knowlton
[5], Knuth [6] and Bosch, or the automatically generated sets of grayscale tiles used in the photomosaics of
Sah et al. [10], this issue becomes more problematic. Figure 1 shows two examples using small sets of tiles:
a Mona Lisa domino mosaic portrait by Robert Bosch, and Andrew Pike’s 2007 “Sierpinski Carpet”, a high
resolution portrait mosaic whose tiles were induced from gray scale versions of the Sierpinski carpet. Our
goal is composite a background image and a foreground image into a digital mosaic in such a way as to make
the background image almost subliminal. Further we would like to reduce the number of colors, and hence
tiles, required.

Our approach to bringing multiple images into play for digital mosaics while simultaneously restricting
the set of tiles that can be used is new in two significant ways. First, rather than drawing from only a small set
of tiles, we use duotone tiles meaning each tile contains a pair of distinct colors. Second, the foreground im-
age overlaid on our background image is approximated thanks to the use of simulated diffusion limited aggre-
gation (DLA) by a continuous curve. Thus our overlay technique bears some similarity to the TSP art of Ka-
plan and Bosch [4], or the space filling curve mosaics of Knowlton (see http://www.knowltonmosaics.com/).
We remark at the outset that the inspiration for our technique stems from a series of prints by I. Orosz exhib-
ited at Bridges 2008 and reproduced in that exhibition pamphlet [9]. Online examples [12] of Orosz’ prints
of this type include the etchings “Dürer in the Forest” and “Dalı́ and the Holy Family.” The most closely
related work to ours that we are aware of appears in the thesis of Long [8]. Long explored the use of diffusion
limited aggregation for special effects in commercial and representational imagery.

Stated formally, our task is to digitally composite two low resolution identically sized m×n images —
a background image and a foreground image — in such a way as to produce a duotone tile digital mosaic.
Since our results are reproduced here in grayscale we will focus on a limited number of examples. Figure 2
shows the Tanzanian sunset image, East African giraffe image, and author’s portrait image we will use in
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Figure 1: Left: Domino mosaic portrait of the Mona Lisa by Robert Bosch. Right: “Sierpinski Carpet” by
Andrew Pike. Reprinted with permission.

this paper. Figure 3 shows the two duotone composites we obtained with the sunset and giraffe alternating
as both foreground and background. To create them we cropped and downsampled the sunset and giraffe
images to yield low resolution 70×52 pixel images. Downsampling reduces the number of colors we have
to work with. Each duotone tile in these two composites is 21×21 pixels.

Figure 2: Left: Tanzanian sunset image. Center: East African giraffe. Right: Author’s portrait.

2 Overview of the method

The “background mosaic” is simply a pixellated version of the background image. It is obtained by ex-
panding each pixel of the low resolution background image to a block of pixels of the appropriate size. This
yields a digital mosaic of the background image where each tile has a single color. To accomplish our overlay
process, we rely on a modification of a simulated diffusion limited aggregation (DLA) technique for image
magnification that was previously described by Greenfield [3]. We want to ensure that the DLA image that
represents the foreground image will be perceived as a continuous curve so that much of the blockiness that
normally arises when trying to expand our foreground image is suppressed. As a consequence both the low
resolution background mosaic and the effectively higher resolution DLA foreground image can reinforce
one another. To manage this we glue together several DLA structures deposited on each background tile
in such a way that all tiles remain duotone. To this end, we invoke a three pass algorithm involving the
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foreground image. The first two passes deposit DLA structures on each background tile of the same color as
the unique corresponding pixel of the foreground image. This second color makes every tile a duotone tile.
The third and final pass glues these DLA structures together using additional DLA structures in such a way
as to preserve the duotone nature of the tiles.

3 An example using the method

We provide details by working through an example. We will choose the sunset image and the author’s
portrait. To help reveal composite image detail, these images are first cropped and downsampled to yield 30×
22 pixel images and the tiles in the resulting 30×22 duotone composite mosaics will each be 41×41 pixels.
Figure 4 shows the results following the initial step where each image in turn is treated as the background
image. It clearly reveals how each pixel in the background image is expanded into a monochrome tile that is
a 41×41 block of pixels.

The first two of the three passes that use the foreground image aggregate a DLA structure within each
tile by placing a seed particle at the center of each tile and then generating a DLA structure for the tile whose
color corresponds to that of the associated pixel of the foreground image. The two structures are generated
independently. The DLA aggregation method of Kobayashi et al. [7] as further refined by Greenfield [2] is
invoked. To briefly review the aggregation process, for these two passes the center of the tile serves as the
local origin, and one at a time additional particles are released and subsequently undergo a random walk
until they either encounter the existing structure and adhere, or their time limit expires. When the structure
grows to the appropriate size (here extending out to within one pixel of the tile’s border), this process stops.

The third and final pass involving the foreground image again considers each pixel of the foreground
image in turn. But now after it identifies the tile in the mosaic corresponding to the pixel it performs a search
near the boundaries of the neighboring tiles looking for an aggregated particle. Finding such a particle means
we have located the extremity of one of the DLA structures in some neighboring tile. If such a particle is
found, then it serves as the local origin for a third DLA structure to be aggregated. This time we must be
more careful. The purpose of this third structure is to glue existing aggregated structures together. Thus, in
order to preserve the duotone property of the tiles, we must check before aggregating any subsequent particle
to see which color must be assigned to it, i.e., to which tile it actually belongs. The other subtle point is that
the search along the borders of neighboring tiles must be done pseudorandomly to ensure that no visual
artifacts or biases will result. Figure 5 shows the results of these three aggregation passes by focusing on six
foreground pixels. Notice in Figure 5 how in the last pass the three tiles on the left are joined to neighboring
tiles that are not shown, but the three tiles on the right are joined to each other. Figure 6 shows the results
using the sunset as the background and the giraffe as the foreground after each of the first two foreground
passes. The results following the last pass are shown in Figure 7. For the sake of completeness, and for side
by side comparison, in Figure 7 we show both duotone composites, i.e., the composites with foreground and
background roles reversed.

4 Discussion

There are three key points that should be raised. First, because of the blockiness of the background image in
the composite mosaic, care must be exercised when choosing background versus foreground to achieve an
effective result. Second, we trust the reader realizes that we have used duotone tiles in order to eventually
facilitate the construction of actual physical mosaics. At worst, if all the pixels in the downsampled m× n
images had distinct colors, we would need sufficient quantities of 2mn distinct smaller tiles on hand to
construct our composite mosaics. This is because the p× p enlarged duotone tiles that make up the composite
can then each be formed using p2 tiles selected from our repository of smaller ones. Of course, in practice it
would be rare for all 2mn pixels to be be distinct. Third, there is no guarantee our search for a neighboring
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particle to serve as the seed during the final pass will be successful for every foreground image pixel, nor that
all the structures aggregated during the first two DLA passes will be joined during this last pass. Empirically
we have observed that the search for a suitable neighboring seed is almost always successful and that there
is usually a large connected component that forms in the composite during this pass [3]. We have not taken
the extra trouble to correct for these two possible shortcomings because it does not appear that the human
eye is that discerning.

5 Conclusions and future work

We have shown that our method for generating duotone composite mosaics is viable. Clearly, some skill
is required in selecting, cropping, and downsampling source imagery in order to achieve superior results.
Future work should be directed towards mitigating the effects of the blockiness of the background image in
the composite and developing methods for handling imagery with different height and width dimensions.
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Figure 3: Our 72× 52 duotone composite mosaics. Top: Sunset as background, giraffe as foreground.
Bottom: Sunset as foreground, giraffe as background.
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Figure 4: Initial pass for the background images yielding 30×22 mosaics with 41×41 tiles.

Figure 5: An example of the cumulative aggregation of the DLA structures used to construct the foreground
image after each of the passes.
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Figure 6: The first two passes used to build up the DLA structure for the foreground portrait image over the
background sunset image.
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Figure 7: Top: Final pass gluing previously aggregated DLA structures of the foreground portrait together
over the background sunset while preserving the duotone nature of the 41×41 enlarged tiles. Bottom: The
result obtained by reversing the roles of foreground and background.
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Abstract

M.C. Escher’s printCircle Limit IV is the last of his four “Circle Limit” patterns. There are two questions one
can ask about the symmetry ofCircle Limit IV. First, what is the correct orientation in which to display the print?
Second, what is the symmetry group of the pattern? We answer those questions and show some new patterns related
to Circle Limit IV.

1. Introduction

M.C. Escher’s printCircle Limit IV 1 was the last of his four “Circle Limit” patterns. Figure 1 is an early
computer generated pattern inspired by that print. It has more symmetry than Escher’s pattern, which is

Figure 1: A pattern based on M.C. Escher’s printCircle Limit IV.

shown in Figure 2 below with Escher’s initials circled. The angels and devils motif was also the only one
that Escher realized in each of the classical geometries: Euclidean, spherical, and hyperbolic.

The Circle Limit IV pattern seems to have confused some people in that it has appeared rotated from
its correct orientation. In the next section we will explain how to determine the correct orientation. In
the following section, we review the Poincaré disk model of hyperbolic geometry and use it to analyze the

1M.C. Escher’sCircle Limit IV c©2007 The M.C. Escher Company-Holland. All rights reserved. www.mcescher.com
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Figure 2: M.C. Escher’s printCircle Limit IV with his initials circled.

symmetry group ofCircle Limit IV, which can also be a source of confusion — for many years I thought the
symmetry group was different from what it actually is. We also show new patterns related toCircle Limit
IV, including one with my imagined symmetry group.

2. The Correct Orientation of Circle Limit IV

Recently, four books have been published that showCircle Limit IV with incorrect orientations, on pages
224 and 166 of [1] and [8] respectively, and on the covers of [6] and [7]. Interestingly, the previous edition
of [6] also usedCircle Limit IV on its cover — correctly oriented [5].

However, the mis-orientation ofCircle Limit IV is not just a recent phenomenon. In one of the definitive
books on Escher,M.C. Escher, His Life and Complete Graphic Work [9], a large version of the print is
correctly oriented on page 98, yet a small view of it is incorrectly oriented on page 322.

How is the correct orientation determined? In fairness to the books mentioned, it is a bit subtle. It is
determined by Escher’s initials (MCEin block letters) and the date, which he placed on many of his prints.
The problem is made more difficult in some reproductions by very faint intials. Figure 3 shows those initials
and date as they appear onCircle Limit IV. Escher dated his prints by month and year. At first he used

Dunham

164



Figure 3: Escher’s initials and date onCircle Limit IV.

Arabic numerals for the months, but switched to Roman numerals in 1937. Thus,Circle Limit IV is dated
VII-’60 , indicating that it was completed in July, 1960. Escher’s block letter initials look almost the same
upside down. However, the requirement that the date be upright establishes the correct orientation of the
print. There are three each of fully developed angels and devils in the center. Outward from the center and
adjacent to each angel, is a devil shown mostly in black background. The initials and date appear in the head
of the bottom “background” devil.

Here is a question for the reader. To print a copy ofCircle Limit IV, did Escher use two black woodblocks
— one with the initials (for the bottom) and one without initials (for the top left and for the top right)? If
not, how did he get by with just one woodblock? Here is the answer.2

3. The Symmetry Group ofCircle Limit IV

Though Escher considered his “Circle Limit” patterns to be just patterns with a circular limit, they can
also be viewed as repeating patterns in the Poincaré disk model of hyperbolic geometry. The points of that
model are just the (Euclidean) points within a Euclidean bounding circle. Hyperbolic lines are represented
by circular arcs orthogonal to the bounding circle (including diameters). Figure 4 shows some hyperbolic
lines over an angels and devils pattern. The measure of an angle between hyperbolic lines is the same as the
Euclidean measure of the angle between their arcs; however, equal hyperbolic distances correspond to ever
smaller Euclidean distances toward the edge of the disk. Thus all angels are the same hyperbolic size, as
are all devils. A hyperbolic reflection across a hyperbolic line is represented by inversion in the circular arc
representing that line (reflection across a diameter is just a Euclidean reflection). As in Euclidean geometry,
successive hyperbolic reflections across two intersecting lines results in a hyperbolic rotation about the
intersection point by twice the angle between the lines.

Using this hyperbolic interpretation, we can analyze the symmetries of theCircle Limit IV pattern.
If we only look at the outlines of the angels and devils, the reflection axes of the pattern coincide with

2There was just one woodblock — with initials. After making three impressions with that woodblock, Escher took a small plain
block of wood slightly larger than the initials, inked it, and blacked out two of the initials/dates.
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bilateral symmetry axes of the angels and devils. These axes divide the hyperbolic plane into hyperbolically
congruent “squares”, that is equilateral, equi-angular quadrilaterals, as in Figure 4. The outlines also have
4-fold rotation centers at the centers of the squares where wing tips of the angels and devils meet. Thus,
the outline pattern has symmetry group4 ∗ 3 in orbifold notation, or [4+, 6] in H.S.M. Coxeter’s notation
[2]. Escher’s first angels and devils pattern, the Euclidean periodic Drawing 45 (page 150 of [10]) created
in 1941, has symmetry group4 ∗ 2 (or [4+, 4] in Coxeter’s notation).

However, inCircle Limit IV some of the angels and devils are have been filled in with interior detail,
others are just background with no interior detail, and yet others are partially filled in. If this were done in
such a way that maintained the reflection symmetries across the edges of the “squares” mentioned above,
yet destroyed any rotational symmetry about their centers, the symmetry group would be∗3333. Such a
pattern is shown in Figure 5 in which different colors destroy the rotational symmetry. In fact I erroneously

Figure 4: The hyperbolic plane divided into
“squares” by the bilateral symmetry axes of
the angels and devils.

Figure 5: A pattern based onCircle Limit
IV with symmetry group∗3333

thought that the symmetry group ofCircle Limit IV was∗3333 until very recently.
What is the actual symmetry group ofCircle Limit IV? First, we ignore Escher’s initials and date,

otherwise the only symmetry would be the identity. Then there are three reflection axes through the center
of the circle. It turns out that those reflections and the rotations they generate (by±120 degrees and the
identity) are the only symmetries. Careful inspection reveals that the devils are fully developed and the
angels are just background on the upper end of the vertical reflection axis and the reverse is true at the lower
end of that axis. The same switching of roles occurs on the other two reflection axes. Thus the symmetry
group is justD3, the Euclidean dihedral group about the center of the circle.

This was Escher’s intention as he explained on page 10 of [3]:

Here too, we have the components diminishing in size as they move outwards. The six largest
(three white angels and three black devils) are arranged about the centre and radiate from it. The
disc is divided into six sections in which, turn and turn about, the angels on a black background
and then the devils on a white one gain the upper hand. In this way, heaven and hell change
place six times. In the intermediate, “earthly” stages, they are equivalent.
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Escher had previously used this idea in 1942 when he carved a maple ball with angels and devils on its
surface. Here is his description of it in a letter to the collector C.V.S. Roosevelt ([10] page 245):

It has two poles and an equator. One pole represents “heaven,” with only white angels on a
black background, which I carved much deeper than the angel figures. The other pole shows
“hell,” with only black devils on a deeply carved white background. At the equator both angels
and devils are visible and equivalent, carved at the same sphere-level.

So, due to the relative indentations of the angels and devils, the symmetry group of the carved ball is justD2,
generated by orthogonal reflections through the poles. There is a picture showing this relative indentation
on page 244 of [10]. If all the angels and devils were on the same sphere-level on the ball, the symmetry
group would be 3*2 in orbifold notation (or [3

+, 4] in Coxeter’s notation). Such balls (without the relative
indentation of Escher’s original) are available from the M.C. Escher web site [4].

So Escher’s first angels and devils pattern was the Euclidean Notebook Drawing 45 done in 1941, and
was followed by the carved sphere in 1942. Almost 20 years passed before he completed the classical
geometry series with his hyperbolicCircle Limit IV.

4. Other Angels and Devils Patterns.

We have already seen in Figures 4 and 5 two hyperbolic patterns with more symmetries thanCircle Limit
IV. If we left out the interior details of all angels and devils as in Figure 4, or filled in those details for all the
figures as in Figure 6 below, there would be 4-fold rotations about the meeting points of wing tips in addition
to the reflections in the sides of the “squares” of Figure 4. As mentioned above, the symmetry group would
be4 ∗ 3 or [4+, 6] in Coxeter’s notation.

Figure 6: An angels and devils pattern with the
interior details filled in for all the figures.

Figure 7: A pattern based onCircle Limit
IV with symmetry group2 ∗ 33

In Figure 5, following Escher’s lead, we can interpret the black and white areas as places where the
devils and angels dominate respectively. The gray areas represent “earthly” places where the angels and
devils hold equal sway. As mentioned above, by taking into account the different colors, the symmetry
group does not have rotational symmetries about the centers of the “squares” and is therefore∗3333.
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Figure 7 shows a pattern with 2-fold rotational symmetry aboutthe centers of the “squares” of Figure 3,
and thus has intermediate symmetry between that of Figures 4 and 5. The symmetry group of this pattern is
2 ∗ 33 or cmm3,3 using a notation suggested by Coxeter. Again, following Escher’s lead, we may interpret
the white areas as places where the angels dominate, and the dark areas as places where the devils dominate.
In this case there are no intermediate “earthly” regions.

5. Conclusions and Future Work

We have explained how to determine the correct orientation forCircle Limit IV and analyzed its symmetries.
We have also shown angels and devils patterns with other symmetries.

For future work it would be useful to extend the current version of our hyperbolic pattern program so
that it can draw patterns with symmetries likeCircle Limit IV — it can currently only draw patterns that
repeat the same way in all directions. We are just starting the process of converting this C program, which
is not very portable, to Java so that others may use it.

Also, it would be interesting to use 3D printing technology to create a “heaven and hell” disk pattern
with areas where angels are raised and devils are recessed, areas where the opposite is true, and intermediate
areas where neither is dominant, in the manner of Escher’s carved maple ball. It is likely that the techniques
developed by Yen and Séquin for spherical geometry [11] would be useful for this task.
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Abstract 
 

The musical plane is different than the Euclidean plane: it has two different and incomparable dimensions, pitch-

space and time, rather than two identical dimensions. Symmetry and transformations in music have been studied 

both in musical and geometric terms, but not when taking this difference into account. In this paper we show 

exactly which isometric transformations apply to musical space and how they can be arranged into repeating 

patterns (frieze patterns and variations of the wallpaper groups). Frieze patterns are created intuitively by 

composers, sometimes with timbral color patterns or in sequence, and many examples are shown. Thinking about 

symmetry in the musical plane is useful not just for analysis, but as inspiration for composers. 

 

 

Introduction 

 
Composers have been using symmetry for hundreds of years. Sometimes this is done on a small scale, 

such as when the notes in one measure of a Bach fugue are found repeated upside-down within the next 

measure, or when an arpeggio is played going up and then back down. On a large scale, one can find 

examples of constructions such as crab canons—where the same notes are played forwards and 

backwards at the same time (most famously in Bach’s A Musical Offering)—or table canons—where the 

same sheet music is played by two instrumentalists looking down at it from either side of a table, so that 

their notes are upside-down and backwards (examples can be found by Bach, Mozart, and others). These 

simple geometric transformations, containing just one mirror or point of rotation, are well studied and 

understood by both mathematicians and music theorists. 

 

 When looking at a piece, music theorists are interested in following the development of themes and 

motives. A motive (here used to mean a set of notes) can be found repeated (translated horizontally), 

transposed (translated vertically), inverted (horizontal mirror), in retrograde (vertical mirror), or in 

retrograde inversion (180° rotation). We show that these transformations and three other combinations are 

all of the possible isometries in the musical plane. We precisely characterize which patterns are 

symmetric under one or more musical transformations: the seven frieze patterns, each mapped 

horizontally or vertically, and the 14 musical wallpaper groups (not all of the Euclidean wallpaper groups 

appear, and some appear twice—once horizontally and once vertically). We also account for the 

symmetry found when passing a motive back and forth between instruments through color patterns, and 

we analyze sequences by thinking of them as a frieze pattern on a diagonal and relating them to color 

patterns.  

 

 Knowledge of these patterns may be useful for music analysis, but more importantly it is helpful for 

composers to be aware of the symmetries that we are already using intuitively, so that we can have 

conscious control over our work. 

 

Related Work. Connections between mathematical and musical symmetry have been studied before [2, 

3]. They focus on the basic musical transformations and on frieze patterns, but they do not look 
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systematically at all transformations and combinations of transformations that are possible in the musical 

plane—in particular, they do not consider color patterns, sequences, or wallpaper groups.  

 

Transformations in Unequal Dimensions 
 

Transformations. A set of notes can be thought of as a set of points in 2-dimensional space. The musical 

plane, however, has a very important difference from the usual geometric plane: the two dimensions are 

not the same. Time is seen horizontally while pitch space is mapped vertically, and the fact remains that 

time is different from space, not just in physics (as in General Relativity’s spacetime), but most strongly 

in our perception. The musical plane therefore has less symmetry than the Euclidean plane—for example, 

rather than having symmetry at any mirror line, the musical plane only has horizontal and vertical axes of 

symmetry.  However, this very limitation also splits most Euclidean transformations into two unique 

musical transformations, one horizontal and one vertical. 

 

Isometries. In the Euclidean plane, there are three types of transformations that preserve the distances 

between all points or notes (isometries): translations, reflections, and rotations. In the musical plane, all 

transformations must treat each of the two dimensions separately, leaving these possible isometries: 

horizontal translation (repetition), vertical translation (transposition), horizontal reflection (retrograde), 

vertical reflection (inversion), and combinations thereof. A rotation of 180° can be done, though in music 

terms this is thought of as a combination of the two mirrors and called a retrograde inversion. Likewise, 

the horizontal and vertical translations can be combined to repeat a motive in a different key (also called 

transposition). The last combination is the glide reflection (a translation plus reflection), which also 

comes in two types: if the glide reflection axis is horizontal, an inversion follows the motive, while if it is 

vertical the motive is followed by its retrograde in transposition. Any two isometric instances of a motive 

are related by exactly one of these eight geometric transformations. 

 

  

 

 

 

 

 

 

 

 

 

Figure 1: All Eight Isometric Transformations in Musical Space 

 

Choosing a scale for pitch. Pitch, aside from being wholly different from time, can be measured in 

various ways. Most music is written tonally within some scale, and so it makes sense to use one step of 

that scale as one unit of pitch when applying transformations. In music, this is called a tonal 

transformation. This is the metric used in the examples in this paper because it is most common and 

easiest to see visually in music notation. On the other hand, a real transformation uses each step of the 

chromatic scale as one pitch unit. There are comparatively fewer musical examples of this second type 

(though still very many, especially in 12-tone music).  

 

Frieze Patterns 
 

Frieze patterns. Frieze patterns are the seven symmetry groups of patterns that repeat infinitely in just 

one dimension in the Euclidean plane. These patterns often appear as borders in art and architecture, and 

are especially well suited to music because they share the property that their two dimensions are not equal 
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(one is infinite and one is not). Like music, frieze patterns can contain only repeating symmetries that use 

translation, glide reflection, horizontal mirrors, vertical mirrors, and 180° rotation, in various 

combinations. If you count time as possibly infinite and audible pitch space as limited, then frieze patterns 

exactly match the symmetric capabilities of a repeating phrase of music. Of course, no music can really 

repeat endlessly in one dimension, just as no frieze patterns in architecture do either, so a few repetitions 

will have to do. 

 

 Frieze patterns are so natural to music that a composer can unknowingly use all seven groups within 

a single piece. Below, we illustrate each of the seven frieze patterns with an example from Debussy’s 

Three Nocturnes on the right, as well as a simple example using the motive from Figure 1, on the left. The 

seven frieze patterns have various notations, but we find Conway’s footprint analogies to be intuitive and 

easy to use as names [1]. We also give the orbifold notation and describe the groups using both 

mathematical and musical terms. The analogous feet are included above the corresponding notes. 

 

Hop ∞∞. The hop has translational symmetry only. In music, it is repetition. Repeated motives, bass 

lines, choruses, chord progressions, and melodies are so common that hops are difficult to avoid in music. 

 

 

   

 

 

Figure 2: Hops. 

 

Step ∞x. The step is a glide reflection—a pattern of a motive and its inversion. Bach was especially fond 

of glide reflections and they can be found in much of his work 

 

 

   

 

 
Figure 3: Steps. 

 
Jump ∞*. A hop with a horizontal mirror makes a jump. A motive and its inversion are played 

simultaneously, and repeated. Jumps are a difficult frieze pattern to find in music, perhaps because 

horizontal mirrors do not sound very subtle. Some Bach pieces, for example, contain a horizontal mirror 

at the end of a piece or section which had many glide reflections, bringing closure to the motive and its 

inversion by calling attention to that they are really the same under transformation. 

 

 

 

 

 

         

 

 
Figure 4: Jumps. 

 
Sidle *∞∞. A sidle contains two vertical mirrors, alternating a motive with its retrograde. They are 

commonly found in arpeggios, especially piano accompaniment. 
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Figure 5: Sidles. 

Dizzy hop 22∞. The dizzy hop, or spin hop, has two points of 180° rotation. In music, this alternates a 

motive with its retrograde inversion. There are many frenetically dizzying dizzy hops in Stravinsky’s 

music. 

 

 

  

 

 

 

Figure 6: Dizzy hops. 

Dizzy sidle 2*∞. A sidle with a twist yields the dizzy sidle—one vertical mirror and one point of 180° 

rotation. It contains all four transformations of a motive in order: a motive, its retrograde, the inversion, 

and the retrograde inversion, repeated indefinitely. Traditional Alberti Bass has this symmetry (in which 

the mirror lines go through the top and bottom notes). 

 

 

                   

 

       
Figure 7: Dizzy sidles. 

Dizzy jump *22∞. The dizzy jump has all possible symmetries: one vertical and one horizontal mirror, 

which create a point of rotation where they meet. A motive and its inversion are played simultaneously, 

and then the retrograde and retrograde inversion played simultaneously as well. Like jumps, this is a less 

common frieze pattern in music—except for music where the horizontal mirror sound is used purposely, 

such as Philip Glass’s music in which dizzy jumps are quite commonplace.  

 

 

  

 

 

 

Figure 8: Dizzy jumps. 

The other seven musical frieze patterns. Though it is intuitive to map frieze patterns to the musical 

plane in the horizontal (time) dimension, it is still geometrically sound to map a piece of a frieze pattern 

vertically (pitch). The aesthetic problem with this mapping is that an infinitely long pattern must be 

suggested within a very short amount of time through the use of a large range of pitches. Time can feel 

infinite from the perspective of one moment, but pitch-space is severely limited by the amount of 

information the ear can perceive at once. While examples can be found in music where many instruments 

in different octaves play the same thing, this is usually done for timbre or volume. We hear all the octaves 

together as one melody rather than as a repeating pattern through pitch-space, making these vertical frieze 

patterns not as useful from an analysis or composition viewpoint. Still, it is worth noting that there are 

actually 14 types of frieze patterns in the musical plane. 

Hart

172



 

Color 

 
In mathematics, the word “color” refers to a labeling. In music, “color” refers to the timbre, or sound 

quality, of an instrument or set of instruments. Just as a color labeling differentiates sets of points in 

mathematics, sound color is what lets us hear the difference between sets of notes played by one 

instrument rather than another. Frieze patterns, both musical and mathematical, have color patterns 

associated with them [1]. Most frieze patterns can be colored in more than one way. For example, a jump 

could alternate each set of footprints between two colors, or it could have all the left feet one color and all 

the right feet another. There are 17 different 2-color frieze patterns [1], many of which—if not all—can 

be found in existing music, including the previous example of Debussy’s Nocturnes as shown in Figure 9. 

 

 

 

 

 

 
Figure 9: Debussy Nocturne I has a 2-color step and a 2-color dizzy sidle. 

 

Sequences 

 
The frieze patterns above are missing one of the most common musical transformations: transpositions 

involving both vertical and horizontal translation. All frieze patterns contain horizontal translations by 

definition, and all of the other musical isometries are accounted for as well. But what if each repetition of 

a motive were translated not just horizontally, but also vertically? In music this is called a sequence, and 

they run rampant in classical styles. Just as an arithmetic sequence adds a fixed number to each successive 

number, a musical sequence adds a fixed interval to each successive repetition of a motive. 

 

 A sequence can be thought of as a slanted frieze pattern. By normalizing the sequence (vertically 

translating each repetition to have the same vertical extent), one can then analyze the frieze pattern. The 

difficulty lies in picking the repeating unit. In the second example in the figure below, one can normalize 

each triplet in order to get a sidle. However, if instead of taking the first three notes, one took three notes 

starting with the second, then the sequence would normalize to a dizzy hop. It is usually easy to find the 

musical cues necessary to decide what the motive is. 

 

 

 

               

 

 

Figure 10: Three sequences from Mozart’s Piano Sonata in C: a walk, sidle, and dizzy hop. 

 

 The repeating unit of a frieze patterns consists of one, two, or four transformed instances of the 

motive (feet). When creating a sequence from a frieze pattern, the vertical shift can be applied every one, 

two, or four instances of the motive (up to the length of the repeating unit), and each choice will create a 

unique symmetry group. (One could apply the shift to a larger set of instances, but the result would fall 

into one of the other groups.) There are eleven different kinds of frieze pattern sequences, a subset of 2-

color patterns where each time the color changes, a transposition occurs (the missing six of the seventeen 

color patterns are the ones where two colors occur at the same point in time—once again the difference 

between time and space creates a difference between the geometry of music and of the usual plane—and 
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the ones where the color change is at a point where there is a built-in vertical translation through glide 

reflection or rotation, making it impossible to tell whether there is an extra translation or not). The figure 

below shows the two different ways of sequencing a sidle. 

 

 

 

  

 

 

 
Figure 11: The two ways of sequencing a sidle, related to the two possible 2-colorings. 

 

Color and Sequences Together: A Bach Example 
 

Bach’s Invention 14 is a great example of color and sequence: it contains hops and steps of the same 

motive in all possible 2-color patterns between the right and left hand, in sequence. The piece also 

contains both hops and steps in just one hand and in both hands at once. 

 

 

 

 

 

      2-color hop        2-color step one way 

      

 

 

 

 

  

2-color step the second way 

 
Figure 12: 2-color hop and step sequences in Bach’s Invention 14. 

 

Wallpaper Patterns 

 
The wallpaper groups are the symmetry groups of patterns that repeat in two dimensions. There are 17 of 

them, but not all can be naturally mapped to the musical plane because many contain rotations other than 

180° or have mirror and glide-reflection lines which meet at angles other than 90°. The following eight 

patterns (in orbifold notation [1]) do work: o, **, xx, *x, *2222, 2222, 22*, and 2*22, because they can be 

mapped onto the musical plane with all mirror lines and glide-reflection axes going either horizontally or 

vertically, and do not contain rotations other than 180°. Interestingly, just as with the Euclidean 

isometries, this limitation also splits some wallpaper groups into two unique musical wallpaper groups, 

because they can be mapped onto the musical plane in two different ways at 90° from each other. *2222 

and 2*22 fit just one way each. 22*, xx, *x, and ** find two distinct ways to map themselves to the staff. 

Patterns o and 2222 can both fit at any angle, though they fit into two classes: the way that makes 

repetitions play in parallel, and the infinite possible offsets.  

 

 To give these pairs distinct names, we add a “V” for vertical mirror, glide-reflection axis, or parallel 

repetitions, and add “H” for horizontal mirror, glide-reflection axis, or nonparallel repetitions. Figure 13 

illustrates swatches of the 14 groups, showing just one vertical repetition. 
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oV                  oH 

 

 

 

 

 

 

 **V                    **H 

 

 

 

 

  

*xV                     *xH 

 

 
 

 

  

xxV                     xxH 

 

 

  

 

22*V                   22*H 

 

 

 

 

  

2*22                    *2222 

 

 

 

 

  

2222V                  2222H 

 

 

Figure 13: The 14 musical wallpaper groups 

 

 There is the same number of musical wallpaper groups as musical frieze patterns, but the wallpaper 

groups cannot all be constructed by simply repeating frieze patterns in the second dimension. However, if 

one repeats each of the 14 musical frieze patterns with either a translation in the second dimension, a 

translation in the second dimension followed by reflection, or a translation in both dimensions, the set of 

possibilities (removing duplicates) is the 14 musical wallpaper groups. Interestingly, though there are 
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many duplicates, both horizontal and vertical frieze patterns are required under these transformations to 

get all 14 wallpaper groups. 

 

Use in Composition 

 
The author finds these ideas particularly inspiring for use in composition. For example, it seemed obvious 

to begin a seven-movement piece with one movement dedicated to each of the seven horizontal frieze 

patterns. This piece, as of yet untitled, is a set of variations where one motive is transformed as it travels 

through the different symmetries of the movements. The mathematics is used to inspire and inform the 

pieces rather than to generate them, and so the frieze patterns are used in the melody and accompaniment 

when it is musical to do so but not conformed to when the author finds it beautiful to do otherwise. 

 

 The figure below contains excerpts from the first four movements to show how the motive evolves 

as it finds itself in different frieze patterns. 

 

 

 

   Dizzy Hop 

 

 

 

 

  Hop 

 

 

 

 

 

  Sidle 

 

 

 

 

 

  Step 

 

 

 

Figure 14: Four frieze variations. 

 

 For recordings and more, see http://vihart.com/papers/symmetry/ 
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Abstract

Recent research has examined the difficulties encountered when attempting to apply two-dimensional repeating
designs to wrap around the surface of polyhedra. The study was concerned with symmetry in pattern but did not
consider symmetries that involve a color change. A pattern is said to have color symmetry when it exhibits, as a
minimum, one symmetry that is color-changing. Counterchange designs are produced when the color-changing
symmetries of a pattern involve only two colors. This paper discusses the problems involved in the application of
counterchange patterns to polyhedra, focusing particular attention on the icosahedron.

Introduction

Recent investigations have explored the problem of patterning certain polyhedra in a systematic and
complete way [1, 2, 3]. The initial inquiry identified which of the seventeen two-dimensional repeating
pattern classes are capable of regular repetition around the Platonic solids, applying only the restriction
that the pattern’s unit cell must repeat across the surface of the polyhedron in exactly the same manner as
it does in the plane [1, 2]. Focusing on the application of an area of the pattern’s unit cell to act as a tile on
the faces of the polyhedra, it was shown that only certain pattern classes are suited to the precise
patterning of each Platonic solid. The investigation highlighted the importance of the pattern’s inherent
lattice structure and the symmetry operations of both the pattern and the polyhedron that were most
significant to the process. The application of pattern to the dodecahedron required a different approach
due to the impossibility of a regular five-sided figure tiling the plane [2, 3]. Through the exploitation of
the concept of duality, a method was presented by which pattern can be applied to the dodecahedron
through projection from a related patterned polyhedron. This projection method can also be used to
pattern other solids dependant on their inter-relationships [3].

The work outlined above was concerned only with pattern symmetries that do not involve color
change. This paper will explore the problems associated with the application of color counterchange
patterns to polyhedra. Specific attention will be focused on the difficulties encountered when pattern is
applied to the icosahedron in such a way that pattern’s unit cell (and constituent coloring) repeats in
exactly the same manner around the solid as in the plane.

Counterchange Patterns

A color symmetry of a tiling or pattern, with two or more colors, is a symmetry of the (uncolored) pattern
that induces a permutation of the colors. Symmetries that consistently interchange or preserve color, are
said to be consistent with color [4]. A color-changing symmetry that systematically interchanges only two
colors is known as counterchange symmetry. This characteristic is also known as antisymmetry [5]. An
infinite checkerboard is a typical example of a pattern that exhibits counterchange symmetry. The
elements of the pattern of the one color and the elements of the pattern of the other color are exactly the
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same. The pattern is therefore made up of two identical components and at least one symmetry of the
pattern interchanges the two parts. These patterns are often referred to as counterchange patterns in art
and design literature [6, 7, 8].

The classification of patterns and tilings, taking into account their color symmetry, is comparatively
recent in relation to the classification of designs by geometric symmetry. H.J. Woods [7] was the first to
produce complete enumerations the 17 one-dimensional counterchange patterns and the 46 two-
dimensional counterchange patterns. This visionary work anticipated the later theoretical developments of
crystallographers and mathematicians worldwide [9]. An array of literature has since been published on
the subject of color symmetry. Schwarzenberger [10] identified over 100 research papers or other
publications dealing with color symmetry from a mathematical perspective. The works of Washburn and
Crowe [4] and Schattschneider [11] are more readily accessible to a non-mathematical audience.

Although there is no universally accepted notation, the type/sub-type notation developed by Coxeter
[12] is currently the most commonly used amongst mathematicians and is the notation used throughout
this paper. The pattern type is determined by considering all the symmetries of the pattern, both those that
preserve color and those that interchange color. The pattern subtype is determined by the symmetry
formed by one of the colors alone. Another modified form of the pxyz notation, proposed by Belov and
Tarkhova [13], is commonly used by artists and designers. In this notation a prime (') is attached to the
symbol if the corresponding operation is associated with a color change, although there are several
exceptions to this rule.

Counterchange Patterns on Polyhedra

Mathematical coloring problems relating to polyhedra are usually concerned with the minimum coloring
requirements, the number of distinctly different coloring solutions and coloring to preserve certain color
combinations. The problem proposed in this paper refers to coloring a polyhedron through the application
of a two-dimensional counterchange pattern to repeat across the faces and edges of the solid, rather than
the application of color directly to the polyhedron’s faces. A pattern must be wrapped around a
polyhedron in such a way that the unit cell of the underlying (uncolored) pattern repeats across the
polyhedron’s faces in exactly the same manner as it does in the plane. In addition to this, the
counterchange symmetry, indicated by the pattern’s subtype, must also correspond and repeat in an
identical way as in the two-dimensional pattern. This allows for color-changing and color-preserving
translations of the unit cell in accordance with the symmetries of the plane pattern. The difficulties
encountered primarily relate to the removal of certain areas within the pattern when it is folded into
different planes to wrap around the solid. In some cases, the removal of prescribed areas within the
pattern cause adjacent motifs and/or color not to register at the polyhedron’s edges.

Previous studies [1, 2] have shown that it is possible to pattern the icosahedron with two-dimensional
pattern classes p6 and p6m. These patterns are constructed on a hexagonal lattice in which the unit cell
comprises of two equilateral triangles. When the patterns are wrapped around the icosahedron, an area
equivalent to half the unit cell is applied to each face, ensuring repetition across each of the solid’s edges
and vertices in exactly the same manner as in the planar pattern. The difficulties encountered with the
application of counterchange patterns, based on the two-dimensional pattern classes p6 and p6m, to wrap
around the icosahedron are discussed and illustrated below.
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Symmetries of the Patterned Icosahedron

When considering the systematic application of two colors to pattern classes p6 and p6m, there is only
one possible counterchange coloring of class p6 (p6/p3), while class p6mm offers three possible
counterchange colorings (p6m/p3m1, p6m/p31m and p6m/p6). Of these counterchange pattern classes
only class p6m/p6 is capable of patterning the icosahedron in such a way that the pattern, and its
constituent color symmetries, repeat in the same manner as in the plane (see Figures 2, 3 and 4). The
difficulties encountered when applying counterchange patterns p6/p3, p6m/p3m1 and p6m/p31m are
indicated in Figure 1. The edges of the patterned net that will not correspond, and do not maintain the
color symmetry of the plane pattern, are indicated with an asterisk (*).

Figure 1  Nets for the icosahedron patterned with counterchange classes a) p6/p3,
b) p6m/p3m1 and c) p6m/p31m, indicating the edges of the patterned polyhedron where the two-

dimensional color symmetries are not maintained
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Whilst the underlying symmetry of two-dimensional pattern classes p6 and p6m allow these patterns
to be successfully wrapped around the icosahedron, the introduction of color restricts the patterning
possibilities. Axes of two-fold and six-fold rotation in pattern p6/p3, shown in Figure 1(a), interchange
color in the two-dimensional pattern and the translation of the unit cell preserves color. The removal of 10
prescribed areas of pattern, each equivalent to half the unit cell, is necessary to allow the plane pattern to
repeat around the five-fold rotation axes present at the vertices of the icosahedron. As a result, the color
symmetries of pattern p6/p3 not corresponding at edges where areas of pattern have been removed. The
application of counterchange pattern p6m/p3m1 to the icosahedron presents a similar difficulty, as shown
in Figure 1(b). A comparable problem also occurs with the color-preserving reflection planes of two-
dimensional pattern p6m/p31m, shown in Figure 1(c). The reflection planes coincide with the edges of the
icosahedron, causing the color symmetry of the pattern to conflict at the 10 edges where areas of the
pattern have been removed.

The successful patterning of the icosahedron with counterchange pattern class p6m/p6 is illustrated
in Figures 2 – 4 and the symmetries of the patterned solid described below.

Figure 2  Counterchange pattern class p6m/p6 applied to a net for the patterned icosahedron

Full icosahedral symmetry (or achiral icosahedral symmetry), Ih, exhibits 120 symmetries including
transformations that combine reflection and rotation. The archiral icosahedral symmetries are: identity; 12
axes of five-fold rotation; 12 axes of two-fold rotation about a five-fold axis; 20 axes of three-fold
rotation; 15 axes of two-fold rotation; 12 axes of rotoreflection by 108 degrees; 12 axes of rotoreflection
by 36 degrees; 20 axes of rotoreflection by 60 degrees and 15 planes of reflection.

As the reflection axes of the plane pattern coincide with the 15 reflection planes of the icosahedron,
all three-dimensional reflection symmetries are preserved in the patterned solid. Color is interchanged
across these reflection planes in the same manner as in the two-dimensional counterchange pattern.
Icosahedral axes of two- and three-fold rotation correspond with centers of two- and three-fold rotation in
the plane pattern. Centers of six-fold rotation in the plane pattern correspond with axes of five-fold
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rotation at the patterned solid’s vertices, where areas equivalent to half the unit cell are removed as the
pattern is wrapped around the polyhedron. All five-fold, three-fold and two-fold axes of rotation on the
patterned icosahedron preserve color, whereas all axes of rotoreflection interchange color. It should be
noted that while, in this instance, the three-dimensional symmetries of the icosahedron are also
symmetries of its patterned faces, it has been shown that in many cases [1, 2] there are two-dimensional
symmetries of the plane pattern that are not three-dimensional symmetries of the patterned polyhedron. It
is the manner in which a polyhedron is wrapped with a pattern that determines which planar symmetries
coincide with the symmetries of the solid.

Figures 3 and 4 show illustrations of the icosahedron patterned with counterchange class p6m/p6.
The model shown in Figure 3 is based on the design previously illustrated in Figure 2, where the area of
the pattern that is applied to each face is equivalent to half the unit cell. In Figure 4 an area of patter
equivalent to two unit cells is applied to pattern each face. In both instances, all faces are identical.

Figure 3  The icosahedron patterned with counterchange pattern class p6m/p6 (created from laser-
etched and painted acrylic)

Figure 4  The icosahedron patterned with counterchange pattern class p6m/p6 (created from laser-
etched wood composite)
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In Conclusion

This paper builds on knowledge from previous research that presented a method by which appropriate
pattern types can be identified and applied to the Platonic solids [1, 2, 3]. The systematic addition of color
to a pattern, in association with its symmetries, introduces additional restrictions to the pattern classes that
are capable of wrapping the icosahedron in such a way that the pattern repeats in an identical manner as in
the plane. The introduction of color symmetry increases the importance of the operations of rotation
and/or reflection that coincide at the edges of a patterned solid. It is the color-change associated with
these symmetry operations that determines whether color interchanges, or is preserved, correctly between
the faces and in exactly the same manner as in the plane pattern.

Further investigation into the application of counterchange patterns to the remaining four Platonic
solids should be undertaken to enable a complete analysis of the symmetries of importance to the
patterning process. Further research should be undertaken to identify additional areas within the unit cell
that are capable of patterning polyhedra in a similar manner as in the plane. Particular attention should be
focused on developing methods to apply counterchange patterns to tile the dodecahedron. This inquiry
could also be extended to take account of the Archimedean solids and more complex polyhedra,
experimenting with patterning through projection [3] and investigating other patterning methods. Future
research could also take into account patterns with higher color symmetries.
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Abstract

In general a tiling is considered to be a set of tiles placed next to each other in a flat plane. The tiles are placed in 
the plane in such a way that there are no gaps and no overlaps. But what if we leave out the condition that the plane 
has to be flat? For when there are no gaps and no overlaps between the tiles we still can call it a tiling. The 
consequences for the possible shapes of the tiles in non-flat tilings as well as the possible symmetrical structures 
that can be used are discussed in this paper. 

1.  Tilings 

1.1. Definition.  A tiling, or tessellation, is a covering of a plane without gaps or overlaps by polygons, all 
of which are the same size and shape. That is one of the definitions of a tiling. Another definition is the 
following: Tiling: a pattern made of identical shapes; the shapes must fit together without any gaps and 
the shapes should not overlap. Although the second definition doesn’t speak about a plane, it is mostly 
assumed that the tiles do cover a plane. But we can take the definition literal, and then the only conditions 
are that the tiles do not overlap and do not leave gaps. Tilings in which all the tiles have the same shape 
are mostly called monohedral tilings [1]. In this paper all the tilings will be monohedral. In the example of 
Figure 1 we see a set of identical L-shaped tiles. With these tiles we can make a tiling as a covering of a 
plane. And there are several ways to do this.  

          

Figure 1: L-shaped tiles.          Figure 2:  A non-flat tiling.    Figure 3: Cylindrical tiling. 

1.2.   Non-flat tilings.  Besides the possibility shown in Figure 1, where the tiles are put together in such 
a way that they cover a flat plane, there are a few more ways to put the tiles together under the condition 
that we do not want overlaps or gaps in the construction. In Figure 2 the L-shaped tiles are set up in such 
a way that we can make a three dimensional construction. As you can see the structure is made out of 
identical shapes. The tiles do not overlap and there are no gaps in the structure. To call it a tiling in the 
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traditional way, the only remark one can have is that it is not a covering of a flat plane. But it still is a 
tiling. Also when we combine the tiles in the way shown in Figure 3, the resulting structure is a tiling. 

 
1.3.   Squares.  There are more shapes that can be used to create non-flat tilings and some of them are 
well known. The square can be used to tile a flat plane, but we can also make non-flat tilings using the 
squares (Figure 4), again there are no overlaps and no gaps in the structure. The most well known way to 
combine the squares in a three-dimensional way is the cube (Figure 5), although in general we do not call 
this a tiling.  
 
       

 
 
 Figure 4: Non-flat tiling with square tiles.        Figure 5:  Non-flat tiling: the cube.             

 
1.4.   Polyhedra.  Just as the cube also the other Platonic solids can be interpreted as non-flat tilings 
(Figure 6). In fact the standard term for “non-flat tiling” is “polyhedron”. And because all the tilings in 
this paper are monohedral we can call these tilings “monohedra”. So in non-flat tilings the regular 
pentagon can be used as a tile, which is not possible in the plane.  
 
 

 
 
  Figure 6:  Platonic solids.   Figure 7:  Platonic solids. 
 
1.5.  Duals of the Archimedean Solids.  The Archimedean solids all have two or more different faces, or 
tiles. For a monohedral tiling the pattern has to be made with identical shapes, so therefore the 
Archimedean solids can not be seen as monohedral tilings. But when we look at the dual of an 
Archimedean solid then we see that such an object is built with all identical shapes. Figure 7 shows the 
complete collection of the thirteen duals. Seven of them are built with triangle-shape tiles, in four duals 
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you will find quadrangle tiles and in two cases pentagonal tiles are used. And because each dual is made 
out of identical shapes, they can be seen as non-flat tilings. 
 
 

2.  Elevation 
 

2.1.  Leonardo da Vinci.  In the illustrations that Leonardo da Vinci made for Luca Pacioli’s book “La 
Divina Proportione” [2], we can find a remarkable step towards non-flat tiling. This step is called 
Elevation and Leonardo da Vinci applied this on almost every regular and semi-regular polyhedron. What 
we mean with Elevation can be comprehended when we look at Figure’s 8, 9 and 10.  
 
 

 
 
Figure 8:  Tetrahedron elevated.          Figure 9:  Cuboctahedron elevated.             Figure 10: Rhombic 
                cuboctahedron elevated. 
 
 
2.2.  The Elevation Process.  The process of elevation of a polyhedron can be described as follows: from 
a face of the polyhedron we take the midpoint and we move this point away from the centre of the 
polyhedron until the distance between this point and the corner points of the face equals the length of the 
side of the face. After that we draw a line between the elevated point and each of the corner points of the 
face. When we do this for each face of the polyhedron the result will be the elevation of the polyhedron. 
In Figure 8 we can see the result of this process when we start with the tetrahedron. Because the new 
faces are all equilateral triangles it is clear that this process only works on triangular, quadrangular and 
pentagonal faces. In Leonardo’s drawings we can find eight of the fourteen possible elevations of regular 
and semiregular polyhedra. Two of the elevated Archimedean solids are shown in Figure 9 and 10.   
 
2.3.  The Elevation of flat tilings.  The process of elevation that Leonardo used to create a new set of 
monohedra can also be applied on flat tilings in which triangles, squares or pentagons are used. In Figures 
11 and 12 we can see the non-flat tilings that we will get when we apply the elevation process on the 
regular tilings with respectively triangles and squares. The resulting tiling is always a non-flat tiling in 
which only one type of tile is used, which is the equilateral triangle. The possibilities to make non-flat 
tilings with this tile, the equilateral triangle, are overwhelming. Therefore in this paper we will limit 
ourselves mainly to cylindrical shapes. When we make a small change with some of the tiles in the tiling 
of Figure 12, we get the tiling shown in Figure 13. Because this structure is bendable we can transform it 
into a cylindrical shape (Figure 15). Because all the tiles in these examples areequilateral triangles the 
tilings belong to the group of  “deltahedra”. 
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Figure 11:  Eelevation of 3,3,3,3,3,3.      Figure 12:  Squares elevated.   Figure 13:  Transformation. 
 

 
 
  Figure 14:  Bending.   Figure 15:  Cylindrical tiling with equilateral triangles.   
 
 
2.4.  Cylinders – folding/unfolding.  The method used in Figures 13 to 15 is just one way of creating 
cylindrical non-flat tilings with equilateral triangles. 
 

    
 

       Figure 16:  Tetrahelix.            Figure 17:  Unfolding: plane. Figure 18:  Unfolding: strip. 
 
In Figure 16 we see the tetrahelix, one of the most simplest cylindrical non-flat tiling with equilateral 
triangles. The tetrahelix can be fold from the normal flat tiling with triangles (Figure 17), but we can also 
start with a strip of triangles. Just spiralling around as in Figure 18, the strip of triangles will become a 
tetrahelix. A lot of interesting new shapes can be made by using this way of building non-flat tilings. 
Especially when we do not just use the simple strip but also allow adding extra triangles at each side, as in 
Figure 19. This strip is used to produce spiralling cylindrical shape of Figure 20. 

Roelofs

186



 
 

          Figure 19:  Strip of triangles.                         Figure 20:  Spiralling cylinder. 
 
Many variations are possible. The examples shown in Figure 20 to 22 are all created while starting with a 
simple strip of triangles on which we add some extra triangles on each side. 
 
         

 
 
        Figure 21, 22:  Spiralling cylindrical tilings. 

 
3.  Twisted Elevation 

 
3.1.  Twisting.  Until now the tiles we have used can also be applied for flat tilings, or tiles that we knew 
as faces of the regular solids, the semi-regular solids and their duals. So we can ask ourselves whether it is 
possible to find other shapes of tiles that only can be used for non flat tilings. To study this we first go 
back to one of Leonardo da Vinci’s drawings of an elevation of a polyhedron, the elevated icosahedron of 
Figure 23. The step we will now use by making a change in the shape of the tiles is called twisting. The 
elevated icosahedron can be seen as a set of twenty triangular pyramids. When we rotate each pyramid on 
it’s own axis with the same angle we will get a new object, like the one in Figure 24 and 25. We will call 
this process twisting. In every stage the object we get is built out of (twenty times three) sixty faces, or 
tiles. The shape of the tile has changed from an equilateral triangle into a non-convex pentangle. And in 
every stage the shape of the tiles is the same. The object in Figure 25 can be recognized as a compound of 
five tetrahedral, but here it just is a set of sixty equal tiles that makes a non-flat tiling. 
       

 
 
Figure 23:  Elevated icosahedron.      Figure 24:  Twisting – first step.       Figure 25:  Twisting – final step. 
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3.2.  New shapes.  With twisting we have found a method to create new shapes that can be used for non-
planar tilings. In general the shape of the resulting tile will be a non-convex polygon. The result of 
twisting applied on the non-planar tiling, that we created by elevating the planar tilings with squares is 
shown in Figure 26. And in this case it is clear that the tiles can not be used to make flat tiling. There is 
no way to fill the plane with these tiles without leaving gaps or without overlaps.  
Two more examples can be seen in Figure 27 and 28. The non-flat tiling of Figure 27 is derived from the 
elevation of the flat tiling of equilateral triangle. 
 

 
 
Figure 26:  Twisted elevation.            Figure 27:  Non-flat tiling.          Figure 28:  Non-flat tiling. 

 
4.  Spiral Cylinders 

 
4.1.  New shapes for cylindrical tilings.  To create new shapes of tiles for cylindrical tilings the method 
used to generate new tiles described in chapter 3 didn’t turn out to be very successful. Therefore a new 
approach was developed. First a normal spiral curve is drawn. This curve is divided in equal parts. After 
that a straight line is drawn from the start point of the first part to the start point of the next part. And so 
on. These straight lines are then extruded downwards to the axis of the spiral, as in Figure 29. This is the 
basic shape that is needed to construct the shape of the tiles for the cylindrical tiling. The shape of Figure 
29 is now turned upside down and added to the original shape (Figure 30). Both shapes do intersect, and 
from the intersection lines we can derive the final shape of the tile. The completed tiling is shown in 
Figure 31. The shape of the tile is a non-convex hexagon and can not be used to tile a flat plane. New 
tilings are created this way. 
 

 
 
Figure 29:  Extruded spiral sections.    Figure 30:  Intersecting ‘spirals’.   Figure 31: Non-flat cylindrical tiling. 
 
4.2.  Variations.  The method described in chapter 4.1 allows many variations: the distance between the 
point on the spiral, the angle of the extrusion, and the position of the second spiral shape (height as well 
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as rotation angle) may vary. Each set of values will present another shape of tile. In Figures 32 to 34 just a 
few of the possibilities are shown. 
 

 
 
Figure 32:  Cylindrical tiling..                Figure 33:  Cylindrical tiling.                   Figure 34: Cylindrical tiling. 
 
4.3.  Unroll.  Just like the spiralling cylinders in chapter 2, also the objects shown in Figures 31 to 34 can 
be unrolled into a simple strip of tiles. As an example the object of Figure 34 is unrolled here (Figure 35). 
                                  

 
 

Figure 35:  Plan for cylindrical tiling of Figure 34.    
 

5.  Classification 
 

5.1.  Glide Rotation.  For the classification of tilings we make use of the symmetry operations that are 
needed to map one tile of the tiling onto another tile. In flat tilings these operations are called translation, 
rotation, reflection and glide reflection. When we want to map a tile onto another tile in one of the 
cylindrical tilings shown in Figure 31 to 34, none of the operations will give the result that we want. 
Translation, nor rotation, nor reflection, nor glide-reflection will map one tile onto another. What we need 
here is a combination of two operations, which are translation and rotation. While also glide reflection is a 
combination of two operations (translation and reflection), the most logical solution seems to be that we 
introduce a new operation: Glide Rotation, in literature often referred to as “screw rotation”. 
 
 

 
 
         Figure 36:  Glide Rotation.                                  Figure 37:  Pentagonal tiles.     
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5.2.  Polygons.  In non-flat tilings all the tiles are polygons. Curved edges is not possible because of the 
use of flat tiles. An edge between two flat tiles, not laying in a plane is part of the intersecting line of the 
two planes in which the tiles are laying. And therefore the edge is always a straight line. So another 
property that we could use for classification might be the number of sides of the polygon. And because 
convex as well as non-convex polygons can be used, also the position of the non-convex angle can also be 
used for classification. In Figure 38 some of the main types of tiles for non-flat cylindrical tilings are put 
together. The notation is according the way it’s being described in Heesch’s and Kienzle’s book 
Flächenschluss [3] in which they present the types for normal flat tilings. 

 
Figure 38:  Classification.  
 

 
5.3.  Type B.  In the pictures 39 to 41 you can see examples of the use of tiles B-pentagonal (Figure 39, 
40) and tile B-hexagonal (Figure 41). The concept of non-planar tilings leads to new interesting 
structures. The method to create cylindrical tilings with flat tiles described in chapter 5.1 is one of the 
methods I found. To create the tilings shown in Figure 37 and Figures 39 to 41 other methods had to be 
used. 
 

 
 

       Figure 39:  Cylindrical tiling - pentagons.                             Figure 40:  Top view.    
 

 
 
    Figure 41:  Cylindrical tiling – hexagons.                 Figure 42:  Convex pentagons - Type C.  
 
We will use the classification ‘Type C’ for tilings in which the tiles are convex polygons. Figure 42 
shows a cylindrical tiling of Type C with the use of convex pentagons. 
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5.4.  Triangular tiles.  In normal flat tilings it is not required that all the corner points of the tiles meet in 
one point. In ‘Tilings and Patterns’[1], page 475-481 we can see many examples of polygonal isohedral 
tilings in which the corner point of one tile touches another tile somewhere at the edge in between two 
corner points. In Figure 43 such a tiling is shown made by M.C. Escher [4]. Also in non-flat tilings this 
way of connecting the tiles can be used. In the examples (Figure 44 and 45) the constructions are tilings 
with Glide Rotation. 
 

 
 
Figure 43:  M.C. Escher.                Figure 44:  Triangular tiles (1).    Figure 45:  Triangular tiles (2).   

 
5.5.  Quadrangular tiles.  For convex quadrangular tiles we now have two different ways of using them 
in non-planar tilings with Glide Rotation as can be seen in Figure 46. In Figure 46 also the triangular tile 
used in Figures 44 and 45 is shown. 
 

 
 

Figure 46:  Classification – convex triangular and quadrangular tiles.    
 

The use of quadrangular tiles leads to nice constructions. Many variations are possible as can be seen in 
the examples of Figures 47 to 49. 
 

 
 
Figure 47:  Type E - quadrangular.    Figure 48:  Type E – quadrangular.    Figure 49:  Type D – quadrangular.   
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5.6.  Special cases.  Finally I want to show some special cases of the spiral cylinders with quadrangular 
tiles. For the tile of Type E we can change the shape of the quadrangle in such a way that it becomes a 
rectangle. And now the top view of the construction shows an equilateral triangle as the shape of the hole. 
 

 
 
Figure 50:  Quadrangular tiles.      Figure 51, 52:  Rectangular tiles. 

 
And when we use a trapezoid with angles 60-60-120-120 degrees we will get a square hole. 
 

 
 
     Figure 53, 54:  Trapezoids.             Figure 55:  Two entwined spirals. 

 
A special case of such a trapezoid is the tile used in the construction of Figure 55. The tile is the exact 
half of a regular hexagon, and it leads to a non-flat tiling that also can be seen as a combination of two 
entwined spirals. 

6.  Conclusion 
 

6.1.  Non-flat Tilings.  I think the field of non-flat-tilings with flat tiles is interesting and needs further 
exploration. Especially the use of Glide Rotation leads to interesting new constructions which can be used 
as designs for sculptures. In other words, it is a topic which can bring art and mathematics together in an 
elegant way.  
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Abstract

We describe the process of making metal sculptures starting from geometric constructions based on stellation of 
polyhedra. Symmetry transformations and various algorithms of mesh subdivision are used to convert straight 
edges and planes of stellated polyhedra into smooth organic shapes. 

Stellation of Polyhedra 

Stellation is a process of extending the faces of a polyhedron in all directions to infinity. These extended 
faces divide the space into convex polygonal cells. In general, any subset of these cells may be called a 
stellation of the original polyhedron. Typically, only the most symmetric subsets are considered [1], but 
stellations with lower symmetry [2] are interesting as well.  Figure 1 shows the steps of making the first 
stellation of icosahedron by attaching triangular pyramids to each face of the original icosahedron. Figure 
2 shows the final step of this process - first stellation of icosahedron.

Figure 1: First steps in stellation of icosahedron. The final shape is shown in Fig. 2

The calculation of intersections of extended polyhedron faces is a tedious process to do by hand, but it 
can be easily done using interactive computer programs such as Stellation Applet [3] or Great Stella [4].   
One can view the first stellation of icosahedron in Fig. 2 as a combination of the original icosahedron and 
20 triangular pyramids attached to each of its 20 faces. However, we adopt here a different view: it is a 
surface consisting of 20 identical convex flat hexagons.  One such face is marked with the bold outline in 
Fig. 2. These faces intersect along the edges of the original icosahedron and meet each other along the 
side edges of the triangular pyramids. We would like to build a surface with the same overall topology, 
but which has no intersections between the faces. One way to construct such a surface is to make deep 
cuts in each hexagonal face as shown in Fig. 3.
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Figure 2: Complete first stellation of 
icosahedron with one hexagonal face 

outlined. 

Figure 3: A face of the first stellation of 
icosahedron with deep cut-outs.  

 
The complete surface composed of such prepared faces is shown in Fig.4. In order to make a real solid 
object one can assign to that surface some finite thickness as shown in Fig.5. 
 

  
Figure 4. The first Stellation of Icosahedron with 
cut out faces.   

 Figure 5: The faces are given some thickness. 

 
Subdivision  

The object in Fig.5 possesses multiple sharp edges, and as such is far from our goal of an organic-looking 
shape. However, one can apply well-developed computer graphics algorithms known as surface 
subdivision, to smoothen the surface [5,6]. These algorithms refine a low-resolution mesh into a high-
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resolution smooth mesh. The general idea of subdivision is to replace each polygonal face of the existing 
mesh with several smaller polygons, and then shift the vertices to new positions to make the new mesh 
smoother. The procedure is repeated several times until the surface is smooth enough. The result of this 
algorithm is shown in Fig. 6 for two simple initial shapes: the cube and a toroidal shape. One can observe 
that just a few subdivision steps result in very smooth looking surfaces.   

 
Figure 6: Examples of mesh subdivision applied to the two simple shapes. 

 
 

Application of the subdivision algorithm to the first icosahedron stellation of Fig. 5 produces the 
sequence shown in Fig.7. The object becomes very smooth already after 3 subdivision steps.  
 

Figure 7: The subdivision sequence for the icosahedron stellation of Fig. 5. 
 
 

One more trick needs to be added to the algorithm. Real organic objects seldom have absolutely 
smooth surfaces. Typically, they have folds and creases of various types. The subdivision 
algorithms have been generalized to create such discontinuities in surface derivatives [7]. The 
idea is to mark some edges of the initial mesh as "crease edges" and then modify the shift rules 
for the vertices that belong to the crease edges. The result of the application of the modified 
algorithm to the mesh of Fig. 5 is shown in Fig. 8.  
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Metal Sculptures 
There exist several fabrication technologies that can transform a 3D computer model into a real- 
world metal object. We have used Selective Laser Sintering (SLS) from 3D Systems [8] and 
Direct Metal Printing from ProMetal [9]. Both technologies make parts from stainless steel 
powder infiltrated with molten bronze. The first method produces more precise shapes with finer 
surface finish, but it has problems with larger pieces. They have the tendency to break during late 
stages of processing. In addition, the second method can make parts with copper and gold. Figure 
9 shows a photo of sculpture "Icosahedron I" made using SLS technology.  Outer corners of the 
sculpture have been polished. Polishing creates a pleasing combination of rough and smooth 
surfaces.  

  
Figure 8. A subdivision mesh with creases. Figure 9. Icosahedron I.  

Steel and Bronze. Diameter is 4 inches. 
 

 
 

Figure 10. A subdivision mesh based on great 
stellated dodecahedron. 

Figure 11. Dodecahedron X. 
          Steel and Bronze.  Diameter is 4 inches.
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Figures 10-15 show additional examples of author's sculptures based on polyhedra stellations.  

 

Figure 12. Dodecahedron IX. Steel and 
bronze. Diameter is 4 inches. Based on Small 
stellated dodecahedron (the first stellation of 

Dodecahedron).  

Figure 13. Dodecahedron IV. Diameter is 4 
inches. Based on Great Dodecahedron (the 

second stellation of Dodecahedron) 

 

 
Figure 14. Rhombic Triacontahedron III. 
Diameter is 4 inches. Based on stellation of 
Rhombic Triacontahedron. 

Figure 15. Dodecahedron IV. Diameter is 4 
inches. Based on Great Dodecahedron.  
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Conclusion 
 
Modern technology provides an artist with new tools and possibilities to make the art forms he or 
she wants. However, this raises the question: Can we call objects made with help of computer 
controlled machines art? Shouldn’t art be hand made? Well, art is impossible without use of 
technology. No "hand made" art is truly hand made and  modern technology is always used to 
some degree. The artist in his art work is entitled to use any tools he can get his hands on.  
Other artists used stellations in the way similar to the author's. Most notable are M.C. Escher's  
Double Planetoid (1949) and Gravity (1952), and many sculptures of George  Hart [10]. The 
original contribution of the author is application of subdivision algorithms to polyhedra 
stellations. The author writes his own software in Java and C.  
 
The author is very grateful to Bathsheba Grossman [11] for inspiration and help in mastering the 
metal printing technology.  
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Abstract 
 

This paper has been prepared to demonstrate how I have used the geometry of polyhedra and my chosen medium of 
lathe turned wood to present the models shown in an aesthetically pleasing and artistic way.  Each of the five 
platonic solids (tetrahedron, hexahedron, octahedron, docedahedron and icosahedron) has been interpreted through 
the eyes of a woodturner allowing the viewers alternate perspectives of these classic polyhedra.  The description of 
each model includes details such as the type of wood used, dimensions and the process of fabrication. 
 

 
Introduction 

 
My interest in geometry stems no doubt from a lifetime spent in the cabinet making industry. Initially I 
worked as a hands-on craftsman and then later in a supervisory position which consisted of interpreting 
designer/architectural concepts and turning them into practical and beautiful pieces. After my retirement 
in 1996, I turned my interest in geometry into a hobby, using wood as a medium and a lathe as one of my 
many tools. I started a second journey of discovery as a wood turner/artist.   
 

My investigation and interpretation of the platonic solids has been influenced by Johannes Kepler, 
Luca Pacioli, Leonardo De Vinci, M. C. Escher, and later by Buckminster Fuller and Donald Coxeter. 
After exhibiting some of my work at the Fields Institute I was invited to share space in Donald Coxeter’s 
showcase in the math department at University of Toronto where I currently have four pieces on display.   
 

The five platonic solids are the tetrahedron, hexahedron (cube), octahedron, dodecahedron and 
icosahedron.  The properties of the platonic solids are that each of the faces is regular, the faces are 
identical, and at each vertex the same number of faces meet.  Each pair of adjoining faces meet at the 
same angle and the vertices lay on the surface of a sphere.   

 
 

Tetrahedra 
 
Figure 1 is a simple tetrahedron model, which has been made 
of pear wood. Each of the faces is an equilateral triangle of 
about 2 inches long. The faces were cut using a template on a 
table saw with the mitre angle being 35.264 degrees.  The 
angle was originally obtained from Table 8 [1] and then 
adjusted if required based on dry fitting the pieces.  The piece 
was then glued and the holes were cut only to show that it is a 
hollow form. 
 

The two tetrahedra shown in Figure 2 have turned 
spindles representing the edges.  This type of model can be 
referred to as the web of the polyhedral form. The spindles, 

  

 
 

Figure 1: A simple tetrahedron 
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which are 5/16” in diameter, have tenons turned on each end 
fitting into holes drilled into the ½ inch spheres representing 
the vertices. 

 
The angle and the spacing of the three drilled holes is 

critical.  The angles were approximated and then confirmed 
using cardboard models and a master block was produced.  
The holes were then drilled using the angled block and an 
indexing system to ensure equal spacing of the holes.  This 
process was used to create other polyhedral spindle figures by 
producing other master blocks of appropriate angles and 
indexing. 
 

The tetrahedron in Figure 3 was initially turned as a 6 
inch walnut sphere. The four vertices were located using a 
compass.  The compass is set using the diameter of the sphere 
divided by 1.25, which in this case is 4.8 inches.  The first 
vertex was used as the starting point and a circle was scribed 
on the sphere.  The second vertex is any point on the scribed 
circle.  By rotating the compass left and right, the third and 
fourth vertices are established.  If the setting on the compass is 
correct, this line will have been divided into three equal parts 
and you have located the four vertices of a tetrahedron. 

 
The sphere was then hollowed out to a wall thickness of 

about ¾ inch, leaving enough wood to carve the double twists, 
which connect the vertices.  The twists were cut freehand 
using a dremel burr. 
 
 

Hexahedra      
 
The 6 inch cube in Figure 4 is a hexahedron designed to be a 
secret box. Made of applewood, its six faces are identical and 
one of them is also a screw-in panel. Each face is inscribed 
with two logarithmic spirals textured with a rotary burr prior 
to being highlighted with black acrylic paint. The logarithmic 
spirals were developed by repetitive division of a rectangle 
conforming to the proportion of the golden mean [2].  The 
spirals were transferred to the figure by rotating the template 
180 degrees around the centre of each face.   
 
 

 
 

 
 

Figure 2: Two web tetrahedral 
 
 
 
 

 
 

Figure 3: Artistic tetrahedral 
 
 
 
 
 
 

 
 

Figure 4: Hexahedron box 

Octahedra 
 
The grouping shown in Figure 5 was one of my first attempts at working with platonic solids.  Although 
they appear to be one octahedron and three spheres, all four started as octahedra each having eight 
equilateral triangular faces.  The name “The Family” comes from the idea that all the boxes come from 
the same original form. 
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Three of the octahedra were lathe turned to their 
spherical shapes What sets them apart is the species of wood 
and the manner in which the lids are oriented. For the lower 
box I used becote and divided it at the equator; four sections 
for the lid and four sections for the bottom. For the middle 
box I used laurel and used two sections for the lid and six 
sections for the bottom. For the upper box I used wenge. 
Again, there were four pieces for the lid and four pieces for 
the bottom, the difference being the orientation of the 
triangles, which produces the zig-zag edge when the lid is 
removed 
 

This octahedron in Figure 6 was inspired by a traditional 
quilting design known as tumbling blocks. The technique used 
is referred to as stickware or Tunbridgeware as it has been 
made up from a bundle of sticks. In this case, the sticks are 
rhomboids cut at 30 degrees with each of the faces being of 
equal length. A group of three made of three different colours 
of wood can be bundled together, the end view creating the 
optical illusion of a cube. The next step is to rebundle them 
together to make a triangular stick, which can then be cut into 
identically patterned slices.   Eight of the resulting equilateral 
triangles are mitred and glued together to produce an 
octahedron. The woods in this case are holly, white oak and 
cocabola. 
 
 

Dodecahedra 
 
The dodecahedron in Figure 7 came about when I made 
stickware for some spinning tops. Having enough left over for 
12 faces, I decided to make this dodecahedron. I took the ten 
sided stick and clad it with five pieces of oak to construct the 
pentagonal stick. From this stick I cut 12 panels, each 3/16 
inches thick, to make the dodecahedron. The woods used are 
holly, cocabola, pear, white oak, and maple, and it is about 7 
inches in diameter. 
 

Figure 8 is titled Piece-Peace Suspended. This title is 
intended to be a play on words. As you can see, the 
dodecahedron box is suspended. Each face of the 
dodecahedron is a pentagon, which is a symbol of peace. The 
box was intended to symbolically contain George’s weapons 
of mass destruction but when you look inside, the box is 
empty. The web, made of ebony, represents the web of evil. 
The handle, which is a dove, but not the white dove of peace, 
is made from the same black ebony. 
 

 
 
 

  

 
 

Figure 5: The Family 
 
 
 

 
 

Figure 6: Stickware octahedron
 
 
 

 
 

Figure 7: Stickware dodecahedron 
 
 

 
 
 

Figure 8: Piece-Peace Suspended
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Figure 9 is a stellated dodecahedron. The term stellated 
was coined by Johannes Kepler [3].  Stellation is a process 
that allows us to derive a new polyhedron from an existing 
one by extending the faces until they re-intersect.   

 
The flat planes, which emerge from these figures, enable 

this piece to be produced using the lathe or the bandsaw; I 
opted for the latter. The first step is to create a sphere and then 
locate the 12 vertices.  The compass setting is calculated using 
the diameter of the sphere times 0.526 [4] and an initial circle 
is scribed on the sphere.  Choosing any point on the initial 
circle, a second circle is scribed creating two intersection 
points.  Circles are drawn from each point where two circles 
intersect.  Each point of intersection becomes a vertex.  At the 
end of this process, the twelve vertices will have been located.  

 
Holes were drilled at each of the vertices and a temporary 

rod was inserted to act as a pivot while cutting the faces on the 
bandsaw.  A jig was used to control the depth of cut on all 12 
axes and as the wood fell away a dodecahedron emerged.  The 
holes were plugged using contrasting coloured wood for 
emphasis.  
 
 

Icosahedra 
 
The simple web of the icosahedron (Figure 10) emphasizes 
the symmetry and balance of all of the platonic solids. The 
web is created using spindles and spheres for the vertices as 
previously described with the only difference being the angles 
at which they are drilled and the number of holes drilled.  The 
spindles are made from rose wood and the spheres at the 
vertices are boxwood. The piece is about 12 inches in 
diameter. 
 

The sphere in Figure 11 was initially a faceted 
icosahedron made from curly maple.  The joints have been 
emphasized with a laminate of black, white, and black veneer.  
The vertices were drilled out and replaced with black inserts. 
Centered on each insert are hand turned flowers of several 
designs and a variety of woods. 

 
Figure 12 is a stellated icosahedron, which began as a 

solid sphere made from madrone. The faces were then cut on 
the bandsaw using a similar technique described for Figure 9.  
In this case there are 12 pivot points of rotation located in the 
valleys, which can be seen as the black caps of ebony.  The 
base is made of walnut and was made on the lathe, using a 
swing pivot router, then painted black. The finished piece is 9 
inches high. 

 

 

 
 
Figure 9: Stellated dodecahedron 

 
 
 

 
 

Figure 10: Web icosahedron 
 
 
 

 
 

Figure 11: Spherical icosahedron 
 
 
 

 
 

Figure 12: Stellated icosahedron 

Rollings

202



Figure 13 is a combination of a stellated and a concave 
icosahedron. All of the panels used to make this piece are 1/8 
inch thick. There are 120 flat panels required to construct the 
piece. It is about 8.5 inches from point to point. The panels are 
mitre cut using a template and glued together. 
 

 
 

Figure 13: Stellated and concave 
icosahedron 

 
Hybrids 

 
In the following pieces I have used the solid faces of the 
platonic solids surrounded by web models.  I call these 
designs hybrids. 
 

In Figure 14 we have compounds of two tetrahedra 
constructed from eight minor tetrahedra; four of which are 
walnut, and the other four are maple. One of the vertices of 
each of the eight minor tetrahedrons becomes the corners of a 
hexahedron. I have joined these together using applewood 
spindles to reinforce the relationship. 
 

This stellated dodecahedron in Figure 15 has been made 
up of 3/16 inch babinga panels; five panels for each pyramid 
with a total of 60 panels. The 12 vertices give us the 
framework for the web, which as you can see is an 
icosahedron. The 30 spindles and spheres are rosewood. 
 

The piece shown in Figure 16 was completely turned on 
the lathe. It was inspired by Wenzel Jamnitzer who was a 
German etcher/goldsmith and drew this piece in 1568 [5]. I 
can only assume it was never made and that it was only a 
graphic design as the main body only hovered above the base. 
The wood for the core icosahedron is honey locust and the 
web and base were made in cocabola. 

 
 

Web Models  
 
The following four pieces have been modelled using a web 
design. They consist of more artistic interpretations of the 
platonic solids and were done using webs so that the entire 
shape, as in line drawings, are visible from a single 
perspective.  

 

 

 
 

Figure 14: Tetrahedron-
hexahedron hybrid 

 

 
 

Figure 15: Dodecahedron-
icosahedron hybrid 

 

 
 

Figure 16: Totally Turned 
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This is a web model of a stellated icosahedron (Figure 
17). It is interesting to see that when the 20 faces are stellated 
to create 20 new vertices we begin to see a relationship 
between the icosahedron and the dodecahedron.  There are 12 
planes where pentagons are formed.  The vertices of the 
stellated icosahedron are created by extending the edges of 
these pentagons.  The ratio of the length of the spindles to the 
length of the base conforms to the golden mean. 

 
After completing the work shown in Figure 17, I saw 

further possiblilities and so created Metamorphosis (Figure 
18).  The relationship between the dodecahedron and 
icosahedron fascinated me. It began with a central 
dodecahedron. In the centre of each of the 12 faces, spindles 
were projected to create the 12 vertices of the icosahedron. 
Finally the icosahedron was stellated to create the 20 vertices 
of the outer dodecahedron. The web was then connected 
between these vertices completing the metamorphosis. 
 

Johannes Kepler lived from 1571 to 1630, had a great 
interest in the platonic solids, and was the inspiration for this 
piece. It was his contention that the orbits of the planets are 
related to the platontic solids. In Figure 19, each of the 
platonic solids are contained within one another and each 
rotate on their own axis. From the centre working out we have 
the tetrahedron, hexahedron, octahedron, dodecahedron and 
then finally the icosahedron. Each rotates, as do the heavenly 
bodies. This piece has a total of 90 spindles and 40 vertices. 
The spindles and the circular frame are Brazilian rosewood, 
the vertices are boxwood and the base is black painted 
hardwood. 
 

Figure 20 is an example of a progressive web 
transformation. The centre is an octahedron, which has been 
converted by making each of the eight faces into tetrahedrons. 
Four were made from ebony and four from holly. These not 
only express two major intersecting tetrahedrons, but also 
indicate the eight vertices of the hexahedron. The various 
woods used here are pear, ebony, holly, and satinwood. The 
circular frame is walnut and the base is black-painted 
hardwood. This piece has found a home in Donald Coxeter’s 
showcase of models, at the University of Toronto’s math 
department. 
 
 
 
 
 

 

 
 

Figure 17: Stellated icosahedron 
 
 

 
 

Figure 18: Metamorphosis 
 
 

 
 

Figure 19: Kepler Theory 
 
 

 
 

Figure 20: Transformation 
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The following two pieces have been inspired by Luca 
Pacioli’s publication of De Divina Proportiona, published in 
1509 in which Leonardo De Vinci drew the illustrations of the 
regular solids. Leonardo’s drawings are probably the first 
illustrations of skeletonic solids. 
 

Figure 21 is similar to De Vince’s model and my 
interpretation of the piece is constructed of 84 individual 
frames mitred together. The side angles had to be cut prior to 
assembly.  After the first row of 12 frames had been glued 
together the other rows could be glued and assembled until the 
sphere was closed. All faces of the strips used for the frames 
were prefinished prior to assembly as all faces can be seen.  
The sphere was made from babinga wood and has a 10 inch 
diameter. The base is turned from walnut and has been 
weighted with lead shot to permit the piece to be shown in an 
offset position.  
 
The second of Leonardo’s pieces is a torus.  This is his 
mazzocchio which he drew in solid edge form.  It consists of 
32 sections around the circumference (Figure 22). Each 
section contains eight frames for a total of 256 frames, each 
with specific side angles. This model is made from zebra 
wood and is 14 inches in diameter. 
 

Figure 23 shows a web model of Buckminster Fuller’s 
Vector Equilibrium [6], which is a polyhedron. It is a 
cuboctahedron with all the vertices connected to the centre.  

 
It has many unique properties; it has 12 vertices, which 

lie on the surface of a sphere.  It contains 24 edges as well as 
14 faces.  Vector equilibrium is comprised of eight 
tetrahedrons and six half octahedrons.  Finally, the distance 
from any two adjoining vertices is identical to the distance 
from any vertices to the central sphere.   The piece rotates 
within its circular oak frame, which in turn pivots in the base. 

 

 
 

Figure 21: De Vinci model 1 
 
 
 
 

 
 

Figure 22: De Vinci torus 
 
 
 
 

 
 

Figure 23: Vector equilibrium 
 
 

  

This article has described many of the polyhedra and platonic solids I have worked on in the past few 
years and is also the result of much reading on the subject. The journey is endless and the variables 
infinite.  
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Abstract 

This paper presents work-in-progress on techniques for procedurally “growing” organic-looking forms. The goal 
is to design and implement techniques for expressing simple algorithmic operations that can be combined in 
various ways to produce forms that develop from an amorphous blob to a structured cellular assemblage. Growth 
“buds” in a cellular assemblage each execute short programs that determine local parameters of growth, e.g., 
directionality, branching, cell size, cell shape, and color. These are executed in a software simulator package that 
generates both graphical (2D) and geometric (3D) output. Every step along the way determines a triangulated 
manifold boundary that can be fabricated by solid freeform fabrication equipment. I plan to incorporate these 
techniques into future sculpture that combines mathematical ideas with organic sensibilities. 

Introduction. Nature provides an enormous range of attractive organic forms which have inspired artists 
through the ages [2]. In previous work, I have created simulated organic forms reminiscent of underwater 
sea life via mathematical models of an entire organism’s static structure [3]. This paper explores simple 
techniques for mimicking various organic forms via a simple dynamic growth process, e.g., Figure 1. The 
goal is to create organic-looking geometric sculpture which can be built on 3D printing machines. It 
relates to well-known techniques of L-Systems [6] but is designed to create smooth surfaces with a 
triangulated manifold boundary that can be fabricated by solid freeform fabrication equipment. 

 
Figure 1: A cellular form that develops by outward growth at the tip of each arm. 
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A form here is represented as a network of “cells” on its surface, analogous in some ways to skin cells on 
an organism. Each cell has properties assigned to it, including size, color, and texture (e.g., bumpy or 
smooth).  A cell may divide into two cells, which are topologically connected into the space that the 
single cell formerly occupied. Their geometry is then determined by a spring energy relaxation model that 
calculates new positions for the cells so all are the appropriate distance from their neighbors. As a 
consequence, after cell division the surface bumps out slightly to accommodate the additional cell. Some 
cells contain a special entity, called a “bud” that controls the growth and cell properties in their local area. 
Each bud follows an algorithmic program, allowing it to control how nearby cells divide, to change its 
growth properties over time, to split into two or more new buds, to check for collisions, and to do other 
simple operations. There may be several different bud types and any number of buds, each independently 
following the program for its bud type. The behavior for each bud type is specified in advance using a 
simple programming language. The growing areas around the various buds develop and interact to result 
in complex, visually attractive overall structures. Due to many random choices of exactly which cell 
divides when, the same program when executed repeatedly gives output that appears like different 
individuals of a single species. The project is not intended as a simulation of particular organisms or 
natural mechanisms. The goal is simply to produce sculptural forms that mimic the forms of various 
natural biological processes. The best means to understand the growth dynamics is to view the screen-
capture videos at [4]. 

Origins: Symmetry via Growth. I began this project when thinking about how icosahedral symmetry 
rarely appears in nature. Certain microscopic viruses and radiolarians have icosahedral forms but, to my 
knowledge, no larger multicellular organisms do. As a fan of icosahedral symmetry, I could envision a 
simple growth process that in principle could lead to larger scale icosahedral organisms. The mechanism 
appears similar to natural biological growth processes, and nature has an enormous range of techniques, 
so why does this not appear in nature?  

The proposed growth mechanism involves buds that promote growth in their local area. It is apparent 
from observing the type of apical growth one observes, e.g., in trees, that there is something special at the 
tip of each branch causing it to elongate. Suppose twelve such buds were randomly positioned in a small 
spherical blob of cells, each causing growth in their local area, perhaps by producing some sort of 
“growth hormone” that diffuses away from them and causes nearby cells to divide. If two buds happened 
to be very close to each other, the area between them should receive twice the dose of hormone and so 
grow faster than average, pushing the two buds away from each other. Conversely, if buds are very far 
from each other, most of the area between them has little hormone so does not grow. This appears to 
provide a stabilizing feedback mechanism that would, after some time, cause buds to be roughly equally 
spaced from their neighbors. So if twelve buds started out randomly distributed in a spherical ball of cells, 
I envision this mechanism producing an even distribution of buds, i.e., positioned as the vertices of an 
icosahedron. If the bud regions continued to grow, I would expect a kind of 12-armed almost-regular 
icosahedral “starfish” to result. But I know of no such biological organism. So I decided to “play god” 
and see if I could create one. And while I was at it, I made an environment for creating a range of other 
organic-looking forms that develop by bud-based growth.  

Local cell division. In this model, cells are like small balls that stick to their neighbors in a monolayer 
surface or skin.  Each is surrounded by a small number of adjacent cells, most typically five, six, or seven. 
This adjacency relation determines a graph I call the “cell graph.” Each cell is represented by a vertex. 
When cells are adjacent, there is an edge connecting the corresponding vertices. In most examples below, 
the skin has no “donut holes,” i.e., it is of genus zero, so the cell graph is planar, but that is not essential to 
the method. One example is shown of a process in which holes are grown, making high-genus forms.  

The growth algorithms below ensure that the cell graph always corresponds to a triangulated surface. This 
simplifies some of the algorithms and makes it easy to convert to the STL file format for 3D printing 
machines. Furthermore, it corresponds visually to what one finds in nature, where cells in surfaces usually 
meet in groups of three [7]. However, unlike most real organisms, these forms are empty of all structure. 
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Figure 2: Cell division process. If the center cell at left is chosen for division, it is temporarily 
removed and replaced with two cells that join each other. The surrounding n cells (here, n=8) connect 
via n+2 edges to the two new cells, to make a triangulated graph. Here, the topmost and bottommost of 
the eight surrounding cells each end up with one more edge than they began with. 

Given a cell graph and a cell to divide, we apply the procedure illustrated in Figure 2. It is a special type 
of “vertex splitting” designed to maintain a triangulated graph of approximately balanced degree. The 
vertex corresponding to the cell that divides is removed, temporarily creating an n-gon face if the cell had 
n neighbors. Two new vertices are placed in this face and connected to each other. These two cells are 
then connected to the n surrounding vertices, using exactly n+2 edges so that the result is triangulated. 
This means that most of the surrounding vertices connect to just one of the two new cells, but two of the 
surrounding vertices connect to both of the new cells. For those two surrounding vertices, their neighbor 
count will increase by one. As we do not want vertices of very high degree, we choose the surrounding 
vertex of lowest degree for one that will increment. The other is chosen to be opposite the first in the n-
gon, as otherwise the two new cells would have unbalanced degrees. (If n is even, this completely 
determines the opposite vertex, but if n is odd we can round up or down, and do so in a way that 
increments the degree of the one with lower degree if they are not equal, otherwise randomly.) 

Position determination. Cell division, as described above, is a topological operation on the cell graph. 
To form a geometric surface, we need to embed this graph in 3D space by assigning a position to each 
vertex. This is accomplished here by a “spring embedder” algorithm which treats each vertex as a 
massless node and each edge as a spring with a preferred length. We define an energy function associated 
with vertex pairs that is quadratic in the difference between the actual length and the preferred length. We 
choose coordinates for each node to minimize the sum of these spring energies. The actual global 
minimum is difficult to compute, but a simple iterative algorithm can repeatedly adjust one node at a time 
to minimize its contribution to the energy. This can be accomplished with a straightforward Newton-
Raphson numerical method which converges very quickly. The actual method applied is similar to the 
method of [5] but adapted for 3D.  (Another difference from [5] is that we use a spring for each pair 
within a distance of at most four hops, taking the shortest distance in the graph as the target distance. This 
is fast and seems to work because of the triangulated nature of these graphs.) 

After a cell divides and the cell graph is updated, the spring embedder algorithm is used to locate the 
positions in space of the two new cells and relocate their surrounding n-gon. Assuming all edges are 
specified to be of unit length, this requires that the surface bump out to accommodate two cells where 
there was formerly one. (The preferred edge lengths can be specified to be any positive length, not just 
unity, as discussed below.  Whatever they are, the algorithm seeks an embedding with actual lengths that 
closely match them.) 

Bud behavior. Our forms are represented by a cell graph (its topology) and a position for each cell (its 
geometry). Given a form, the cell division and spring embedder mechanisms above are applied to produce 
a slightly modified form whenever a cell divides.  The overall process begins with a small blob of cells, 
e.g., a tetrahedron of four cells, as that is the simplest triangulated polyhedral manifold. One possible 
mode of behavior is to allow any cell to divide, perhaps choosing at random repeatedly. We call this 
method “general growth” and starting from a tetrahedron, it produces “blobs” of arbitrary size.   
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Figure 3: Having just a single bud results in a snake-like form. If no specific 
tropism is specified, it wanders in a type of self-avoiding random walk in 3D.  

To control the form, we introduce buds, which may be thought of as small microcontrollers that sit inside 
some cells. In the examples below, there may be ten thousand or more cells, but at most a few dozen of 
them contain a bud. Each bud has a set of parameters that control which nearby cells should divide and 
how frequently. Currently this is specified in terms of the number of “hops” in the cell graph, i.e., a bud 
may specify that a randomly chosen cell within distance three of it is to divide. As nearby cells divide, the 
bud-containing cell is pushed along, like the tip of a growing plant. By restricting the hop distance to be 
small, a thin tube is formed.  By allowing it to be larger, a fatter branch is generated. Conceptually, this 
corresponds to the bud producing “growth hormone” that diffuses either to only the adjacent cells or more 
widely to a larger neighborhood of cells. 

If a bud-containing cell divides but the bud does not divide, the bud may end up in either of the two 
children cells. Generally, this is done at random, but it is natural to allow for a number of variations on 
this idea. For example, the bud may also split, so it becomes two independent buds, one in each of the two 
cells. In that case the two buds each continue independently to make nearby cells divide. They soon are 
pushed away from each other and become two independent branches. Continuing in this way, with 
repeated bud division, results in fractal branching structures. 

  
Figure 4: Allowing buds to occasionally split into two buds gives a branching fractal form. Due to randomness of 
which cell is chosen to divide, one script run twice produces different “individuals” within a “species”. 
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When a bud-containing cell divides, we can take that opportunity to introduce a gentle steering 
mechanism. If we place the bud in the higher of the two cells, as measured by Z coordinate, the net effect 
is to introduce a vertical tropism.  Without such a tropism, the tube takes a kind of a random walk through 
space, as in Figure 3.  This is because the cell with the bud is “pushed forward” by nearby cell divisions, 
which depend on a pseudorandom number generator, sometimes favoring left or right, etc. With the 
vertical tropism, as in Figure 4, there is a feedback mechanism that encourages the bud to be at the top of 
the growing region. (One may think of this physically as floating buoyantly within the cell before division, 
so it ends up in the upper of the two children cells, or perhaps as attracted to light trickling down to the 
seafloor from the sea surface, but I can avoid biology and think of it merely in terms of which cell’s 
position maximizes a dot product with a target heading.) 

Other bud properties control cell color and cell texture. When a bud causes a cell to divide, the two new 
cells are assigned the color and texture specified in the bud. So for example, if this bud color is gradually 
changing over time, the branch will have a gradient of colors along its length. The colors can be used 
artistically in computer graphics output. But for physical fabrication, I do not have access to a color 3D 
printer, so I introduced some parameters of cell texture to appear in uncolored fabricated output. For 
example, each cell can be flat, a bump, indented like a dimple, spiked with a hair, or any shape in between. 
As the position data for each cell is converted to an STL file for 3D printing, these parameters are used to 
determine the exact cell geometry. Details are omitted here, as techniques for geometrically texturing 
small regions are well-known [1]. 

Another variation on bud division is that buds contain a “line flag” which if set to true specifies they 
should maintain a connected line with neighboring buds. If before cell division a bud is in a cell adjacent 
to another cell containing the same kind of bud, but after cell division it is no longer adjacent, insert a new 
bud in the cell that separates the previous neighbor. The effect of this is that there is always an unbroken 
line of these buds. This can be used to create growth along an edge of a leaf-like form. Such a line can be 
seen in Figure 5, producing a negatively curved surface. 

Figure 5: The result of keeping a single line of buds (dark) is a 
negatively curved form. 

Figure 6: Result of a program with two bud 
types, one for stem and one for pods. 
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Figure 7: Three types of buds allow a form with a blobular root, a branching stem, and spiky fruits, which are older 
and riper at the bottom. At right is a 3D printed model (hand painted) based on a similar run of the same program. 

Buds can also specifically create new buds of other bud types in nearby cells.  The new bud then starts 
following its own program to control the region around it.  For example, to produce Figure 6 a single 
“stem” bud grows upwards forever to make the main branch.  At intervals, it produces a “pod” bud that 
grows out from the stem into a pod. The pod bud is programmed to make larger cells of a different color, 
and after a finite number of cell divisions it dies.  In Figure 7, the program is very similar, except the 
program for the stem bud splits into two after a certain period of growth and the pod bud specifies a spiky 
texture. 

In physical organisms, a growing region may collide with another so each is constrained in shape by the 
other.  Here, a bud will “freeze,” i.e., stop executing its program, if the region it controls is about to 
collide into other parts of the form. This is checked after each cell division by standard software 
techniques, using a specifiable tolerance of closeness. As a result, a branch will not grow into or through 
others, and the surface remains a triangulated manifold. 

Syntactic representation. Bud behavior has a temporal component. At any moment, there can be 
different buds following the same program, but at different steps in the process. For example, a pod bud 
which was created early on a stem may have completed the pod program, while another pod bud higher 
up the stem is half complete, and another near the newest part of the stem is just beginning. This sort of 
behavior is naturally accommodated by having a syntactic representation for the bud behavior and what is 
effectively a time sharing operating system which keeps track of the “program counter” for each bud.   

A typical program looks like Figure 8, which is read and interpreted by the software (described below) to 
produce the form in Figure 7. This program defines three bud types, called Base, Stem, and Pod. Each is 
processed in a procedural manner; the lines are executed in order. By convention, the form always starts 
as a tetrahedron of four cells with one bud of the first type given in the program. In this case, there will be 
a bud of type Base which creates the blob at the bottom of the form. The yellow and flat commands 
set parameters for color and texture, then the blob 300 command results in general growth for 300 steps. 
In the third line, a bud of type Stem is created and inserted into an adjacent cell. As that is the end of the 
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Base program, the Base bud then dies.  Meanwhile, the Stem bud sets its parameters to head upwards and 
make green cells with a bumpy texture. The fat 0 command sets its “growth hormone diffusion radius” 
to be small.  It grows a thin tube for 40 cells, leaving a pod bud in one of them three quarters of the way 
along.  It reaches the last line of its program and dies just after it creates two new Stem buds, which will 
follow the same Stem program from the beginning. Finally, the Pod buds at first grow like a stem for ten 
cells, and then become red with a spiky texture. The size 1.3 command overrides the default cell size of 
1, making longer edges in the spring embedding algorithm, and the fat 4 command leads to a blobbier 
shape. Figure 7 shows a seven-inch plastic model of the result, which was produced by fused deposition 
modeling, then hand painted.  

Base: 
  yellow, flat 
  blob 300 
  create Stem 

Stem: 
  head up 
  green, bumpy 
  fat 0  
  grow 30 
  create Pod 
  grow 10 
  create Stem 2 

Pod: 
  grow 10 
  red, spiky 
  size 1.3 
  grow 20 
  size 2.0 
  fat 4 
  grow 20 
 

Figure 8: Program to create branching stem with spiky red pods seen in Figure 7.  These 
programs are usually written linearly, but this is broken into three columns for exposition. 

When writing a time-sharing computer operating system, there are many details of synchronization and 
fairness to be worked out, e.g., what portion of the machine’s CPU cycles should be assigned to each user, 
job, and thread. There are analogous issues here, to specify the relative growth rates of each bud’s area. I 
have temporarily addressed this by giving each bud an equal share of the growth but allowing a sleep 
command (not shown) which I can use to slow down a bud’s program in places.  Future work should 
address this more systematically, as the balance of growth rates strongly affect the form’s appearance. 

Software. The images here and the videos on the web page [4] show the output of software I have written 
which implements all the above ideas. It is currently about 2000 lines of Java code and generates any of 
these forms in real time, in under a minute. A parser interprets the bud code and a time sharing scheduler 
puts each bud in control briefly in an interleaved manner. Meanwhile a separate graphics thread 
continually displays the current state of the form and allows it to be rotated on the screen under mouse 
control. It is very much experimental software, with various additional algorithmic ideas implemented or 
partially implemented and still being explored, which may or may not survive my testing. In addition, 
there are user interface functions for reading and saving the bud programs, executing programs one step at 
a time, outputting STL files for 3D printing, and various options for coloring, smoothing, and filtering the 
final output. I am exploring many experimental features, so the program is not in a stable enough state to 
make it publicly available any time soon. For example, Figure 9 shows the result of an experimental 
process that grows holes. Two cells near a bud are removed and the resulting boundaries are stitched 
together with a tunnel through the interior, which takes the form of an antiprism joining the temporary 
boundaries. This operation produces holes in many random directions and increases the genus by one 
each time it occurs. This does not correspond to any biological process I know of, but makes for 
interesting sculptural surfaces. 

Conclusions and Future work. The forms presented here are inspired by nature, but the mechanisms do 
not necessarily simulate nature. I’m not a biologist, just an algorithm designer attempting to find simple 
ways to derive a wide range of interesting 3D organic forms. These forms may appear very different from 
the geometric style of my main body of sculptural work, but my intention is to use them as components 
and/or ornaments in larger structures that express an overall geometric aesthetic. That larger plan will 
hopefully be presented in future work, but must remain vague for the moment as I focus on this 
subproblem. 
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Rapid prototyping models of forms shown here are easily made. I am working on additional types of 
simple bud behavior which I expect will result in other visually interesting patterns of growth and form. 
These will be coded and tested with the intention to produce a large variety of forms from a small 
inventory of mechanisms. In addition, because the bud programs are syntactic, one might use genetic or 
evolutionary algorithm techniques to evolve them according to some fitness criterion, e.g., to maximize 
subjective beauty.  

Finally, I can sometimes grow an icosahedral form, but it happens rarely. My 12-armed blobs usually 
have a less regular set of directions, so the icosahedral ones appear to be mostly due to luck. In the 
context of these growth mechanisms, it seems there is nothing particularly stable about the icosahedral 
form, as opposed to other 12-vertex forms such as the cuboctahedron. 
 

 
Figure 9: High-genus form results from growing holes. 
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Abstract
The authors present a modern technique for teaching matrix transformations on R2 that incorporates works of visual
art and computer programming. Two of the authors were undergraduate students in Dr. Hamburger’s linear algebra
class, where this technique was implemented as a special project for the students. The two students generated the im-
ages seen in this paper, and the movies that can be found on the accompanying webpage www.wku.edu/˜bruce.kessler/.

1 Introduction

As we struggle to increase the number of students succeeding in the science, technology, engineering,
and mathematics disciplines, it is the opinion of the authors that

• we must find ways to motivate a larger audience as to the importance and relevance of these disciplines,
and

• once we have convinced students to invest in a discipline, we must then be innovative in the ways that
we engage the students in learning, so that they stay in the discipline.

The second of these ideas was put into practice in Dr. Hamburger’s Fall 2008 linear algebra class, in such a
way that both the scientifically-minded and artistically-minded students were actively engaged in the course,
and eventually learned a great deal about the topic.

Matrix multiplication has a number of applications that can attract the interest of students, but as we move
to a more abstract understanding of matrices as generators of transformations, we sometimes lose the interest
of the more application-driven students. In general, multiplying an m× n-matrix (that is, a matrix with m
rows and n columns) on the right by an n-vector (column), generates an m-vector, so it can be interpreted as
a transformation from Rn to Rm. We generally illustrate this type of transformation in R2 with rather dull
diagrams, such as the ones shown in Figure 1. If the matrix causes the same change with every vector in R2,
then the effect of the matrix multiplication would be shown on one vector, as on the left in Figure 1, where
R(x,y) is a counterclockwise rotation about the origin of 60◦. If the matrix has varying effects depending
on the choice of the vector, then perhaps two vectors are shown under the transformation, as on the right in
Figure 1, where T (x,y) stretches vectors horizontally by a factor of 2 and vertically by a factor of 1.5. (See
sample college-level linear algebra texts [1, 2, 3, 4], where [3] probably comes closest to the work illustrated
in this paper with its visual interpretation of matrix transformations.)

This method of showing the effects of matrix multiplication is antiquated and goes back to a time when
computers were not available. A better understanding of the effect of the matrix multiplication would be
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Bridges 2009: Mathematics, Music, Art, Architecture, Culture

215



(5,0)

R(5,0)

(2,1)
T (2,1)

(−1,2)

T (−1,2)

Figure 1: Typical diagrams illustrating the effects of matrix multiplication.

gained by applying the matrix to every point in R2, an impossibility. However, we can look at a large
number of regularly-spaced vectors in the plane, but drawing all of the vectors would cause an undecipherable
mess. Instead, we start with a digital image that we recognize, so that we can tell the effects of the matrix
transformation on each pixel of the image. This could be a digital portrait of anyone, but given that some
people might object to having their portrait warped, we decide instead to use famous works of visual art.
This gives the observer an original image to which they can compare, and has the added bonus of capturing
the interest of students that have an affinity to the visual arts.

The following section provides a brief introduction to matrix transformations in general, and to the
specific code that was used to generate the examples in this paper.

2 Definitions and Code Used

Terminology. A transformation on R2 is any mapping T that takes a point in R2 to a point in R2. Any
transformation on R2 that can be expressed in the form

T
(

x
y

)
=
[

a(x,y) b(x,y)
c(x,y) d(x,y)

][
x
y

]
, (1)

where a, b, c, and d are real-valued functions dependent upon x and y, is called a matrix transformation

on R2. Note that we use the short-hand notation T
(

x
y

)
in place of the bulky, but more accurate, notation

T
([

x
y

])
. For example, the transformation T defined by

T
(

x
y

)
=
[

x2 + y2

2xy

]
can be considered a matrix transformation, since T

(
x
y

)
=
[

x y
y x

][
x
y

]
.

Not all transformations are matrix transformations. As an example, the transformation T defined by

T
(

x
y

)
=
[

a b
c d

][
x
y

]
+
[

e
f

]
, a,b,c,d,e, f ∈ R, (2)

called an affine transformation, is defined for all (x,y) ∈R2 and always maps to a point in R2, but it does not

fit the form of (1) unless
[

e
f

]
=
[

0
0

]
. In that case, the transformation is said to be a linear transformation.

Programming the Transformations. The code used for this project was written by the author Kessler for
the algebraic manipulation software package MathematicaTM, due to the ease in generating graphics and
movies, and due to our students’ familiarity with the software from their prerequisite coursework. The
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code is presented here in the syntax of the MathematicaTM programming language, which is very readable
since the commands are usually full English words. The code generates an animation of the transformations
applied recursively, which we obviously can not show here. In our illustrations, we show selected frames
from the animations. The full animations are available for download at www.wku.edu/˜bruce.kessler.

We opted to center the digital images on our coordinate axes, as shown in Figure 2. This allows us the
best “viewing window” with which to watch the effects of the matrix transformation on the image when
using our choices of matrices. The units on the axes are pixel-widths. The size of the images were not
standardized, as our code adjusts for the size of the image.

Figure 2: Placement of the coordinate axes with respect to the digital images.

While we want to give the appearance that we are moving the pixels to different locations in the plane,
we are actually considering each pixel as a fixed location. Thus, instead of changing the location of a pixel
P by repeated multiplying by a matrix A, we apply the inverse matrix A−1 to each pixel P, and note the
color of its resulting pixel P′. We then recolor each pixel P to that color, giving the illusion of applying the

transformation to each pixel. The MathematicaTM code is given below, with the matrix set to
[79

80 0
0 39

40

]
.
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3 Examples

The students experimented with a number of different types of 2× 2 matrices. The following sections
and figures show some of the more interesting results from this experimentation. The still figures show
the effects of the various matrix transformations much more effectively than the vector diagrams shown in
Figure 1, and the animations are even more illustrative.

Dilations. Matrix transformations with matrices of the forms[
k 0
0 1

]
and

[
1 0
0 k

]
are called horizontal and vertical dilations, respectively. If 0 < k < 1, the dilation is a contraction. If k > 1,
then the dilation is called an expansion. The effects can be combined into one dilation matrix, since[

k1 0
0 1

][
1 0
0 k2

]
=
[

1 0
0 k2

][
k1 0
0 1

]
=
[

k1 0
0 k2

]
.

The images shown in Figure 3 were generated by applying the dilation matrix
[79

80 0
0 39

40

]
to a 580 pixel

wide by 418 pixel tall digital image of Salvador Dali’s painting “Persistence of Memory”. This causes a
horizontal contraction, and a slightly faster vertical contraction.

Shears. Matrix transformations with matrices of the forms[
1 k
0 1

]
and

[
1 0
k 1

]
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Figure 3: The original picture at left. Ten applications of the contraction matrix at center. Fifty applications
of the matrix at right.

are called horizontal and vertical shears, respectively. The sign of the value k determines the direction of
the shear.

The images shown in Figure 4 were generated by applying the shear matrix
[

1 0.01
0 1

]
to a 563 pixel

wide by 705 pixel tall digital image of one of Van Gogh’s self-portraits. This causes a horizontal shear, with
the top moving to the right and the bottom moving to the left. Figure 5 shows the effects of a vertical shear

with the matrix
[

1 0
−0.02 1

]
applied to the same image.

Figure 4: The original picture at left. Twenty applications of the horizontal shear matrix at center. One
hundred applications of the matrix at right.

Rotations. Matrix transformations with a matrix of the form[
cosθ −sinθ

sinθ cosθ

]
are called rotations. Multiplication by this matrix causes a counterclockwise rotation by θ degrees about the
origin.

The images shown in Figure 6 were generated by repeatedly applying the rotation matrix
[

cos(1◦) −sin(1◦)
sin(1◦) cos(1◦)

]
to a 400 pixel wide by 572 pixel tall digital image of Leonardo daVinci’s painting “Mona Lisa”.
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Figure 5: The original picture at left. Twenty applications of the vertical shear matrix at center. One hundred
applications of the matrix at right.

Figure 6: The original picture at left. Twenty applications of the rotation matrix at center. One hundred
applications of the matrix at right.

Distance-dependent rotations. Matrix transformations with a matrix of the form[
cos( f (d)) −sin( f (d))
sin( f (d)) cos( f (d))

]
,

where f is a function defined on non-negative real numbers and d is the Euclidean distance from the origin√
x2 + y2 for the pixel with coordinates (x,y), are called distance-dependent rotations. The images shown

in Figure 7 were generated by repeatedly applying the distance-dependent rotation matrix
cos

(
2

√
x2+y2

rmax2+cmax2 1◦
)
−sin

(
2

√
x2+y2

rmax2+cmax2 1◦
)

sin

(
2

√
x2+y2

rmax2+cmax2 1◦
)

cos

(
2

√
x2+y2

rmax2+cmax2 1◦
)
 ,

where rmax and cmax are as defined in the MathematicaTMcode, to a 400 pixel wide by 572 pixel tall digital
image of Leonardo daVinci’s painting “Mona Lisa”.

Stochastics. Matrices of the form [
a 1−b

1−a b

]
,
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Figure 7: The original picture at left. One application of the distance-dependent rotation matrix at center.
One hundred eighty applications of the matrix at right.

where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1, are called stochastic matrices. Stochastic matrices are used to calculate
probabilities, and are usually thought of in the context of Markov chains or random walks. While not
generally thought of in the context of matrix transformations, we can certainly define matrix transformations
using these matrices.

The images shown in Figure 8 were generated by applying the stochastic matrix
[29

30
1

60
1
30

59
60

]
to a 750 pixel

wide by 652 pixel tall digital image of James Whistler’s painting best known as “Whistler’s Mother”.

Figure 8: The original picture at left. Five applications of the stochastic matrix at center. Twenty-five
applications of the matrix at right.

Other Matrices. The undergraduate students went through their own type of transformation – from being
mathematics students using matrices on art, to “matrix artists” using mathematics to generate their pieces.
The students involved in this project were very creative in developing matrices, other than the types described
above, that generated beautiful animations, using time and distance dependencies in their matrices. In order
to increase computation efficiency, they replaced the pictures with grids of points in the plane, colored
according to their initial quadrant as shown at the top left in Figure 9, thereby allowing the students to run
experiments more quickly. Figure 9 shows selected frames from animations created by the students, using
the transformations

T
(

x
y

)
=

[
1− 1

xy − 1
xy

1
xy 1− 1

xy

][
x
y

]
and T

(
x
y

)
=

cos
(

n
√

x2+y2

200 1◦
)
−sin

(
n
√

x2+y2

200 1◦
)

sin
(

n
√

x2+y2

200 1◦
)

cos
(

n
√

x2+y2

200 1◦
)
[x

y

]
.
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at top and at bottom, respectively, where n is the iteration number. Again, the still frames do not do the
animations justice, and we encourage readers to view the animations on the previously mentioned website.

Figure 9: The original picture at top left. Progressive frames of one animation, top center and top right.
Progressive frames of another animation, bottom row.

4 Conclusion

It has often been said that “A picture is worth a thousand words.” In our cases illustrated here and on the
fore-mentioned webpage, this idea could be extended to say “An animation is worth a thousand diagrams.”
While the idea of using matrix transformations to create art is not new, it was definitely a new approach to
learning linear algebra for our students. There can be little doubt that the students who worked on this project
now have a better understanding of the effects of these matrices on points in the plane than they would have
ever had just looking at vector diagrams. In the course of analyzing the results, they have also touched upon
other seemingly unrelated topics, like vector norms, eigenvalues, and matrix limits. In the course of doing
so, they have broadened their recognition of art, and have learned how to create their own “masterpieces”.

References

[1] H. Anton, “Elementary Linear Algebra”, 8th edition, John Wiley & Sons, 2000.

[2] R. Larson, B. Edwards, and D. Falvo, “Elementary Linear Algebra,” 5th edition, Houghton Mifflin
Company, 2004.

[3] G. Strang, “Introduction to Linear Algebra”, Wellesley-Cambridge Press, 1998.

[4] D. Wright, “Introduction to Linear Algebra”, The McGraw-Hill Companies, 1999.

Akridge et al.

222



Regular 3D Polygonal Circuits of Constant Torsion

Tom Verhoeff ∗

Faculty of Mathematics and CS
Eindhoven University of Technology

Den Dolech 2
5612 AZ Eindhoven, Netherlands

Email: T.Verhoeff@tue.nl

Koos Verhoeff
Valkenswaard, Netherlands

Abstract
We explore a special class of regular 3D polygonal circuits, that is, of regular non-planar polygons. In these circuits,
all segments (edges) have the same length, all corner angles are equal, and all torsion angles have the same (absolute)
value. We also show some artwork based on these constant-torsion circuits.

1 Introduction

Consider the polygonal circuit1 in Figure 1. Although not immediately obvious from the pictures, this is
a highly regular 3D structure. It consists of 16 equal-length segments. The 16 angles between adjacent
segments are all equal (viz. to 49.94◦). We call these the corner angles or joint angles. Finally, the 16 di-
hedral angles between adjacent corner-spanning planes are equal (viz. to 90◦). Figure 2 shows these planes
explicitly. We call the latter angles the torsion angles, as explained further below.

Figure 1: Regular 3D polygonal circuit of constant torsion (top view, halfway view, side view)

In this article, we explore 3D non-planar polygons2 having constant segment lengths, constant corner
angles, and constant torsion angles. We refer to these polygons briefly as regular constant-torsion poly-
gons. Section 2 explains why these structures raised our interest. In Section 3, we precisely define this class
of polygons, using 3D turtle graphics, and in Section 4 we provide some theoretical analysis results. We
address the issue of finding such constant-torsion polygons in Section 5. In Section 6 we show some artwork
that involves constant-torsion polygons. Section 7 concludes the article.

1The circuit’s line segments are infinitely thin, but they have been thickened for the sake of visualization.
2Traditionally, a polygon is a planar figure; we also use the term polygon for arbitrary (possibly non-planar) polygonal circuits.

Bridges 2009: Mathematics, Music, Art, Architecture, Culture

223



Figure 2: Polygon of Figure 1 with corner-spanning planes (left) and mitered with a square beam (right)

2 Motivation

In a polygonal circuit, the line segments can be thickened to beams that all have the same cross section and
that have the segments as center line. It is most elegant when the edges of adjacent beams nicely match,
yielding (regular) miter joints. Figure 2 (right) shows the polygonal circuit of Figure 1 with its line segments
thickened to beams having a square cross section. Here, the beam edges match properly at all miter joints.

When a polygonal circuit is thickened to a beam, it is always possible to have beam edges match properly
at all joints but one. Hence, open polygonal chains are not so interesting, because they pose no mitering
challenge. As explained in [2] and demonstrated in [3], it depends on the geometric details of the circuit,
whether the final joint will match as well. Traveling along the circuit, you accumulate a certain amount of
torsion. The final joint matches properly, if and only if the total amount of torsion is a symmetry of the cross
section. Note that the total torsion of a planar polygon is always zero.

A mitering artist has an interest in circuits that can be “mitered all the way round”, that is, circuits whose
total torsion corresponds to the cross section. There are several techniques available to obtain such circuits:

1. Exploit some freedom in the choice of the vertices to tweak the circuit such that an appropriate total
amount of torsion is obtained. For aesthetic reasons, certain relationships between the vertices may
need to be kept invariant, such as the knot type. This typically leads to beams with ad hoc dimensions
(lengths, bevel angles, and torsion angles), which complicates the actual construction of artwork.

2. Restrict the circuit’s vertices and segments to a pre-defined 3D-embedded graph with suitable torsion
properties. Two special cases are regular polyhedrons and 3D lattices. For example, take a Hamilton
path on a cuboctahedron, or a trefoil knot in the cubic lattice.

3. Restrict the torsion changes at each joint. This generalizes the preceding technique, by retaining what
is valuable (torsion control) and dropping the (sometimes overly restrictive) pre-defined graph.
In Figure 2 (right), the miter joints match all the way round, because the beam cross section is a square
and the accumulated torsion at each joint changes in steps of 90◦ (remember that adjacent corner-
spanning planes are perpendicular).

The second technique can be compared to walking in a city along the streets. Given the road map, it is easy
to make a closed tour, but there is little freedom. The third technique resembles walking in the desert, with
a compass and no landmarks. There is more freedom, but then it is a challenge to walk a closed tour.

By the way, [2] also presents skew miter joints as a way of making more interesting objects based on
lattices, such as the face-centered cubic lattice. However, we will not employ skew miter joints in this article.
Here, we pursue the third technique with classic miter joints.
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3 Definitions

We will define the circuits of interest using a 3D variant of turtle graphics [1]. Turtle graphics were intro-
duced by Seymour Papert as a simple way of producing graphics by a robot turtle, and later by a virtual turtle
in the Logo programming language. It is based on self-relative operations, rather than absolute coordinates.
At any moment, the turtle has a position and a heading. The turtle walks in the plane and can be instructed to
activate (lower) or deactivate (raise) its pen; to move forward or back a given distance; to rotate left or right
through a given angle, around its center. This way, many figures can be described through simple programs
that control the operation of the turtle.

Our 3D variant of turtle graphics [4] involves a flying turtle whose state is defined by its position and
attitude in 3D space. The turtle’s attitude is determined by its heading (a vector) and its normal (a vector
perpendicular to the heading, defining the relative up direction). The plane that contains the heading and is
perpendicular to the normal is called the turtle’s base plane.

The turtle starts in the origin heading along the positive x-axis and with the positive z-axis as normal (see
Figure 3, left), so that the (x,y)-plane is its base plane. For our purposes, the pen is always active. The flying
turtle obeys these commands:

Move(d) moves distance d in the direction of the current heading;

Turn(ϕ) turns clockwise about the current normal by angle ϕ , changing the heading but not the normal;

Roll(ψ) rolls clockwise about the current heading by angle ψ , changing the normal but not the heading.

Heading

Normal

Heading

Normal

Heading

Normal

Figure 3: 3D flying turtle in initial state (left); after Roll(90◦) (middle); after Roll(90◦), Turn(45◦) (right)

By suitably combining Turn and Roll commands, the turtle can head in any direction and produce 3D paths.
We define Segment(d,ψ,ϕ) as the sequence of the three commands Move(d), Roll(ψ), Turn(ϕ), where

d, ψ , and ϕ are given parameter values. A sequence of Segment commands describes a 3D polygonal path.
The torsion angle of an internal segment in a directed polygonal path is defined as the directed dihedral

angle between the plane spanned by the segment and its predecessor segment, and the plane spanned by
the segment and its successor segment. Note that the torsion angles are the same as the roll angles in paths
produced by a sequence of Segment commands.

We call a turtle program, typically consisting of Segment commands, closed when it returns the turtle
to its initial position, and we call it properly closed when it returns the turtle to its initial state. That is, in
order to be properly closed, not only should the turtle’s final position equal its initial position, but also its
final attitude must equal its initial attitude.

A polygonal path of constant torsion, or CT path in short, is a path P produced by a sequence of
Segment(di,ψi,ϕi) commands that all have the same value for |ψi| = ψ , with all di > 0 and ϕi 6= 0 mod-
ulo 180◦. Path P is called regular, when all di = d and ϕi = ϕ for 0 < ϕ < 180◦. P is called a polygonal
circuit of constant torsion, or briefly a CT polygon, when it is a properly closed CT path. A regular CT
polygon is completely determined by the constants d, ψ , and ϕ , and the sequence of roll signs for ψ . All its
segments have the same length, all corner angles are 180◦−ϕ , and all torsion angles are ±ψ .
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The regular CT polygon of Figure 1 has ϕ = 130.06◦, ψ = 90◦, and ψ-signs ++--++--++--++--. With
ψ = 90◦, ϕ = 120◦, and sign sequence +--++--++--++- one obtains a circuit (see Figure 4, left), but the
angle at the origin is clearly less than 60◦ (the final and initial heading are not equal, and the torsions of the
two segments at the origin is much less than 90◦. The turtle program is closed but not properly closed.

Figure 4: CT path that is not properly closed (left); regular CT polygon with self-intersection (right)

Taking ψ = 90◦, ϕ = 112.456◦, and the sign sequence +-+-+-+-+- yields a regular CT polygon that
exhibits self-intersection (see Figure 4, right). Even if the abstract (infinitely thin) circuit does not self-
intersect, this may still happen when thickening the segments (too much).

4 Analysis

In this section, we present some theorems about 3D turtle geometry (we are not aware of a good reference).
Two turtle programs are called congruent when they trace out congruent paths, and path-equivalent when
they trace out identical paths. We call them equivalent, denoted by ≡, when they are path-equivalent and
lead to the same final state (especially, the same final attitude).

Every turtle program defines a 3D polygonal path. Every 3D polygonal path starting in the origin with its
first segment aligned along the positive x-axis can be described by a suitable sequence of Segment commands
with d > 0, 0 < |ϕ| ≤ 180◦, and 0≤ |ψ| ≤ 180◦.

We mention a few basic properties of 3D turtle commands. Adjacent Move and Roll commands commute:

Move(d), Roll(ψ) ≡ Roll(ψ), Move(d)

Note that, in general, the other pairs do not commute.
Every program consisting of Turn and Roll commands only, i.e. without Move commands, has an equiv-

alent program of the form Roll(ψ1), Turn(ϕ), Roll(ψ2).
Concerning adjacent Segment commands, we have

Segment(d1,ψ1,ϕ1), Segment(d2,ψ2,ϕ2) ≡ Segment(d1,ψ1±180◦,−ϕ1), Segment(d2,ψ2±180◦,ϕ2)

This way, all turn angles ϕi in a properly closed turtle program consisting of Segment commands can be
made positive, by compensating 180◦ in both adjacent roll angles. A Segment program with all turn angles
positive is said to be in normal form. This is especially interesting for properly closed circuits that have
ψi =±90◦, because in that case ψi±180◦ has the same absolute value as ψi, and hence the normal form is
a CT polygon.

For a properly closed turtle program consisting of Segment commands, the total amount of torsion (as
needed to determine closure of the mitering [2]) equals the sum of all roll angles (taking signs into account).
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Consequently, if the roll angle of each segment is a symmetry of the cross section, then the circuit can be
constructed with miter joints that match all the way round. For instance, with ψ =±90◦ a square beam will
always work.

As observed in the preceding section, a closed turtle program (final position = initial position), in general,
need not be properly closed (also, final attitude = initial attitude). However, for every closed turtle program
there exists a congruent properly closed turtle program consisting of Segment commands. Note that the Roll
and Turn at the (end of the) last segment are not relevant for closure. They can always be adjusted to roll the
turtle such that the last turn can make the final heading coincide with the initial heading. An extra Roll may
be needed to align the final normal with the initial normal. This extra Roll command can then be merged
into the first Segment command, thereby effectively rotating the entire path about the first segment, to bring
its last segment in the (x,y)-plane.

Note that when a closed constant-torsion program is made properly closed by the preceding transforma-
tion, the resulting congruent program possibly no longer is a constant-torsion program! In that case, its path
is (rightfully) not a CT polygon (cf. Figure 4, left).

By definition, the distance between adjacent vertices in a regular CT polygon is constant. Furthermore,
because all corner angles are equal as well, we also have that distances between vertices that are two segments
apart are equal. But it is even the case that distances between vertices that are three segments apart are equal,
because all torsion angles are equal in absolute value.

The special case ψ = 0 modulo 180◦ yields planar figures. The regular CT polygons with ψ = 0 are the
classic regular (planar) polygons. In order to close, ϕ must divide a multiple of 360◦, in which case closure
is proper as well. When ψ = 180◦, constant-torsion paths will zig-zag and never close.

In the remainder, we mostly restrict ourselves to regular CT polygons with ψ = 90◦.

5 Constructions

We already exhibited some regular CT polygons. Can all regular CT polygons be characterized? What
combinations of corner and torsion angles, and sign sequences produce regular CT polygons?

There are some obvious regular sign patterns to try. For instance, a zig-zag obtained by repeating +-.
Figure 5 (left) shows +-+-+-, which happens to close properly for ψ = ϕ = 90◦ (it is a path on a cube). In
general, these zig-zags are Hamilton paths on antiprisms (including tetrahedron and octahedron, which have
ψ 6= 90◦). When allowing self-intersection, they traverse the diagonals on the vertical faces of prisms (cf.
Figure 4, right). In this family the vertices lie in two planes (layers).

Figure 5: Regular CT polygons with sign patterns +-+-+- (left) and +++---+++---+++--- (right)

There is also a three-layer family constructed by repeating ++--, of which Figure 1 shows an exam-
ple. The vertices now lie in three layers. Although it is possible to give a formula to determine the cor-
responding ϕ for given ψ , we have used numerical approximation techniques. Figure 6 shows a plot of
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the distance between initial and final position of the turtle for the regular CT paths with ψ = 90◦, signs
++--++--++--++--, and ϕ ranging from 0 to 180◦. There are three solutions for ϕ , where the distance
is zero, that is, where closure occurs, viz. around 50◦, around 130◦ and at 180◦ (in the latter case, the path
degenerates because all segments align). In fact, it came as a delightful surprise when we first discovered
that this path closed properly for non-trivial ϕ .
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Figure 6: Final position (left) and gap between initial and final position (right) for torsion signs
++--++--++--++-- as function of corner angle ϕ

A four-layer family is obtained by repeating +++---; see Figure 5 (right) for an example (it also appears
in Figure 8, left). More complicated patterns also exist.

So far we have no clear insight into what patterns work. We only have many examples, found by ex-
haustive checking of short sign patterns, and interactive exploration of promising longer sign patterns. It is
interesting to note that among all the examples, there are none that have a Möbius twist or that are knotted.

6 Artwork

The pieces of artwork shown in this section are all based on regular constant-torsion polygons with torsion
angles ψ = ±90◦. The beams have a square cross section, which makes it relatively easy to cut the beams
appropriately, and it ensures that all joints are matching classic miter joints. A nice property of these beams
is that they are all congruent (identical or mirror images).

Figure 7: Artworks based on regular CT polygons with three layers (12, 16, 20 segments, wood)

Figure 7 presents three instances of the three-layer family described in the preceding section. The one
in the middle is also featured in Figures 1 and 2. Their roll sign patterns consist, respectively, of three, four,
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and five repetitions of the sequence ++--. The corresponding corner angles 180◦−ϕ are 90◦, 49.94◦, and
38.17◦ respectively. Note that the bevel angles are half the corner angle, and thus quite acute. For the object
on the left, the cross section was rotated over 45◦, so that the faces of adjacent beams do not lie flush at the
joints, in contrast to the other two.

Figure 8: Artworks based on regular CT polygons with four layers (18, 24 segments, wood)

The two objects in Figure 8 are instances of the family of four-layer regular CT polygons. Their roll
sign patterns consist, respectively, of three and four repetitions of the sequence +++---. The corresponding
corner angles 180◦−ϕ are 40.99◦ and 52.85◦ respectively.

The object in Figure 9 is based on three repetitions of ++-++--+-- with corner angle 48.62◦. This sign
pattern also closes properly with ϕ = 90◦, in which case it stays in the cubic lattice.

Figure 9: Artwork based on regular CT polygon with signs (++-++--+--)3 (30 segments, wood)

The object in Figure 10 uses four repetitions of +++--++--- and a corner angle of 44.43◦. It is less
symmetric than the others, since it lacks an up-down symmetry, as the pictures corroborate.
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Figure 10: Artwork based on regular CT polygon with signs (+++--++---)4 (40 segments, wood)

7 Conclusion

We have defined and explored regular constant-torsion polygons, as a fruitful inspiration for artwork. The
advantage of using constant-torsion circuits is that it gives the mitering artist control over the total amount
of torsion, and hence over making all miter joints match properly. In the case of constant-torsion polygons,
whose torsion is ±90◦ per segment, it is convenient to construct such artwork with beams having a square
cross section: there are only two mirror-image pieces. Using regular CT polygons does raise the problem of
finding appropriate angles and torsion signs to ensure that the polygonal chain properly closes onto itself.

We have exhibited several infinite families of regular CT polygons, but the characterization of all regular
CT polygons is still an open problem. In our searches, no knots were encountered, nor regular CT polygons
that have a Möbius twist. The use of skew miter joints and (skew) fold joints (cf. [2]) in constructing regular
CT polygons also offers interesting opportunities for future research.
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Abstract 
 

A simple fractal tree has the property of self-similarity, meaning it can be subdivided into parts, each of 
which is a reduced copy of the whole tree; its fractal dimension can be calculated from the scaling factor. 
Trees in nature exhibit an “approximate self-similarity”. Using discrete time steps and probabilities, an 
algorithm for drawing plants that are not strictly self-similar, but that appear to belong to the same family, is 
described. The algorithm is based on a thesis of de Reffye and can be used in artwork and teaching. It has no 
claim to botanical accuracy, but creates images of purely decorative plants.  
. 

 
1. Modeling the growth of trees using probabilities and random numbers  

 
The basic idea behind this model of plant growth is as follows: a tree is created from scratch, starting with 
a single node called the root node. The tree grows in a sequence of discrete time steps according to a set of 
probabilities. We start with simple rules; later, in order to more closely mimic nature, we will make these 
numbers functions of time. I encountered the basic idea in an article based on a thesis by Philippe de  
Reffye [2]. The article presents a method of modeling plants and trees faithful to their botanical nature; the 
figures in the paper are rendered on sophisticated computers using complicated rendering techniques and 
advanced data structures so as to obtain images with great realism. My goal is to distill and simplify the 
underlying mathematical ideas from articles like this and to cast them in a way that can be understood by 
undergraduate students. Inventing data structures and algorithms for modeling plant growth presents an 
interesting challenge for students in mathematics and computer science. The plant models described in this 
paper are purely imaginary.  
 A simple fractal tree has the property of self-similarity, meaning it can be subdivided into parts, each 
of which is a reduced copy of the whole tree; small portions of the tree when magnified look exactly like 
the whole tree. Its fractal dimension can be calculated from the scaling factor. In Figure 1 the binary trees 
look as if they might belong to the same “family” even though they are not identical. We might call them 
statistically self-similar. Several mathematical definitions of statistical self-similarity can be found in [1].  
 

 
Figure 1:  Statistically self-similar binary trees  
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2. A Simple Binary Tree  
 

Our first tree is a binary tree. A binary tree is a finite set of nodes that is either empty, or consists of a root 
and two disjoint binary trees called the left subtree and the right subtree. A node contains information. The 
roots of the subtrees of a node are called its left and right children. If node A has node B as a child, then A 
is the parent of B. A node that has two empty subtrees is called a leaf or terminal node.   
 We assign to each node in the tree a positive integer called the level of the node. The root node has 
level 1; if the level of a node is n, the level of its child nodes will be n+1. Each parent node will be 
connected to its child nodes by edges, which will be interpreted as branches. Several examples of binary 
trees are rendered in Figure 1. The terminal nodes are rendered as disks. 
 Starting at the root node the tree grows in discrete time steps, t1, t2,…tn. At each time step a node in the 
tree can do one of three things: (i) ramify (create two child nodes), (ii) die and flower (that is, it cannot 
produce any more child nodes) or (iii) “sleep” for one time period. If a node dies it will become a terminal 
node. In a first simplified version we assign three nonnegative real numbers p1, p2 and p3 whose sum is 1. 
These numbers represent the probabilities that a node (1) ramifies (creates two child nodes), (2) flowers 
(and dies), or (3) sleeps for one time period.  
 What information should each node contain? In our first attempt, in order to keep things simple, when 
a node is created it is assigned a positive integer representing its level. We also need to keep track of its (x, 
y) coordinates and the angle θ, the angle at which the line connecting its parent node to itself is drawn, so 
that if it has child nodes we know where to place them. And, finally, we need to know whether a node is 
capable of bearing child nodes; I use a Boolean variable, alive, to indicate that it is or is not able to ramify. 
 Before entering the loop that draws the tree, one node is created, the root node; it is assigned level 1, 
an initial point (x0, y0), and an initial angle θ0 such as π/2. The Boolean variable, alive, is set to true. We 
also initialize three nonnegative real numbers whose sum is 1: p1, p2 and p3 = 1- (p1+p2). 
 The program enters a loop where each pass through the loop represents a tick of the clock or time 
period; initially we specify the number of stages, tmax, that the algorithm is carried out. At each pass we 
examine the list of nodes that have been created in previous passes through the loop whose alive status is 
true. For each live node we generate a random number r between 0 and 1.  
 

   
 
Figure 2: Three binary trees generated with the same program; p1=.5, p2=.15 and p3= .35. 
Nodes are connected by lines; flowers are represented by disks, θ0 = π/2 and if a parent node’s 
angle is θ, its child nodes are assigned θ= θ± π/12. 
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Case 1: If r < p1 the node ramifies and two new nodes are created. The information for the child nodes is 
entered into the new nodes. For each of the two new child nodes we assign: its level (the level of its parent 
plus 1), and its (x, y, θ) coordinates (if (xp,yp,θp) are the coordinates of its parent, then x = xp+l*cos(θp) ,  y 
= yp+l*sin(θp)  where l is the length of the connecting segment, also a function of the level), and set its 
alive status to true. 
 
Case 2: If p1≤ r < p1+ p2 the node dies and flowers. We place a “flower” (a disk in Figure 1) at the node’s 
(x,y) position and set its alive status to false. 
 
Case 3: If p1+ p2 ≤ r ≤ 1 the node “sleeps” for one time period, so we leave it alone and proceed to the next 
node in the list. 
 
 Notice that if p1= 1 then every node ramifies and we produce a perfect (and self-similar) binary tree. 
 Figure 2 illustrates the result of this simple program with the probabilities constant: p1=.5, p2=.15 
and p3= .35. 

 
 

3. Probabilities as a function of time 
 
 

Although I am not a botanist, it seems reasonable to me to expect that the probability of a node ramifying 
would be higher in the initial stages of growth of a plant. So to make the plants look more realistic we 
might consider making the probabilities a function of the time steps. We might want the probability of 
ramifying to be 1 at the beginning of the plant’s life and the probability of flowering to be 1 in the last 
stage (call it tmax). Figure 3 shows three parabolic functions with this property and Figure 4 shows four 
trees using these probabilities with tmax = 10. 
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 Figure 4: Using the functions described in Figure 3 with tmax = 10. 
 
 

4. Other enhancements 
 

There are many ways to modify the original model to achieve different styles of plant growth. In the 
original model if a node has level n, when it ramifies we assign level n+1 to its two child nodes. Instead we 
can assign level n to one of the child nodes (randomly) and level n+1 to the other. Then, when rendering 
the plant, we draw the child branch that has the same level as its parent at the same angle as its parent, as 
in Figure 5. This yields a “trunk” and alternate branching. In Figure 5 some curvature has been introduced 
into the segments connecting nodes whose level is greater than 1 and we have made the thickness of the 
connecting segments depend on the level of the parent node. 
 

 
Figure 5: A variation on assigning level to a child node. 

 
 The tree in Figure 6 is drawn from the same program as the trees in Figure 5, but the parameters have 
changed; the curvature and thickness of the branches has been increased and includes the trunk, and a 
different rendering of the branches is shown. The coloring of the branches is achieved by a simple trick. 
Each branch is a curve drawn as a sequence of very short line segments whose width depends upon the 
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level of the parent node, and the RGB value of the color of each segment changes slightly from that of the 
previous segment. Flowers have been placed at the terminal nodes. 
 
 

 
Figure 6: A fanciful tree 

 
 
Figure 7 shows colorful versions of the tree in Figure 6. The short segments that make up the branches are 
colored randomly rather than “continuously” as they are in Figure 6. 
 

 
 

Figure 7: Trees from a Star Trek planet 
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Another variation can be seen In Figure 8. It is an easy task to modify the program so that when a node 
ramifies it gives birth to 3, 4 or more child nodes. 
 

 
 

Figure 8: Each node gives birth to three child nodes. 
 

 

 
 
 

Figure 9: A more realistic looking plant. 
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In Figure 9 a more realistic-looking plant is achieved by allowing the branching angles to vary with 
controlled randomness and inserting leaves along the branches that connect the nodes.  
 
  Once the basic structure of a plant has been created the fun begins. Now the imagination takes 
over. We can experiment with different branching angles and different flower and leaf shapes. We can go 
outside and look at the incredible variety of shapes found in nature and try to imitate them or to make up 
our own. To create these shapes we use basic mathematical functions like lines, polynomials or 
trigonometric functions. For example, a leaf shape can be defined by a pair of parametric equations: x = 
a*t2, y = b*sin(πt), -1≤ t ≤ 1. Knowledge of the math in a basic pre-calculus course is sufficient to program 
these shapes. And a bonus is that often one’s mistakes turn out to look better than what was originally 
intended.  
 Figure 10 shows a garden of statistically self-similar plants. 
 

 

 
 

Figure 10: A garden of statistically self-similar plants. 
 

5. Future work 
 
Animation of scenes created from computer graphics is one of my projects for the future. The method of 
generating plant growth described in this paper may be useful for producing animations.  
 Recall that in the algorithm that created the tree, when a node dies (flowers) the node is not deleted, 
but merely has its alive status changed to false. Initially I had the program delete a node from the list after 
it died and flowered. Allowing each node to remain in the list after it dies but changing its status from alive 
= true to alive = false means that at the end of the algorithm we have a record of the age (level at which the 
node died) and coordinates of each of the nodes. Thus there is the possibility of animating the nodes; one 
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idea for an animation is to incrementally change the position of the nodes and their connecting branches in 
order to simulate trees blowing in the wind. Another idea is to create an animation of changing seasons. 
Figure7 depicts four frames of a crude attempt at an animation of falling leaves. I have rendered the nodes 
as leaves (originally green). As the animation progresses the leaves gradually change color from green to 
red, yellow and brown, and eventually fall from the trees and drift slowly to the ground.  
 

  

  
 

Figure 11: Four frames from an animation of falling leaves. 
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Abstract 
 

The continued fraction expansion of a real number 0>R generates a family of spiral triangular patterns, called 
“tornadoes.” Each tornado consists of similar triangles, any two of which are non-congruent. 

 
Basic Operation 

 
Let 0>R and 10 << s . In the plane, the sequence of points )2sin,2cos()( jRsjRsjV jj ππ=  
for L,1,0=j , which we call the ‘vertices’, naturally converges to the origin. Fix an integer 0>k , which 
is called the ‘modulo’ or the ‘step size’, and join the vertex )( jV with )( kjV +  by the line segment 

)()( kjVjV +  for 0≥j . 
 

Fibonacci Tornado 
 
The Fibonacci numbers nf are defined by 

121 == ff  and 12 −− += nnn fff , 2>n . In the 
previous paper [2], we showed that if 1−= nfk  and 

τ=R , where 2/)51( +=τ  is the golden ratio, 
there exists a 10 << s  such that the vertex 

)( 2++ nfjV  lands on the line segment 

)()( 1 nn fjVfjV ++ +  for each 0≥j . By the Basic 
Operation above, we obtain the spiral pattern of 
similar triangles as shown in Figure 1 ( 2=k ), 
which is called a “tornado”. As k gets larger, we 
could see that the tornado comes out like a blooming 
flower, while the argument jR  of each vertex )( jV  
remains unchanged. 
 Remark that the well-known spirals as in Figure 
2 are different from our tornadoes because they have 
congruent triangles. 

Figure 1: Fibonacci Tornado. ]5,3,[τ  
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R= C0+ 1      p0/q0  0th convergent
        C1+ 1        p1/q1  1st  convergent 
           C2+ 1       p2/q2  2nd convergent 
              C3+ 1      p3/q3  3rd convergent                                     . 
                   Cn＋ 1       pn/qn  n-th convergent 
                        . 
                  . 

 
Real Tornado 

 
A generic real number R also generates a family of tornadoes. As is well-known (see [1]), the continued 
fraction expansion of R as in the Figure 3 is defined by 00 ε+=CR , 10 0 <≤ ε , and 11/1 ++ += nnn C εε , 

10 1 <≤ +nε  for 0≥n , where nC are called the partial denominators. If R is rational, it is related to the 
Euclidean algorithm and stops when 0=nε . The n -th convergent nn qp /  is defined by 00 Cp = , 10 =q , 

1011 += pCp , 11 Cq = , and 111 −++ += nnnn ppCp , 111 −++ += nnnn qqCq  for 0>n . It is known that 

nn qp /  are the best approximations of R , where 

    
1

1

3

3

2

2

0

0

q
p

q
p

R
q
p

q
p

<<<<<< LL , and R
q
pR

q
p

n

n

n

n −>−
+

+

1

1  for 0≥n . 

For example, the convergents of 3=R  are 1/1, 2/1, 5/3, 7/4, 19/11, 26/15, 71/41, .... The denominators 

nq and 1+nq  are coprime.  
 
Choose any pair of consecutive convergents nn qp / and 11 / ++ nn qp , and denote by nqq = and 1+=′ nqq .  
Define the step size by qqk −′= . Then there exists a unique 10 << s  such that under the Basic 

Operation the vertex )( qqjV ′++  lands on the segment )()( qjVqjV ′++  and we obtain a spiral 
pattern named as the tornado ],,[ qqR ′ , consisting of similar triangles )()()( qjVqjVjVT j ′++∆=  

for 0≥j . Figure 4 presents the tornadoes ]4,3,3[],,[ =′qqR and ]11,4,3[ . 
The basic idea of the Real Tornado was originally published in Japanese in [3].  Here we show how to 
find a 10 << s . Denote the 
length of the three edges of jT  
by 
   
 )()()( qjVqjVja ′++= , 

 )()()( qjVjVjb += ,  

 )()()( qjVjVjc ′+= . 

Figure 2 :  A Non-Fibonacci Tornado. Figure 3 : Continued Fraction and Convergents 

[ 3 , 3, 4] [ 3 , 4, 11] 
Figure 4 : 3  Tornado. 
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By Figure 5 we can see that 
 

).()(

)()()()(

)()()()(

)()(
)(

jbsjcs

qjVjVsqjVjVs

qjVqqjVqqjVqjV

qjVqjV
ja

kqq

qq

+

′

+=

++′+=

′+′+++′+++=

′++=

 

The three angles of jT are 
 )(22 kqRqR +=′= ππφ , Rqπδ 2−= , and Rkπθ 2=  
or 
 )(22 kqRqR +−=′−= ππφ , Rqπδ 2= , and Rkπθ 2−= , 
where the signs are chosen to satisfy that δφ sin,sin and θsin  are all positive. The law of sines is 
expressed by 

    
φδθ sin
)(

sin
)(

sin
)( jcjbja

== , 

and we obtain the equation 
    0)2sin()2sin()2sin( =+′−′ kRqRsqRs qq πππ .        
It is easy to see that this equation has a unique solution 10 << s .  
 
 

Additional Results 
 
Conversely, we can also prove that any possible tornado ],,[ qqR ′  with qq ′,  positive is related to the 
continued fraction expansion of R .  
Theorem: Let R  be a real number and qq ′,  positive integers. There exists a tornado ],,[ qqR ′ if and only 

if R  has a convergent 
n

n

q
p

 and an (intermediate) convergent
1

1

−

−

+
+

nn

nn

qcq
pcp

, 10 +≤< nCc , where we denote 

by 1,, ++=′== nnnn pcppqqpp  and 1++=′ nn qcqq , such that 

(1) R is distinct from 
q
p

and
q
p
′
′

, that is, 
q
pR

q
p

′
′

<< or
q
pR

q
p

<<
′
′

, and 

(2)  2/1}{}{ >′− RqqR  , where [ ] 1}{0 <−=≤ xxx denotes the fractional part.  
 
See [4] for the proof and further discussions. Note that the golden ratio τ is a special irrational number 
which has no intermediate convergents. 
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Figure 5 : Principle. 
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12 ≠= Risez π of the largest magnitude. Note that in our setting above, the ratioα  tends to 0 or 1 as R  
approaches to qp /  or qp ′′ /  respectively. 
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Abstract
The tilings (n.3.n.3) exist in the spherical, Euclidean or hyperbolic plane, depending on whethern is less than,
equal to, or greater than 6. In all cases the dual tiling consists of rhombi, which can be taken in pairs to form
"regular" concave hexagons. In the case of the spherical examples the tilings can be illustrated by colouring the
faces of rhombic polyhedra. In the Euclidean plane "regular" concave hexagons allow tilings that cannot be
constructed from the dual (6.3.6.3) tiling, some of which allow analogous tilings of non-"regular" concave
hexagons. Some Escher-like designs are derived from such tilings.
Some of the possibilities in the hyperbolic plane are briefly considered.

Some Concave Spherical Hexagons

Previously [1] I described polyhedra that can be produced by removing parts of the small stellated
dodecahedron, having fifteen faces that are equilateral triangles, and fifteen that are concave pentagons
(figure 1). The two types of face are always paired, and it is convenient to think of a pair as some kind of
irregular folded hexagon, which can be projected onto the surface of a sphere with centre coincident with
the centre of the original small stellated dodecahedron. 

Figure 1: The small
stellated dodecahedron, and
two views of a polyhedron

derived from it that has five-
fold symmetry.

These polyhedra have two types of vertex, twelve that are vertices of the convex hull (a regular
icosahedron), and twenty that are vertices of the regular dodecahedron from which the original stellation
is derived. It follows that in the projection they are the vertices of a spherical triacontahedron, and the
spherical hexagons consist of pairs of spherical rhombi. The resulting spherical tilings can be
conveniently indicated by colouring faces of the triacontahedron in pairs (figure 2).

Figure 2: Two polyhedra with triacontahedra coloured in corresponding ways. One pair has 5-fold
symmetry, the other has 3-fold symmetry.

Since there are fifteen hexagons the only possible symmetrical polyhedra have 3-fold or 5-fold symmetry,
as illustrated in figure 2. In both cases the hexagons around a symmetrical vertex can be arranged in either
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sense, so each polyhedron exists in four forms (two enantiomorphic pairs). Mirror symmetry is not
possible since any plane would have to bisect at least one hexagon, because fifteen is an odd number, and
it would cut adjoining hexagons non-symmetrically. There is a large number of non-symmetrical
arrangements.
The triacontahedron is the dual of the icosidodecahedron, with vertex symbol (5.3.5.3). There are two
other face-regular rhombic polyhedra, the rhombic dodecahedron, the dual of the cuboctahedron,
(4.3.4.3), and the cube, the dual of the octahedron, (3.3.3.3). In both of these cases the rhombic faces can
be taken in pairs corresponding to tilings of concave hexagons on the sphere.
In the case of the rhombic dodecahedron there are six concave hexagons so that, although it is possible to
place four hexagons symmetrically around a 4-valent vertex, this leaves only two hexagons, so that
complete 4-fold symmetry is impossible. There is a natural arrangement with 3-fold symmetry that
corresponds to Coffin's "pennyhedron puzzle" [2].
It is easy to make three pairs of adjacent cubic faces, in only one way, with 3-fold symmetry.

Euclidean Tilings

Since the Euclidean plane is infinite there is no limit to the number of ways edges can be removed from
the dual (6.3.6.3) tiling to produce concave hexagons, even if we consider only periodic tilings with
rotational symmetry. It is instructive, however, to consider analogues of the symmetrical polyhedra in
figure 2. A general strategy is to start at a symmetrical vertex and to add successive rings of hexagonal
tiles, noting that the 3-valent vertices occur at the concave vertex and at the two off-centre 120° angles.
At the local level the main difference is the addition of extra tiles at the 5-fold vertices to make them 6-
fold.
In the lower half of the right-hand illustration in figure 1 the hexagons (concave pentagon + triangle) in
the second (equatorial) ring have their two concave edges meeting edges of one hexagon in the first
(lower) ring.  The third (upper) ring is like the first ring: five hexagons around a symmetrical vertex. The
Euclidean analogue (figure 3) consists of six concave hexagonal tiles combined to form a regular hexagon
(the first ring) with tiles at its corners (the second ring). Regular hexagons corresponding to the third ring
meet the tiles of the second ring in the same way as those in the spherical case, with convex 3-valent
vertices.

Figure 3: A Euclidean analogue of the spherical tiling with 5-fold symmetry.
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There is only one hexagonal plane symmetry group without mirrors, p6, or 632 in orbifold notation. The
patches corresponding to the first two rings are centred on 6-fold axes, but the patches corresponding to
the third ring, which also have local 6-fold symmetry, are centred on 2-fold axes of the tiling. The patches
formed by the tiles that must be added (red in the figure) are centred on the 3-fold axes of the tiling.
Applying the same process from the top of the right-hand illustration of figure 1, so the order of rings is
reversed, generates a different tiling pattern (figure 4).

Figure 4: An alternative Euclidean analogue of the spherical tiling with 5-fold symmetry.

Spiral Tilings

All of the tilings considered so far are derived from duals of (n.3.n.3), and no alternative is possible on the
sphere. In the Euclidean plane, however, the angles of the concave hexagons are commensurable, so it is
possible to disregard the distinction between 3-valent and 6-valent vertices. In particular chevron
arrangements are possible, which allows the two spiral tilings described towards the end of [3] (figure 5). 

Figure 5: The two spiral tilings possible with 60° concave hexagons.
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The patches of tiles around the central vertex, six in the 3-armed example, eighteen in the 6-armed
example, observe the vertex restrictions, and can be seen as Euclidean analogues of some symmetrical
patches that occur in spherical tilings. The straight sections of the spiral paths, however, do not fit on the
dual (6.3.6.3) tiling, and it is not possible to identify vertices as either 3- or 6-valent. The pairs of tiles at
the corners of the spiral paths, where there is a 60° turn, are the only neighbours that preserve vertex type
in this way.

Edge-deformation

The tiling patterns of M.C.Escher are all periodic, or derived from periodic drawings [4] (obviously apart
from those that involve no element of symmetry at all and the spherical examples), and the standard
methods of construction rely on periodicity to ensure that complicated shapes will fit together properly.
Inspection of the spiral tilings in [1] suggests that the usual techniques of edge-deformation will not work
with them, since edges meet copies of many other edges, which in turn meet copies of many edges, so
that there is no consistent way to deform the edges without generating a large number of differently
shaped tiles. There are some circumstances. however, in which spiral tilings can form the basis of Escher-
like patterns with only two shapes of tile.
If an edge is a straight line segment it has two lines of  (local) symmetry, itself and its perpendicular
bisector (and, of course, together they generate a rotational symmetry of order 2). The symmetry can be
broken by losing either line of symmetry, or both. Breaking the symmetry along the line of an edge, for
example by the edge becoming a concave or a convex circular arc, is considered in [5]. Figure 6 shows a
modification of the 3-armed spiral in figure 5 with edges that are all circular arcs.

Figure 6: A modified version
of the 3-armed spiral in
figure 5, having edges that
are circular arcs.

Such local symmetry-breaking of the edges of a tile derived from a regular polygon is possible only when
the tiling does not rely on special circumstances, for example the tile having only one concave vertex (see
[5] for details). The 6-armed spiral in figure 5, and the periodic tilings in figures 3 and 4 depend on
particular properties of hexagons, so there is no equivalent edge-deformation that preserves the
monohedral tilings.
If edges are replaced by a line of arbitrary shape we need to consider its orientation between vertices as
well as its orientation between faces (concave/convex in figure 6, for example). The local symmetry of
the edges in a perpendicular line could, in principle, be broken in tilings such as those in figures 3 and 4,
where there is a consistency in the way vertices are arranged. For example edges could be labelled with
arrows directed from 3-valent vertices to 6-valent vertices.
Figure 7 shows the 3-armed spiral of figure 5 with the edges replaced by arbitrary curves. Two shapes of
tile are needed because there is no way to direct the edges between vertices in a consistent way. Notice
that the shapes of tile alternate along the spiral path, except at the corners, where there are pairs of the
same shape, as expected from the earlier observation about vertex type in spiral tilings. In fact spiral
tilings of this type exist for all orders of rotational symmetry, since the "regular" concave hexagons that
consist of two 60° rhombi can be transformed into non-"regular" concave hexagons that consist of two
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different rhombi, that will still tile an infinite wedge that can form the fundamental domain of some
rotational symmetry. Figure 7 also shows a 4-armed spiral, previously described in [1], with edges
substituted by the same arbitrary curve. Tiles of the same shape form v-shaped zones, and the structure is
closely related to the way this 4-armed spiral is coloured in [6].

Figure 7: A modified version of the 3-armed spiral in figure 5, and an analogous 4-armed spiral.

While one of the tile shapes, especially in the 3-armed case, could make quite a convincing bird, the other
does not suggest any realistic form, however stylized. In the case of the 60° concave hexagon it is
possible to arrange the curved edges so that they start and finish with straight sections that are coincident
in some parts of the tile boundary (figure 8). 

Figure 8: An alternative version of the 3-armed spiral.

This change converts the "awkward" tile into quite a reasonable bird, and the bird tile into a more-or-less
dog shape (figure 9). The problem with these substitutions is that the same shape must be substituted for
every edge (although in different orientations) so that there needs to be a compromise: what produces a
better shape at one place makes a worse one at another. The dogs in figure 9, for example, do not bear
close scrutiny, although the birds (doves maybe?) are reasonably convincing.
In a tiling such as that of figure 6 the concave edge of one tile coincides with the convex edge of its
neighbour. This is the same as the relationship between directed edges if they are considered in an
intrinsic way, i.e. clockwise or anticlockwise around the tile. A directed edge in a tiling is clockwise
around one of its tiles and anticlockwise around the other. This observation suggests another kind of
edge-deformation, where the orientation of an edge is either clockwise and concave, or anticlockwise and
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convex. A consequence is that all the edges in the tiling are related by direct isometries, and there are no
mirror images.
Figure 11 shows an example of this type of edge-deformation applied to the tilings in figure 5. The edges
are directed in the same way as those in figure 7 (alternately), and this determines their orientation with
respect to faces ("concave" or "convex"). Again there are two shapes of tile, for the same reason as
before. Since the central patch of the 6-armed spiral tiling can be derived from the dual (6.3.6.3) tiling,
and the rest of the tiling consists of chevron elements, they are consistent with it.

Figure 9: Figure 8 with designs added to the tiles, and coloured to show the spirals.

Figure 10: Interchanging tile shapes still gives a consistent tiling.

In general spiral tilings of the type described in [1] require mirror-image copies of tiles, but if all the
edges are deformed so that they are related by direct isometries, mirror image copies will not fit. In this
case four different shapes of tile are needed: a pair where corresponding edges are rotated by 180° with
respect to each other, and a pair based on the mirror image but with edges that are direct copies from the
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first pair, again where corresponding edges are rotated by 180° with respect to each other. The 3-armed
spiral in figure 11 is a special case, because it is based on "regular" concave hexagons that have mirror
symmetry, so the two pairs are the same.
The same idea can be apppied to the tiling illustrated in figure 6. Edges that are some random shape are
directed according to whether the the circular arc is concave or convex. This time in general two shapes
of tile are sufficient, and figure 12 is equivalent to figure 7, but with tiles related by direct isometries
only.

Figure 11: Modified versions of the spiral tilings in figure 5.

Figure 12: A different edge-deformation of the tilings in figure 7.

Hyperbolic Tilings

The tilings (n.3.n.3) lie in the hyperbolic plane if n>6, and once again tilings of concave hexagons can be
produced by removing edges from the dual tilings. As with spherical geometry the size of polygons
depends on the sum of their internal angles, and a problem with images of these tilings, which is worse
for higher values of n, is that most of the interesting structure gets pushed to the edges, whichever
projection is used.
When n=7, the image is not too distorted, and Douglas Dunham has presented a tiling of butterflies that
indicates how the tiles might look, although he uses edge-deformations that are less restricted than the
ones needed for spiral tilings [7]. In this case the angles of the concave hexagons are incommensurable,
so that there is a distinction between 3-valent and 7-valent vertices in any tiling. Commensurable angles
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occur whenever n is divisible by 3, so the smallest value in the hyperbolic plane is 9. Analogues of the
Euclidean 3-armed spiral should be possible, although extra tiles must be fitted into the equivalent of the
rows of chevrons. When n=12 two tiles will fit into the concave angle, and it seems that some kind of
branching spiral tiling might be possible. Even when n=9 projections of  hyperbolic tilings are pushed
quite far to the perimeter, so it is likely that images of these tilings will be quite disappointing.
Not a lot of software exists for investigating hyperbolic tilings, and what is available is designed around
full symmetry, typically isohedral tilings. The spiral type of tilings have a single centre of symmetry, and
they are not easily investigated. The best strategy seems to involve colouring tilings of triangles manually.
Very little has been attempted, and there is much to be discovered, but the results are unlikely to lead to
striking images for the reasons already discussed.

Conclusion and Further Possibilities

Tilings of concave hexagons exist in spherical, Euclidean and hyperbolic geometries, and they provide a
range of decorative possibilities. The technique of edge-deformation has been used in all three geometries
by Escher [4], and it can be applied in these examples. Grünbaum and Shephard's classification of
isohedral tilings [8] can be used to find possibilities in the Euclidean plane that can be produced by
deleting edges from IH30-37.
There are more constraints on edge-deformations to ensure they will work with spiral tilings of concave
hexagons. In particular every edge must be the same shape. Some possibilities have been described, and
they illustrate aspects of structure that are not apparent in the examples previously described in [3] that
have edges that are straight lines. There are related tilings described in [5], with more illustrated in the
extended online version [9], to which the technique of edge-deformation could be applied, providing
further decorative possibilities, and maybe additional insight into their structures.
All of the tiles considered are compounds of two rhombi, so they have special properties, being zonogons.
There are other classical tilings and polyhedra that have quadrilateral faces that are not rhombi. It is
unlikely that they will provide such a rich source of possibilities, but some other tilings of concave
hexagons can be generated by deleting edges from them, with properties yet to be investigated. 
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Abstract 
 

A new method for designing iterated knots is described.  The method utilizes a starting curve in which smaller 
copies of the curve are embedded. Points along the curves are connected by strands to form a knot, which is iterated 
by replacing the contents of the smaller curves with the contents of the larger curve. The method possesses 
considerable design flexibility, allowing the creation of stylized and esthetically pleasing iterated knots.  

 
 

1.  Introduction 
 

Fractals and knots are popular topics at Bridges Conferences, both being mathematical objects with 
considerable visual appeal. In 2005, Carlo Séquin showed a couple of examples of iterated knots, created 
by applying the iterative substitution concept of fractals to knots [1]. The basis for this approach is 
Conway’s notion of a tangle, a portion of a knot isolated by a boundary that is crossed four times by the 
strands [2]. Descriptions of knots and operations on knots are facilitated by the use of tangles. 
 

At Bridges 2007, Robert Fathauer presented a paper that described a widely-applicable method for 
creating fractal knots by iterative substitution [3].  In that method, the starting point is a knot from the 
Knot Table [2]. The knot is rearranged to have holes that are similar in shape to the overall knot. It is then 
iterated by substituting copies of the current knot for the holes. While it is relatively straightforward to 
apply this method to any knot in the Knot Table, the method does not allow much flexibility in guiding 
the design to result in esthetically pleasing knots.  

 
In this paper, a new method is described that allows greater flexibility in the esthetics of the design. 

The starting point is not the Knot Table, however. If desired, one can work backwards from the chosen 
starting knot to determine the knot in the Knot Table to which it corresponds. The work presented here is 
a recreational and artistic endeavor that makes use of established knot theory. 
 
 

2.  Description of the Method 
 

The method is described below and illustrated in Figure 1. More concise and rigorous mathematical 
language could be used, but the language chosen should be accessible to a wider audience.  
1. Create a “starting knot interior” as follows:   

a. Create a simple closed curve C0 within the plane. 
b. In the interior of C0, embed one or more smaller curves C1

1, C1
2, … that are similar to C0 within a 

set of operations that include scaling, rotation and reflection, as desired.  
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c. Within each C1
i, draw strands with one or more crossings, terminating at points P1

i1, P1
i2, … on C1

i. 
Each group of strands and points should be similar (identical except for the differences in scaling, 
rotation, and reflection used in Step 1b). There should be at least four points P on each curve, and the 
number of points must be even. I.e., each curve bounds an n-strand tangle with 2n endpoints. 
d. Create a set of points on C0 that is similar to the set of points on each C1

i. Connect the loose strands 
terminating at the points P1

i1, P1
i2, … on the each C1

i either with points on other C1
i or with the points 

P0
1, P0

2,  … on C0.  
2. Outside of C0, join the loose strands terminating at points P0

1, P0
2, … in such a way as to obtain a 

unicursal (single-strand) knot with alternating over/under weave. These strands, the “exterior strands”, 
together with the starting knot interior, constitute the starting knot. Check to be sure that this starting 
structure really is a knot; i.e., that it is unicursal and that it isn’t actually the unknot (that it can’t be 
reduced to a simple loop with no crossings). The signs of some of the crossings in one or more of the C1

i 
may need to be flipped in order to maintain an overall over/under weave.  
3. In the starting knot interior, replace each C1

i and it’s interior with a scaled-down copy of the starting 
knot interior, created according to the sets of operations used in Step 1b. Check to be sure that this new 
knot is unicursal. Change the sign of the crossings with each C1

i as needed to maintain an overall 
under/over weave when the exterior strands are included. Call the resulting structure, exclusive of the 
exterior strands, the “current knot interior”. 
4. Replace each C1

i and it’s interior with a scaled-down copy of the current knot interior, created 
according to the sets of operations used in Step 1b. Check to be sure that this new knot is unicursal. 
Change the signs of the crossings with each C1

i as needed to maintain an overall under/over weave when 
the exterior strands are included. Call the resulting structure, exclusive of the exterior strands, the “current 
knot interior”.  
5. Repeat step 4 as desired. After all repetitions, the strands defined in Step 2, together with the current 
knot interior, constitute the final iterated knot. The exterior strands may be modified if desired, as may the 
strands within the smallest generation of curves.  

 
 

Figure 1:  An illustration of the method for creating an iterated knot, showing the 
starting curves and points at top, the starting knot interior plus exterior connections at 
bottom left, and the knot after a first iteration at bottom right. 
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 An example of an iterated knot designed according to the method outlined above is shown in Figure 
2. The starting curve is a square, and there are two smaller curves, both of which are scaled by 1/3 and 
neither rotated nor reflected. There are four points on each square at which strands connect, located at 
midpoints of the edges. The starting knot, shown at top left in Figure 2, has 7 crossings. There is one 
crossing that is exterior to the largest square, a single crossing within each smaller square, and four 
crossings in the space between the large and smaller squares. After one iteration, shown at top center in 
Figure 2, the knot has 17 crossings. The second and third iterations are shown at top right and bottom in 
Figure 2. The knot is sufficiently complex and the smallest features so small that additional iterations are 
not shown here. The number of crossings for the second through fifth iterations is 37, 77, 157, and 317. 
Note that the increase in the number of crossings from one iteration to the next is 10, 20, 40, 80, 160, …  
The number of crossings N in the jth knot (where j = 1 corresponds to the starting knot) is given by the 
following expression: 

 
 A general formula can be written for the number of crossings in an iterated knot of this sort. If there 
are k smaller curves C1 within C0, l crossings outside C0, m crossings in the volume between C0 and the 
C1, and n crossings within each C1, then the number of crossings in the starting (first) knot is l + m + kn. 
In the iterated (second) knot, the number of crossings is l + m + k(m + kn). In the jth knot, the number of 
crossings is N(j) = l + (m + km + k2m + … + k(j-1)m) + kjn. The geometric series in parentheses can be 
summed, giving for the number of crossings in the jth knot N(j) = l + m(1 - kj)/(1 - k) + kjn.  
 
 

3. Design Considerations 
 

 Keeping some design guidelines in mind will in general lead to more esthetically pleasing iterated 
knots. Four general guidelines follow. 
A. Keep it simple.  
Knots become complex and confusing very quickly. As a result, it is usually a good idea to use a simple 
starting curve, such as a circle or a polygon possessing symmetry and not too many sides. In addition, 
keeping the number of curves k small (≤ 5) will also keep things simple. Using the same scaling factor for 
all of the C1 will also simplify the construction, but it may be desirable to vary the scaling factor to 
achieve a particular visual effect.  
B. Having some sort of overall symmetry will in general be pleasing to the eye.  
Both rotational symmetry and mirror symmetry (one or multiple lines) work well. Note that while the 
strand positions may obey some symmetry, the signs of the crossings may be reversed from one region of 
the knot to another and therefore not obey that symmetry. 
C. Keep the scaling factor s as close to unity as possible, and the number of iterations small.  
This will allow the eye to take in a few iterations at once. After three iterations, the smallest regions will 
have features only 1/s3 as large (linearly) as the largest similar regions. If a scaling factor s = 1/3 is used, 
for example, features in the smallest regions will be 1/27 as large as the similar features in the largest 
regions.  
D. A style should be selected for the finished knot. 
One possibility is smooth curves that call to mind rope knots in the real world, as in the knot of Figure 2. 
It is also possible to use some sharply angled features in otherwise curved strands; this is often employed 
in Celtic knot designs and was employed in the knot of Figure 3 below. Relatively wide strands are often 
used in Celtic designs, as in the final knot of Figure 3. Crosses are a design element often found in Celtic 
knots, and these were used in the knot of Figure 4 below. Islamic style can also be intentionally used to 
guide the shape of strands, in which case the strands will mostly consist of straight lines and openings in 
the knot could include characteristic shapes like star polygons. More generally, styles could include bold 
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and forceful, playful (see Figure 5), delicate, etc. Effectively employing a particular style generally 
requires the reshaping of strands after construction of the basic iterated knot.  
 
 

 
 

Figure 2:  A simple example of a knot iterated using the method described above. The 
starting knot and first three iterations are shown. The dashed lines indicated the 
starting curves described in the method.  
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4. Further Examples 
 

Three additional iterated knots designed using the method described above are shown here. The knot of 
Figure 3 employs a rectangle as the starting curve. Two smaller rectangles are arranged within it, with a 
rectangular space of the same size and shape between them. The smaller rectangles are rotated 90° with 
respect to the starting rectangle, and the scaling factor for this arrangement is easily calculated to be 1/√3 
≈ 0.577. The starting knot, shown at top left in Figure 3, has three crossings. Since there is only one knot 
with three crossings, it must be a trefoil knot. The first and second iterations are shown next to it, and the 
knot after five iterations is shown at the bottom of Figure 3, with gray shading. The number of crossings 
for the starting knot and first four iterations are 3, 7, 15, 31, and 63, and the increase in the number of 
crossings with each successive iteration is 4, 8, 16, 32, 64, …  
 
 The knot of Figure 4 employs a square as the starting curve, with five smaller squares embedded 
within it. This was derived from a fractal tiling created via dissection of a polyomino that leads to a 
scaling factor of 1/√17 ≈ 0.243 and a rotation angle of tan-1(1/4) ≈ 14° for each of the smaller squares [4]. 
The starting knot (near top center in Figure 4) has nine crossings, five of which are within the five smaller 
curves. It has two-fold rotational symmetry and would have four-fold symmetry if not for the exterior 
strands. Note that some artistic license was taken in connecting points on the smaller squares, with 
pointed loops that extend well outside the large square. The first iteration is show at upper right in Figure 
4, and the second iteration is blown up to overfill the page, in order to make the smallest features clear. In 
this case, due to the rather severe scaling factor, two iterations already leads to small features. The 
quintupling of features with successive iterations leads to a rapid increase in the number of crossings, 
from 9 for the starting knot to 49 for the first iteration to 249 for the second iteration. A third iteration 
would have 1,249 crossings! The increase in the number of crossings with each successive iteration is 40, 
200, 1000, … 
 
 The knot of Figure 5 employs a hexagon as the starting curve, with three smaller hexagons embedded 
within it. The scaling factor is 1/3 ≈ 0.333, and the smaller knotted regions are rotated 60° with each 
iteration. The strands were given arrow-like shapes in order to create a whimsical design that seems to 
possess a lot of energy. The starting knot has 15 crossings, and the first two iterations have 30 and 75 
crossings. The increase in the number of crossings with each successive iteration is 15, 45, 135, … 
 
 

5.  Conclusions 
 

We have presented a new method for designing iterated knots. In contrast to the previously described 
method, in which holes in a starting knot are replaced with scaled down copies of the knot, holes in the 
starting structure in the current method are filled with crossing strands. Several examples have been 
presented. These illustrate the greater degree of design flexibility in this method, which allows the 
creation of more stylized and esthetically pleasing iterated knots.  
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Figure 3:  An iterated knot in which the smaller copies of the current knot are rotated 
90° before being substituted in the smaller rectangles. The top line show the starting 
knot and first two iterations, while the bottom figure shows the knot after five 
iterations. 
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Figure 4:  An iterated knot in which five smaller copies appear with each successive 
iteration. The starting knot is show at top center, with the first iteration next to it. The 
knot after two iterations is blown up, with the outer loops cut off, in order to better 
shown the smallest features. 
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Figure 5:  An iterated knot with three-fold rotational symmetry. Arrow-like strands 
were employed to give the knot a vibrant and whimsical character. 
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Abstract 

 
This paper represents a finite group with 32 elements as a group of transformations of a compact surface of 

genus 5. In particular, we start with a designated pair of regions of this surface, and each region is labeled 

with the group element, which transforms the designated region into it. This gives a portrait of that finite 

group. These surfaces and the regions corresponding to the group elements are shown in this paper. William 

Burnside first gave a simple example of such a portrait in his 1911 book, “Theory of Groups of Finite Order”. 

This paper is the third paper in a series which models groups as groups of transformations on a compact 

surface in the style of William Burnside. 

 

Introduction and Historical Perspective 

 
A group is a set and an associative binary operation which contains an identity such that each 

element has an inverse element in the group. Therefore, a group is an abstract object. Groups were 

originally thought of as permutations of some other mathematical structure, such as a set of points. This 

permutation group idea comes very naturally from the set of symmetries of physical objects. Thus the 

symmetries of an equilateral triangle are a group with six elements. It follows that groups can be both 

abstract objects and real physical motions of a symmetric object. 

A group can also be thought of as a set of transformations of a "plane" into itself that is closed 

under composition. Some groups of transformations 

can be realized on the Euclidean plane and these give 

rise to the tessellations of the plane. Many groups need 

to be realized on the hyperbolic plane and give rise to 

tessellations of it. A finite group is a finite set of 

transformations which is closed under composition. If a 

finite group were represented on an infinite plane, then 

the fundamental region would have to be infinite. 

Therefore, a finite group is represented as a set of 

transformations of a compact two dimensional surface, 

such as the sphere or the torus. These surfaces must 

become more complex in order to contain the portraits 

of some groups. 

This paper is part of a series of papers on how 

to draw a portrait of a finite group, in the style of 

Burnside [1]. Burnside started with circles in the plane 

and used inversion in the circle as the transformation. 

The relationship between circles determines the  group 

Figure 1, Portrait of a Free Group               generated by these transformations. When we look at 

the regions this generates inside of a circle we get Figure 1. Burnside [1, p. 379] constructed a free group 

on 2 generators, F2, using two mutually tangent circles and the line tangent to them (a circle centered at 
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infinity). We only need to picture the part of each region inside the circle through the three points of 

tangency. Like Burnside, the initial region is the "triangle" labeled E and its corresponding shaded region. 

Each “triangle” is bounded by arcs colored red, blue or black in our sketch. Inversion in any single arc 

will take a shaded region into a non-shaded region and vice- versa. Each region can be labeled by the 

transformation needed to get from E to that region. Since we are interested in orientation-preserving 

transformations, each group action is represented by the composite of two such inversions. Inversion 

through first a red arc and then a blue arc corresponds to multiplying on the left by the generator S. 

Multiplying on the left by the generator T corresponds to inversion through black and then red. 

Multiplying on the left by ST corresponds to inversion through black and then blue. If we considered 

inversion through a black arc first and then a blue arc as the inverse of a single generator, R, then we 

could interpret this picture as a portrait of a group with presentation 1|,,2 RSTTSRT . This 

construction fills up a unit disk with black and white regions and the transformations are given in the 

same way. We have used Geometer’s SketchPad [4] to reconstruct this portrait of a free group on two  

Figure 2 - The Fundamental Region for SG(32,2) 

 
generators (Figure 1), similar to a figure in Burnside [1, p. 380]. 

Now suppose that we have a finite group, G, generated by 2 generators. The group G is the image 

of F2 by a normal subgroup N. Specifically, two strings of generators represent the same element of the 
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group if the product of one string and the inverse of the other string is in the subgroup N. One example of 

this is that a rotation of 120º clockwise is the same as two rotations of 120º counterclockwise. After 

associating an element of F2 to each region, the final step is to identify all regions with labels from the 

subgroup N. After this identification, we have the finite group G. However the circle in Figure 1 still has 

an infinite number of regions labeled with elements from the presentation 2T . This circle can be thought 

of as the Poincare disk model of hyperbolic space. At this point, we choose a connected set of regions 

which contains a single region for each group element and whose label corresponds to that group element. 

This set of regions is called the Fundamental Region for the finite group. Any region outside of the 

fundamental region is equivalent to some region within the fundamental region. Therefore, the compact 

two dimensional surface is derived by folding the fundamental region in certain ways. This is the same 

idea as constructing a torus by taking a rectangle and identifying the top and bottom as connecting to each 

other and the two sides as connecting. 

In the diagram in Figure 1, each element has infinite order and the curvilinear triangles get 

smaller and smaller as they approach the boundary of the circle. This means that the connected region in 

Figure 1 would have a ragged boundary with parts of the boundary intersecting each point. This can be 

fixed by picturing a different tiling of the hyperbolic plane or by drawing a polygonal region with the 

same relationship between the triangles. The second approach has the advantage that the triangles remain 

easily visible as they get near the 

boundary of the polygonal region 

and this portrait is pictured in 

Figure 2. The portraits developed 

are topologically equivalent to the 

model that we want, but even the 

areas of the regions are changed. 

Compact surfaces are 

classified topologically by genus 

and orientability. Every compact 

orientable surface with genus g is 

topologically equivalent to a 

sphere with g handles. Very 

roughly, the genus is the number 

of "donut" holes that a surface has.  

This is why a donut and a coffee 

cup are topologically equivalent. 

Thus, every compact surface of 

genus g may be constructed in 

many different, but topologically 

equivalent ways. We will pick a 

symmetric way of representing the 

surface and use it. This surface          Figure 3 - Connectivity of the Fundamental Region 

may be drawn and colored with each face composed of one white and one black region. These faces 

represent a finite group of transformations, which act on the surface in the style of Burnside [1]. The 

choice of surface is made arbitrarily with the correct orientability and genus. 

 There have been several Bridges papers which pictured regular maps on surfaces of genus 3 to 7 

(for example [3] and [7]) and their associated tilings and the related topic of portraits of groups using 

techniques in this paper ([9] and [10]). The automorphism groups of these tilings are the groups PSL(2,7) 

(in [3]) and S5 (in [7]). The portraits in [9] are of the dicyclic group of order 12 and the group of order 16 

with notation < 2, 2 | 2> (see [2, p. 134]) acting as orientation-preserving transformations and the group 

P48 = SG(48, 33) pictured as a group where some transformations are orientation-reversing. 
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Group Portraits 
 

Let G be a finite group. There is a set of orientable surfaces on which G can be represented as a 

group of transformations. One of these surfaces has the smallest possible topological genus of all surfaces 

in this set. The genus of this surface is defined to be the symmetric genus of the group. If the group can 

only be represented by transformations that preserve the orientation of the surface, then the genus of the 

surface of smallest genus is called the strong symmetric genus of the group. 

The group that we will be considering is a group of order 32 with symmetric genus 5 (see [6]). 

The genus action is given as a quotient of the triangle group 1)(|,)4,4,4( 444 STTSTS  

and these transformations preserve the orientation of the surface, its strong symmetric genus is also 5. 

This group is SmallGroup(32,2) in the Magma Library of groups (see [5]). We denoted this group by 

)2,32(SG . It has a presentation 1]],[,[]],[,[]),([)(|, 2444 TSTTSSTSSTTSTS  

as the image of )4,4,4( . This presentation is extremely symmetrical. We know that this group can be 

drawn as a group of transformations of a compact surface with five "donut holes" and that it cannot be  

 
Figure 4 - The model of SG(32,2) on a surface of genus 5 

 

drawn on a compact surface with any fewer than five "donut holes". The polygonal region for the group 

)2,32(SG  is given in Figure 2. 
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In Figure 3, each of the thirty two faces is labeled with a number which corresponds to a group 

element. Remember that each “face” is a paired white and black region separated by a blue curve. Each 

region on the border of the plane figure connects to another region on the border of the plane figure. 

Theoretically, this tells us how to fold the fundamental region to get a compact surface with genus five. 

The faces are split into white and black parts simply because this is the way that Burnside constructed his 

original diagram. This portrait consists of 32 white and 32 black triangles. Each of the 64 regions is 

bounded by 3 edges and each edge bounds 2 regions. So a simple combinatorial argument gives that there 

are 96 edges. The faces that meet at a vertex are labeled in such a way that each face is related to the 

adjoining face by multiplication on the left by either S, T, ST or its inverse. For example, two regions M 

and N are both incident to the same S vertex if and only if MSN k
 for some k. Therefore, each vertex 

could be classified as an S-vertex, a T-vertex or an ST-vertex depending on the labeling of its bounding 

regions. Since S, T and ST have order 4, each S, T or ST vertex has degree 8. This gives 24 vertices. 

Therefore, the Euler characteristic is  = V - E + F = –8. 

Since  = 2 - 2g, where g is the genus of the surface, this 

portrait is drawn on a surface of genus five. Therefore, the 

portrait in Figure 4 gives the genus action for this group 

(see [6]).  

Finally, we construct a model of the surface and of 

the transformations in this group. This model is in Figure 4. 

Notice that this is a model where each transformation is 

represented as a word in the generators of a particular 

presentation. Therefore, one could say that this is a model 

of the particular presentation of this group. I would point 

out that this presentation was chosen as the one which can 

be drawn on a surface of smallest genus. In this particular 

case, the Cayley graph of this presentation is the dual of 

this model where each region consists of a paired white and 

black region. However, in general Cayley graphs can be 

embedded in surfaces of smaller genus than can be done 

with this technique (see [8]). 

 

Figure 5 - Local information about a point             Construction of the Model 
 

Finding a blueprint for the model is the hardest part of this process. A graph is constructed from 

the data in figure 3. This graph is a regular map, but unfortunately this fact is not useful in finding the 

model. The basic idea is to construct a model of a genus five surface and try to fit the points of the graph 

on the model in the proper way. The first step is to get the information about the points and faces that are 

adjacent to a point. An example of this is shown in Figure 5 for the point labeled A. Diagrams like this 

one are constructed for each point in the graph. Notice that although Figures 2 and 3 distort the angles, in 

the final model the triangular regions which have point A as a vertex, all have vertex angle 45º. In Figure 

5, the points H, A and D are on a straight line and in the model this is a black curve. We can extend this 

"straight line" to a closed curve on the model. These curves are referred to as "straight line curves". 

 There are 24 straight line curves in the model, eight each of black, red and blue curves. Each 

straight line curve contains four vertices. Each vertex is on four straight line curves, two of one color and 

two of another color. The two straight line curves of the same color which intersect in a point are at right 

angles. If you start at any point in the model and pick a color incident to that point, the two straight line 

curves intersect in exactly two steps. For example, the two black straight line curves incident to point A 

are H  A  D  L and F  A  B  L and they intersect again at point L. The two red straight line 

curves incident to point A are G  A  C  P and  E  A  I  P and they intersect again at point P. 

 Two white regions M and N both bound a straight line curve of the same color if and only if 
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MSN 2
. The same is true for T and ST vertices. Thus, a straight line curve contains directed edges 

that are two steps apart if and only if these edges are incident to the white regions F  and Fyx 22
 where

},,{, STTSyx  are different generators. Two steps preserve the direction of the directed edge along the 

straight line curve. The elements
2S , 

2T and 
2)(ST  are in the center of )2,32(SG . So if MzN k

 for

},,{ STTSz , then both images Myx 22
 and Nyx 22

 have the same initial vertex because they satisfy 

the equation MyxzMzyxNyx kk 222222
. This is why the straight line curves above always 

intersect in 2 steps. It is also clear, since these elements have order 2, that four steps gets you back to the 

initial point. 

 There are 24 points and since there are 5 holes and the outer rim, each one of these has a straight 

line curve on its rim. Now we find a way to connect these points. There are in fact multiple ways to do 

this, but one constraint used is that the front and back side of the models must be symmetrical. This gives 

a pleasing symmetry to the whole construction and makes it easier to see how it fits together. 

 Figure 6 - Blueprint of the Model    Figure 7 - Model with graph on it. 
 

 Finally, the front face of the blueprint for the model is included in Figure 6, and the actual model 

with the graph drawn on it is in Figure 7. Note that even though the graph was embedded on the model 

first, it is easily checked that the faces are properly positioned. 
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Abstract
We discuss the problem of constructing a tiling of the musical time-line with a number of instruments (called voices)
all of which are playing according to variations of a particular rhythmic pattern. We show that the Ashanti rhythmic
pattern allows a tiling in six voices.

1 Introduction

The term rhythmic canon was coined by the composer Olivier Messiaen (1908-1992). The rhythmic canon
dictates when each instrument in a composition may play a note or be silent. Each instrument should play
the same rhythm but start at a different time. If the rhythmic canon is such that at every time interval exactly
one instrument can be heard, then the canon is said to be tiled. Messiaen himself referred to the sound of
a rhythmic canon as “organised chaos” [5]. In his composition Harawi, Messiaen uses a three voice canon
with each voice playing according to the following rhythmic pattern.

10010000100000001000010010001001000000100100010101010010000100

A 1 indicates that the instrument plays a note, while a 0 means it is silent. When the three voices play
together they play with the same rhythm but start at different times to give the following rhythmic canon.

V1 : 10010000100000001000010010001001000000100100010101010010000100
V2 : 0010010000100000001000010010001001000000100100010101010010000100
V3 : 000010010000100000001000010010001001000000100100010101010010000100

This canon has the property that there is an instrument playing on almost every beat and with just a few
exceptions there is only one instrument playing, so it is almost perfectly tiled. In this article we are concerned
with perfectly tiled canons, i.e., canons in which there is one and only one instrument playing at every time
interval. Today there are many musicians who use tiled canons in their compositions. In particular we would
refer the reader to the work of Tom Johnson [4].
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2 Polynomial Representation of the Rhythmic Canon

The binary representation of rhythmic patterns used above is useful to anyone wanting to analyse a pattern or
compose a piece of music based on the described rhythm. However, if we wish to construct a rhythmic canon
with particular properties or check whether a given set of patterns tile the musical time-line, then polynomial
representation is more useful.

The polynomial that represents a given rhythmic pattern is simply a polynomial in x with integer coeffi-
cients 0 or 1. If in the binary representation the pattern has a 1 in the ith position, then the coefficient of xi

is 1, otherwise it is zero. Note that for a rhythmic pattern of period n (i.e., one that repeats every n beats)
we consider the binary representation as starting at position 0 and finishing at position n−1. This means the
binary pattern of Messiaen

10010000100000001000010010001001000000100100010101010010000100

will be written as

1+ x3 + x8 + x16 + x21 + x24 + x28 + x31 + x38 + x41 + x45 + x47 + x49 + x51 + x54 + x59.

We shall refer to polynomials which have 0 and 1 as coefficients as 0−1 polynomials. As each rhythmic
pattern has some period n, the powers in its polynomial representation are reduced modulo n. Therefore
its corresponding polynomial can be regarded as an element of the ring Z[x]/(xn− 1). Multiplication of a
polynomial by xi will shift the rhythm by i positions, meaning it will start i beats later. Let P(x) be a 0−1
polynomial that describes a rhythm to be used in a canon. If there exists another 0−1 polynomial say Q(x)
such that Q(x)P(x) = 1 + x + x2 + ...+ xn−1, then the canon can be tiled with the pattern P(x). We refer to
P(x) as the inner rhythm and the polynomial Q(x) is called the outer rhythm. Each voice plays according to
inner rhythm, while the outer rhythm determines when each voice starts.

3 Examples of Tiled Canons

3.1 A Simple Tiling

Consider the rhythmic pattern of period 12 described by the polynomial P(x) = 1 + x5 + x7. We choose the
outer rhythm Q(x) to be 1+ x3 + x6 + x9. As the period is 12, all powers of x will be reduced modulo 12. It
can be easily verified that

Q(x)P(x) = (1+ x3 + x6 + x9)(1+ x5 + x7) = 1+ x2 + x3 + x4 + ...+ x11,

hence the time-line is tiled with four voices, one for each term of Q(x). The rhythmic patterns are periodic,
so in the binary representation we may write the following canon.

V1 : 100001010000100001010000100001010000
V2 : 000100001010000100001010000100001010
V3 : 010000100001010000100001010000100001
V4 : 001010000100001010000100001010000100

Here each voice repeats the pattern three times. It can be seen from above we have a perfect tiling of the
time-line.
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As Q(x)P(x) = P(x)Q(x), we can obtain another tiling by interchanging the roles of the outer and inner
rhythms. That is, we can obtain the following canon in three voices.

V1 : 100100100100100100100100100100100100
V2 : 010010010010010010010010010010010010
V3 : 001001001001001001001001001001001001

3.2 Vuza Canons

In the above example we see that the rhythm 1 + x3 + x6 + x9 has a smaller period than 12. It repeats every
three beats. If a polynomial is invariant under multiplication by xk, then the polynomial’s rhythm has period
k. If a tiling has no period smaller than n in either the inner or outer rhythms then it is said to be of maximal
category. It was shown by Vuza [6] that there exists no tiled canon of maximal category with period less
than 72. He also provided an algorithm for producing canons of maximal category of period 72 and 120.
Much work has been done by both mathematicians and musicians on canons of maximal category, or as they
are now called Vuza canons. One example of a Vuza canon is given by polynomials

P(x) = 1+ x+ x5 + x6 + x12 + x25 + x29 + x36 + x42 + x48 + x49 + x53,

Q(x) = 1+ x8 + x18 + x26 + x40 + x58.

As mentioned earlier this will allow for two tilings of the time-line. For more on this topic we refer the
reader to [1] and references there in.

3.3 Augmented canons

Another class of tiled rhythmic canons are the augmented canons. In an augmented canon different voices
will still play the same rhythmic pattern but some may be stretched by a factor r so that they take longer to
complete their cycles, while the non-stretched voices will be repeated r times so that the canon can be tiled.
In terms of polynomials, an augmentation of P(x) by a factor of r corresponds to the polynomial P(xr).

Let k be the period of a rhythm represented by P(x). Suppose we wish to tile the canon with two versions
of the same rhythm say P(x) and P(xr). Note that the augmented pattern P(xr) is periodic in kr. We can fill
kr time intervals with r copies of the pattern corresponding to P(x). In polynomial notation the r copies are
created by the polynomial

(1+ xk + x2k + x3k + ...+ x(r−1)k).

Now, to complete a tiling we would have to find two outer rhythms Q1(x) and Q2(x) such that

Q1(x)(1+ xk + x2k + x3k + ...+ x(r−1)k)P(x)+Q2(x)P(xr) = 1+ x+ x2 + ...+ xrk−1.

The polynomials Q1(x) and Q2(x) determine when the voices P(x) and P(xr) start. The number of terms in
Q1(x) will be the number of voices playing the faster rhythm P(x), while the number of terms in Q2(x) will
be the number of voices playing the slower rhythm P(xr). We could, of course, try to tile the canon with
many different augmentations of the same rhythm, but for the purpose of this article we will consider just
one augmentation along with the original pattern.
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3.4 Augmented Canons from Traditional Patterns

The purpose of this collaboration (between two mathematicians and a musician) was to try to tile the time
line with augmentations of an existing traditional rhythmic pattern and to compose a piece of music on this
tiling. Of the large number of (mathematically) possible rhythm patterns that could be used for a given
rhythm period only a small number of these are used in practice [3]. It is believed that a rhythmic pattern
that has been used for generations probably has some aesthetic quality that a pattern chosen just to satisfy an
equation does not. Using a list of traditional African patterns (from [2]), for each period 12 pattern on the
list we attempted to solve the equation

Q1(x)(1+ x12 + x24 + ...+ x(r−1)12)P(x)+Q2(x)P(xr) = 1+ x+ x2 + ...+ x12r−1,

for some small value of r. That is we had to find 0− 1 polynomials Q1(x) and Q2(x) such that the above
equation holds. We were able to solve this equation for just one of the patterns. In the next section we show
how we derived the solution and demonstrate the resulting tiling.

4 The Ashanti Rhythmic Pattern

4.1 Background

The Ashanti people make up 14% of the population of modern day Ghana. The basic rhythmic pattern behind
much of their traditional music is the following period 12 pattern with four onsets

100101001000.

As a polynomial we would write this as

P(x) = 1+ x3 + x5 + x8.

Before attempting to tile with a polynomial it is a good idea to note all the possible differences of the
powers of x. This will rule out some shifts by revealing which shifts induce overlap. For example, two of
the powers that occur in the Ashanti polynomial are 5 and 3, which have a difference of 2. So a shift by 2
places will cause an overlap. The differences are all calculated modulo 12 and no shift greater than 6 need
be considered, as this is just a smaller shift in the other direction. The set of all differences of the powers in
the Ashanti polynomial is {2, 3, 4, 5}, so the only possible shifts that can be used in a tiling are 1 and 6.
This means that Q1(x) has to be of the form xi(1+ x) or x j(1+ x6).

4.2 An Augmented Tiling

To tile the Ashanti pattern with augmentations by a factor of two we are required to find 0−1 polynomials
Q1(x) and Q2(x) such that,

Q1(x)(1+ x12)P(x)+Q2(x)P(x2) = 1+ x+ x2 + ...+ x23.

Using the restriction derived above we may assume that Q1(x) is either 1 + x or 1 + x6. From here we
can rule out the remaining possibilities for Q2(X) by hand without too much difficulty (or with ease on
a computer). We concluded that the above equation has no solutions for Q1(x) and Q2(x) that are 0− 1
polynomials, therefore a tiling with the augmentation by two is not possible. We can similarly rule out
augmentations by a factor of three.
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We proceed to look for a tiling with the Ashanti pattern using augmentations by a factor of four. As
before we are required to find polynomials Q1 and Q2 such that,

Q1(x)(1+ x12 + x24 + x36)P(x)+Q2(x)P(x4) = 1+ x+ x2 + ...+ x47.

Again, we know that Q1(x) is either 1+ x or 1+ x6. We found a solution for Q1(x) = 1+ x. What follows is
a summary of the computations that lead to the finding of a viable Q2(x).

Assuming Q1(x) = 1+ x we must find Q2(x) such that

(1+ x)(1+ x12 + x24 + x36)(1+ x3 + x5 + x8)+Q2(x)(1+ x12 + x20 + x32)

= 1+ x+ x2 + ...+ x47.

This implies

(1+ x12 + x24 + x36)(1+ x+ x3 + x4 + x5 + x6 + x8 + x9)+Q2(x)(1+ x12 + x20 + x32)

= (1+ x12 + x24 + x36)(1+ x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11).

A simple rearrangement yields

Q2(x)(1+ x12 + x20 + x32) = (1+ x12 + x24 + x36)x2(1+ x5 + x8 + x9),

while factoring (1+ x12 + x20 + x32) will give

Q2(x)(1+ x12)(1+ x20) = (1+ x12 + x24 + x36)x2(1+ x5 + x8 + x9).

To facilitate finding a Q2(x) that would obey the above expression we assume that Q2(x) has the form
Q2(x) = x2(1+ x24)R(x). The equation above turns into the following equation in R(x)

x2(1+ x24)R(x)(1+ x12)(1+ x20) = (1+ x12 + x24 + x36)x2(1+ x5 + x8 + x9).

It implies
(1+ x24)(1+ x12)(1+ x20)R(x) = (1+ x24)(1+ x12)(1+ x5 + x8 + x9).

Note, we are careful not to say that we divide across by (1 + x24)(1 + x12) as the elements (1 + x24) and
(1+ x12) are not invertible in Z[x]/(x48−1).

Since all the powers are reduced modulo 48, the polynomial 1 + x12 + x24 + x36 = (1 + x24)(1 + x12) is
invariant under multiplication by x12. Therefore we can replace 1 + x5 + x8 + x9 with 1 + x41 + x20 + x21 =
(1+ x20)(1+ x21), since the powers in these polynomials are the same modulo 12. We may now write

(1+ x24)(1+ x12)(1+ x20)R(x) = (1+ x24)(1+ x12)(1+ x20)(1+ x21).

The polynomial R(x) = 1+ x21 satisfies the equation. This gives us the solution

Q2(x) = x2(1+ x24)(1+ x21) = x2 + x23 + x26 + x47

and we now have a tiling.
In the binary notation we may write this tiling as follows.

V1 : 100101001000100101001000100101001000100101001000
V2 : 010010100100010010100100010010100100010010100100
V3 : 001000000000001000000010000000000010000000000000
V4 : 000000010000000000000001000000000001000000010000
V5 : 000000000010000000000000001000000000001000000010
V6 : 000000000001000000010000000000010000000000000001
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What follows is an excerpt from a piece of music composed on the above tiling. We can see from this
section of the score that all the instruments have been introduced and that at every beat one and no more than
one instrument is playing.
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Abstract 
 
Saddle polyhedra have faces that are skew polygons, with edges that do not lie in one plane. The surface of a face 
can be undefined [1], a minimal surface [2], triangulated [3], or filled using a spidron nest [4,5]. Identifying 
circuits in three dimensional periodic networks of vertices and edges [6] with saddle faces generates space-filling 
saddle polyhedra, described in [2]. We consider these space-fillers, and by extending the concept of a spidron so it 
can be applied to the faces create forms that are visually interesting, both as individual polyhedra and in 
aggregations. 
 

 
Spidrons and Spidron Nests 

 
A spidron was originally defined as a particular infinite set of triangles that tiles the plane, and a spidron 
nest as a combination of semi-spidrons that form a hexagon [4]. This idea can be extended in a fairly 
natural way to work with any regular polygon with an even number of sides, but there are problems if the 
polygon is not regular (see later for more detailed discussion). 
Throughout this paper a polygon is considered, as in [1], as a closed circuit of edges, meeting at vertices. In 
particular a polygon is considered to be distinct from its interior. A polyhedron is considered to be a surface 
distinct from its interior. Only two faces of a polyhedron meet at any edge, but they can share more than 
one edge. 
Dániel Erdély discovered that the interior of a hexagon divided into an infinite series of similar rings, each 
consisting of six equilateral and six 120° isosceles triangles (a spidron nest), can fold so that the hexagons become 
non-planar. By noticing that a cube can be dissected along a skew hexagon he was then able to construct a space-
filling octahedron [7]. If the skew hexagons are simply triangulated then the polyhedron that is generated is the 
first stellation of the rhombic dodecahedron, which is a well-known space-filler [8]. If a minimal surface is used it 
corresponds to Pearce's #40, figure 8.55 in [2], which is used in his space-filling #4, illustrated in his figure 8.68. 
In fact spidron nests can be folded in many different ways, since each ring can turn either clockwise or 
counter-clockwise. Usually the choices are made in a consistent way so that the spidronised polygon 
appears as a many-armed spiral in relief. However the choices are made, in a space-filling, faces that 
coincide must correspond, so that a clockwise ring matches a counter-clockwise ring. This has important 
consequences. 
In order to make spidronised versions of  the faces of the saddle polyhedra used by Pearce  we need to consider 
their edges, which are usually skew polygons. As long as the skew polygon is regular (equilateral and 
equiangular) it is not too difficult to construct a corresponding spidron nest. In fact, within certain limits, there are 
two degrees of freedom, which can be thought of as the angles of one of the triangles in the dissection. 
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Unfortunately it is more usual to need skew polygons that are not regular, even to make a single polyhedron 
before the constraints of space-filling are considered. There is an obvious construction that generates visually 
satisfying forms, but in general the spidron nests produced cannot fold.  
Start with a polygon, which may be skew. Usually it will have some rotational symmetry, so there is an 
obvious centre, but it may be necessary to make some more or less arbitrary decision about which point to 
take as the centre. Make a copy of the polygon, scale it down by some factor towards the centre and rotate it 
by some angle. Triangulate the region between the two polygons by joining every point on the original 
(outer) polygon to the images of its two neighbouring vertices. Apply the similarity transformation (scale + 
rotation) to the resulting surface, which, by construction, will fit inside. The transformation can be repeated 
indefinitely to give a series of rings that converge towards the centre. The set of images of any point lies on 
a logarithmic spiral.  
 
 

Constructing Space-filling Polyhedra 
 
The faces of any polyhedron can be spidronised using this construction, and because the (arbitrary) rotation 
around the axis can be in either direction, there are clockwise (CW) and counter-clockwise (CCW) versions 
of the nests. For a single polyhedron there is no restriction on how these versions are chosen, but in a space-
filling, faces that meet must match. Looking from the outside of the polyhedra a CW face is matched by a 
CCW face. We want to choose these orientations so that the number of different spidronised polyhedra is 
minimised, if possible with a single spidronised form for every copy of a polyhedron in a space-filling. This 
is often quite difficult to achieve, and sometimes impossible. 
Pearce [2] lists 42 space-filling systems using a total of 54 polyhedra with 34 different polygons as faces, 
but he acknowledges that this list is not exhaustive. Figure 1 shows all these faces, with the skew polygons 
spidronised. For each space-filling a translational unit can be identified that generates the complete space-
filling by translations only. The translational unit consists of one or more basic repeat units, which are the 
smallest aggregations of spidronised polyhedra that fill space by themselves. Generally the numbers of 
polyhedra in the repeat unit are given in space-filling ratio listed in Pearce, but there are circumstances 
when twice as many are needed because of the requirement for equal numbers of CW and CCW versions of 
a face, for example in a space-filling that uses a single type of polyhedron with an odd number of faces. 
The situation that can occur when (unspidronised) faces are enantiomorphic is rather less obvious. An 
enantiomorphic face is a three dimensional object, rather like a helix, so that right-hand, R, and left-hand, L, 
forms can be interchanged by reflection, but in no other way. The process of spidronisation is essentially 
two dimensional, and CW and CCW forms can be interchanged by a 180° flip. Since R faces must meet 
with R faces (and L with L) we can consider each type separately, so a polyhedron with an odd number of 
R faces behaves like a polyhedron with an odd number of identical faces, and the requirement for an equal 
number of CW and CCW versions implies an even number of different spidronised forms of the polyhedron. 
Some space-filling polyhedra listed in Pearce have faces that are not enantiomorphic, having mirror 
symmetry, but they are two-sided, in the sense that their appearance is not conserved under a 180° flip. 
Such polygons can be spidronised in two ways, either with the “A” side CW, or the “B” side CW.  Since in 
a space-filling the “A” side of a polygon must meet the “B” side of its mate, all that is needed is to use the 
same spidronisation throughout, and CW will always meet CCW. 
All of the saddle polyhedral space-fillers in Pearce can be constructed applying these general principles, but 
they can have different consequences. Two examples illustrate the main points. 
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Figure 1: Total set of 34 nests for spidronised space-filling polyhedra 

 

 
 

Figure 2: Two sides and the chiral versions of the decagonal spidron-nest (n10a) 
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Example 1 - The Decatrihedron (The Triamond Space-filling) 
 
Pearce's first space filler has three skew decagonal faces, hence his name of decatrihedron. The decagons 
are circuits in the triamond  lattice [9], hence its classification as [10, 3]. Although the decagons are 
equiangular, with an included angle (G-angle) of 120°, they are not regular, so the spidronised version is 
rather different from previously published examples (Figure 2). 
The polyhedron faces come very close to each other so some care is needed in choosing the parameters 
(scale factor and rotation angle) to construct the spidron-nest so that intersections are avoided. 
Since the polyhedron has an odd number of faces two different spidronised forms are needed, and the basic 
repeat unit consists of two polyhedra with four external faces (Figure 3). There are three ways to achieve 
this. The two external CW faces can be from the same polyhedron, or there can be one face from each. In 
the latter case moving between faces of the same type (CW or CCW) involves a screw rotation of 90° along 
a helix that can be of either sense. Of course there is further variation if we consider the two possible 
alternatives for the internal faces. As Figure 2 indicates the decagon is chiral, so it has two enantiomorphic 
forms, either of which can be used to construct the polyhedra, so the final space-filling can be of two forms. 

 
 

Figure 3: Joining two spidronised decatrihedra (one of the three possibilities). Middle faces omitted. 
 

Example 2 - A More Complicated Example 
 
One of the most complicated examples is Pearce’s #41, which has a basic repeat unit consisting of ten 
polyhedra. Finding the correct orientation for each spidron-nest is far from easy. In one sense the internal 
faces are easier since they could be oriented randomly and the basic repeat unit would still work, but they 
should be chosen so that each polyhedron appears as only one spidronised form. There are 16 such internal 
face to face meetings. The basic repeat unit has 60 outer faces, and there are seven different directions of 
translation to neighbouring repeat units.  
Four of the nests are of the “mirror” type with “A” and “B” sides described above. This makes things 
slightly easier, since the unspidronised structure determines the orientations of the spidrons. 

 
 

Figure 4: The spidron nests used in making Pearce’s space-filling #41. 
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Figure 5: The spidronised polyhedra used in a basic repeat unit of #41, and the assembled unit 
 

 
 

Figure 6: A piece of Pearce’s space-filling #41, coloured to show the basic repeat units 
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Tables 
 
The following tables summarise all 34 nests and 42 space-fillings described by Pearce, and provide details of spid-
ronised versions. There are two errors in Pearce’s space filling ratios which have been corrected (marked with *). 
 

Nest 
code Used in polyhedra Used in spacefillers Polygon Group Symmetry G-angles 

Zome 
Code 

n3a 52 cubocta   36 3-gon flat 3-fold 3x60 GGG 
n3b 02 09 26   24 29 32 3-gon flat no symm 90;54.7;35.3 BG2Y 
n3c 04 07 09   08 13 32 3-gon flat mirror 54.7;70.5;54.7 YYB 
n3d 10   32 3-gon flat mirror 45;90;45 BBG 
n4a 30 33 34 cubocta   17 20 21 36 37 38 4-gon flat 4-fold 4x90 BBBB 
n4b 12 35 36   03 15 19 4-gon regular 2-fold 4x70.5 YYYY 
n4c 14 43   05 16 42 4-gon regular 2-fold 4x60 GGGG 
n4d 02 15 28   24 27 4-gon enantio 2-fold 2x(45;90) BGBG 
n4e 03 13 14 26 32 44 51   16 23 26 29 37 39 42 4-gon mirror 2-fold 2x(60;90) GGGG 
n4f 04 27   06 08 4-gon enantio 2-fold 4x54.7 BYBY 
n4g 03 05 24   18 39 4-gon mirror mirror 60;90;90;90 BBGG 
n4h 08 20   28 4-gon mirror mirror 109.5;54.7;90;54.7 BBYY 
n4i 07 16   09 13 4-gon enantio no symm 90;54.7;54.7;90 BBB2Y 
n4j 09 10 23 39   32 33 4-gon enantio no symm 90;45;54.7;54.7 B2Y2BG 
n5a 18 22   12 31 5-gon flat mirror 90;90;180;90;90 GBBG2B 
n5b 21 22 42   30 31 5-gon mirror mirror 5x90 BGGB2B 
n6a 19 46 53   07 14 25 41 6-gon flat 6-fold 6x120 6xG 
n6b 11 25 38 47   02 10 15 22 34 35 6-gon regular 3-fold 6x109.5 6xY 
n6c 24 43 49   05 18 20 42 6-gon regular 3-fold 6x60 6xG 
n6d 24 40   04 18 6-gon regular 3-fold 6x90 6xB 
n6e 17 30 31 52 53   17 25 36 38 41 6-gon mirror 2-fold 2x(90;120;120) 6xG 
n6f 06 25   22 34 6-gon mirror 2-fold 6x109.5 no zome! 
n6g 18 41   11 12 6-gon mirror mirror 6x90 2x(GGB) 
n6h 19   14 6-gon mirror mirror 2x(90;90;120) 2x(GGY) 
n6i 38   10 6-gon mirror mirror 2x(70.5;70.5;109.5) 6xY 
n8a 32 33 49 51   20 26 37 42 8-gon mirror 4-fold 4x(60;90) 8xG 
n8b 29 35 37 47   15 35 40 8-gon mirror 4-fold 4x(70.5;109.5) 8xY 
n8c 17 46   07 17 41 8-gon mirror 2-fold 8x120 8xG 
n8d 37 45   40 8-gon mirror 2-fold 2x(90;144.7;109.5;144.7) 2x(GGYY) 
n10a 01   01 10-gon enantio 2-fold 10x120 10xG 
n12a 31 34 50 53   21 25 38 41 12-gon mirror 4-fold 4x(90;120;120) 12xG 
n12b 36 48   19 12-gon mirror 4-fold 4x(70.5;144.7;144.7) 4x(YYG) 
n12c 46 50   07 21 41 12-gon mirror 3-fold 12x120 12xG 
n12d 48   19 12-gon mirror 3-fold 12x144.7 6x(YG) 

 
Table 1: The 34 nests 

 
Nest Code: an identifier based on the number of edges. 
Used in polyhedra: referred to Pearce's table 8.1, also used in Table 2. 
Used in spacefillers: referred to Pearce's table 8.2, also used in Table 2. 
Polygon: taken from Pearce. 
Group: there are 4 kinds of nests: flat, regular, mirror and enantiomorphic. 
Symmetry: taken from Pearce. 
G-angles: between adjacent edges (rounded to 1 decimal place). 
Zome Code: Zometool [10] struts used to make a model. 2Y means two Yellows in the same line. 
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1 1     1                n10a E 2 4 4 4 

2 11     1        n6b         R 1 4 4 2 

3 12       1           n4b             R 1 4 4 6 

4 40       1           n6d             R 1 8 8 1 

5 43     1        n6c n4c       R 1 10 4,6 2 

6 27     1                n4f E 2 10 6+4 8 

7 46       1       n6a       n12c n8c       M 1 14 4,4,6 2 

8 4       1       n3c               n4f E 2 4 2,2 12 

9 16     1                n4i E 1 4 2+2 12 

10 38     1        n6b   n6i      M 2 10 4,6 1 

11 41       1               n6g         M 1 8 8 1 

12 18       1       n5a       n6g         M 1 4 2,2 4 

13 7     1     n3c          n4i E 2 4 0,2+2 4 

14 19     1     n6a      n6h      M 2 6 0,6 2 

15 47 35     1 3         n4b n6b n8b         M 1 26 12,8,6 1 

16 13 14     1 2 *       n4c   n4e         M 1 8 4,4 1 

17 30 17    1 2 *   n4a      n6e n8c     M 1 10 2,6,2 1 

18 5 24    1 1       n6c n6d n4g      M 2 10 8,2,0 1 

19 48 36     1 3         n4b   n12b n12d       M 1 26 12,6,8 1 

20 49 33     1 3     n4a   n6c   n8a         M 1 26 12,8,6 1 

21 50 34    1 3    n4a      n12a n12c     M 1 26 12,6,8 1 

22 6 25    1 1       n6b   n6f      M 1 6 2,4 2 

23 13 44     3 1             n4e         M 1 18 18 1 

24 15 2     1 4     n3b               n4d E 1 8 8,0 6 

25 53 31    1 3    n6a      n6e n12a     M 1 38 8,24,6 1 

26 51 32    1 3           n4e n8a     M 1 30 18,12 or 24,6 1 

27 28 15     2 3                     n4d E 1 14 8+6 2 

28 8 20     4 3             n4h         M 1 12 6+6 4 

29 13 26    1 4    n3b      n4e      M 1 14 10,4 6 

30 21 42    2 1           n5b      M 1 12 6+6 1 

31 21 22     1 2     n5a       n5b         M 1 8 2,6 1 

32 9 10     2 1     n3b,n3c,n3d             n4j E 1 6 2,0,2,2 12 

33 23 39    3 2               n4j E 1 14 8+6 4 

34 6 25 11   1 1 2      n6b   n6f      M 1 10 6,4 2 

35 47 29 11   1 1 2       n6b   n8b         M 1 22  12,10 1 

36 52 30 cubocta 1 3 1   n3a n4a     n6e         M 1 38 14,6,18 1 

37 33 32 13   1 1 1   n4a      n4e n8a     M 1 12 4,6,2 1 

38 31 34 30   1 1 1   n4a      n6e n12a     M 1 14 6,6,2 1 

39 13 5 3   3 8 12           n4e n4g       M 1 24 0,24 1 

40 29 37 45   1 3 1           n8b n8d       M 1 24  6,18 1 

41 53 46 50 17 1 2 1 6 n6a      n6e n8c n12a n12c   M 1 60 12,14,10,10,14 1 

42 49 51 43 14 1 1 2 6     n4c n6c n4e n8a       M 1 46 12,12,12,10 1 

 
Table 2: The Space-fillers 
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Space-filler: an identifier, taken from Pearce table 8.2. 
Polyhedra: as in Table 1. 
Ratio: space-filling ratio as in Pearce.  
Nests: classified by type. 
Symmetry: minimal symmetry, where E is ”smaller” or lower symmetry than M, so E < M < R < F. 
Factor SF: multiplication needed to match nests. 
Outer Nests: number of outer faces in the spidronised repeat unit. 
Types: numbers of each kind of nest (in corresponding order). A + sign means there are chiral versions. 
Factor Unit: multiplication needed to create a translational unit. 
 

Further Work 
 

The similarity transformation method has been used to construct the faces of almost all of the polyhedra 
considered. This is satisfactory so long as computer images, or models produced by rapid prototyping are 
adequate, but it would be more convenient, and cheaper, to be able to make the faces from single sheets of 
material. This means that the faces need to fold, and the behaviour of spidrons as foldable linkages, apart 
from the regular examples, is at present poorly understood. We do not even know very much about the way 
regular spidrons behave when folded in non-symmetric ways. Much remains to be discovered. 
In order to make progress through a large number of examples we have proceeded by trying to find the 
smallest aggregation of spidronised polyhedra that will fill space on its own periodically. A different 
approach would be to start from particular spidronised forms of known space-filling polyhedra, and 
determine whether they will fill space, and how.  
More detail about the 3D structure of edges and their projections will be shown on the a special CD that 
will be made available during Bridges 2009. It will also contain further Excel tables and coloured pictures 
and animations of all the spidronised space-fillings.  
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Abstract
This paper offers connections between representations in a number of multisensory modes – visual, tactile and
audible/musical – that explore a single underlying conceptual structure of periodicity and factorization. A number
line is explored in visual, musical and tactile modes with regard to the relationship between regular periodic
rhythms; then spirographic geometric patterns and the visual and musical patterns produced by the use of circular
representations of musical rhythms are used to develop initial intuitions and observations. Throughout the process,
the concept of conceptually-related multiple (multisensory, multimodal) representations is invoked as a way for
mathematics learners to feel, hear and see mathematical concepts in depth.

Introduction

Mathematics has special status in terms of theories of embodied knowing because it seems to be the most
abstract and conceptual of all fields, ostensibly having little necessary connection to physical experience –
or at least, it has come to be considered so in modern times. Historically, mathematics originated with the
need to solve very specific, practical problems [9], using a mode of thought essentially visual and
kinesthetic. This approach predominated in mathematics until the Enlightenment, when abstraction,
conceptualization and formal notation gradually displaced sensory approaches to mathematical reasoning
and teaching. By the end of 19th century, mathematics had become highly formal and abstract, and this
change of mentality has affected the way mathematics is taught at all levels. We may consider the
Bourbaki group as being the greatest representative of abstraction and formalization in mathematics (see
[1] and the references therein). While their idea of introducing utmost rigour in the mathematical practice
is generally accepted, there has been criticism regarding its introduction at the early levels of
mathematical education. Common criticisms to Bourbaki approach are its disregard of discrete aspects of
mathematics (algorithms, combinatorial characterizations), its lack of emphasis on logic, and excessive
emphasis on exact problem-solving versus exploratory, intuitive heuristics [23].

However, recent work in cognitive science and mathematics education has begun to show that
mathematics, far from being disembodied and wholly cerebral, has both roots and expression in bodily
knowing [2, 7, 8, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 29]. Mathematics education is at the intersection
of embodiment and abstraction, physicality and symbolization, where systems of abstract
conceptualization are in the process of development. Multisensory, multimodal explorations and the use
of physical objects as material anchors and ‘tools for thinking’ give insight into the details of this
cognitive development [11]. Explorations of multimodal possibilities for the embodiment of abstract
mathematical structures offer the basis for innovations in the teaching and learning of mathematics. The
mathematical explorations introduced below would be appropriate for students learning basic concepts
related to fractions, divisibility and factorization; these explorations could be adapted to suit learners and
fit curriculum from Grade 5 (age 10) to Grade 10 (age 15) in North American school systems (and the
equivalent elsewhere).
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Exploring periodicity with rhythms on a number line

Imagine a number line on a long sheet of paper, with numbers starting from zero, increasing in unit
increments. If we were interested in exploring the relationship of any two or more numbers, we could use
the number line as a way of representing the multiples of those numbers and their relationship to one
another, visually, sonically and kinesthetically. For example, if we wanted to explore the relationship
between the numbers 3 and 4, we could mark the multiples of 3 on the number line with one symbol or
colour, and the multiples of 4 with another one.

Counting up three at a time, we would obtain the numbers 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33,
36,…; counting four at a time, we would get 4, 8, 12, 16, 20, 24, 28, 32, 36,… . Now imagine a group of
three students working with this marked-up number line as if it were a musical score. One student might
play the role of time-keeper or metronome, and count aloud steadily (“one, two, three, four,…) while
tapping successive numbers on the number line. The second student could clap hands (or alternatively
stamp a foot or make a sound on a musical instrument) whenever the timekeeper reached a multiple of
three. The third student could do the same every whenever the timekeeper reached a multiple of four. If
we represent the second student’s clap as S and the third student’s clap as T, the resulting sound pattern
up to the number 24 could be represented as follows:

S1
1 2 3 4 5 6 7 8 9 10 11 12

S2
S S S S

S3
T T T

S1
13 14 15 16 17 18 19 20 21 22 23 24

S2
S S S S

S3
T T T

Figure 1: Charting the relationship between a 3- and a 4- rhythm through two periods.

A pattern begins to emerge. First of all, the second student (counting by threes) and the third student
(counting by fours) clap together on the numbers twelve, twenty-four, and continuing the pattern, every
multiple of twelve. I would argue that this gives a compelling, embodied demonstration of part of the
concept of LCM (Least Common Multiple). Students can feel and hear the necessity of 3 and 4 coinciding
at 12. Rather than learning a rule that is applied without sense-making (“if the two numbers are relatively
prime, multiply them together to find the LCM”), students would have visual, tactile and auditory sensory
representations that demonstrate the least common multiple of two numbers. (Note that Klöwer [4]
suggests a similar exercise for a slightly different purpose; Klöwer suggests that percussion students learn
rhythmic independence experientially by simultaneously clapping one rhythm with hands and stamping
another with feet.)

What is more, it is not only the LCM that is demonstrated, but also the periodically recurring
patterns that relate the multiplicative patterns of these two numbers.  Going back to the figure, students
can start to notice that at the beginning, the third student claps one beat later than the second student
(since four is one higher than three). At the next iteration, Student 3 claps two beats later than Student 2,
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and at the following iteration, S3 claps three beats later than S2 – at which point the two students’ claps
coincide, because three beats after one of S2’s claps comes the next of S2’s claps.

The same pattern repeats over the next twelve beats, from numbers 13 to 24 (or 1 mod 12  to 0 mod
12) and it can be seen, heard and felt that the pattern will continue its periodic repetition indefinitely.
Students can begin to feel, hear and make claims of a more profound understanding of the multiplicative
relationship between 3 and 4.

Adding a tactile element: rolling a polygonal “wheel” to explore rhythms

A related additional tactile/kinetic representation of the periodicity of 3 and 4 can be made using the same
number line. Say the original number line is marked with hatch marks 5 cm apart. Groups of students
could be instructed to cut out an equilateral triangle and a square, each with base 5cm, using compass and
straightedge constructions and heavy cardboard. The vertices of the triangle and the square could be
numbered sequentially counterclockwise (from one to three or four), with the highest-numbered vertex
marked in a distinctive colour.  If the number line is laid flat on a tabletop or the floor, students can then
“roll” the triangle and square simultaneously or sequentially, clockwise along the number line, with
vertices hitting the number line on the numbered hatch marks. The effect would be like rolling a square
and a triangular wheel along a numbered path.  The highest-numbered vertex (3 or 4) will hit the number
line at exactly the same spots that have been marked for clapping – that is, the multiples of 3 and 4. (Note
that a similar effect, and one that is easier to roll, could be achieved by constructing circles of
circumference equal to the distance of 3 or 4 hatchmarks respectively, but that this would have the effect
of losing the visual emphasis on ‘three’ and ‘four’ that is so obvious when working with the triangle and
square – and the construction of circles with precise circumferences is not trivial.)

Students can use tactile, kinetic materials that they produce themselves to demonstrate the logic of
periodic multiplicative patterns of 3 and 4, including their LCM. Patterns with numbers other than 3 and 4
can be explored using other regular polygonal “wheels” (pentagons, hexagons, etc.). Note that if a
heptagon were desired, then methods other than classic straightedge-and-compass would have to be used
– see < http://mathworld.wolfram.com/Heptagon.html> for a reference to knotting methods for this
construction.

Exploring the rhythms of related spirographic patterns

Yet another visual/tactile representation of the periodic relationship between two numbers is offered by
the toy originally called the Spirograph (and now produced as a dollar-store toy). (A “spirograph
algorithm” and the use of spirograph equations and graphics to solve higher-degree polynomials are
illustrated at < http://documents.wolfram.com/mathematica/Demos/Notebooks/Spirograph.html>).

A spirograph is a geometric drawing toy made up of plastic gears and shapes (for example, rings and
oval bars), all fitted with interlocking teeth. A selected shape can be pinned or taped to a sheet of paper
and one of several different-sized gears selected to be rolled along the inside or outside of the shape. A
pen point slotted into a hole near the edge of the moving gear traces out a curve on the paper.

 A virtual Java-based spirograph is available at: <http://wordsmith.org/anu/java/spirograph.html>,
and the reader may wish to visit this site to help visualize the scenarios described in the following
paragraphs. A related interactive rhythm/drumming site at <http://www.philtulga.com/unifix.html> may
also be of interest here.

Consider just the case of a hollow ring with a smaller gear traveling around its interior as an
example. (Other configurations of the spirograph produce similar results in the terms discussed here.) The
number of teeth on the inside of the ring and the number of teeth on the smaller gear determine the
geometric pattern made by the moving pen.

For example, to take a simple case, imagine a hollow ring with twelve gear slots numbered one to
twelve like a clock, and a smaller gear with four teeth.  If the tip of a pen is placed in a slot near the edge
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of the gear as it is rolled along the gear slots on the inside of the hollow ring, starting at 12, it will trace a
vertex at each of 4, 8 and 12; the next place the pen will “hit” will be at 12 again, and the pattern will
repeat. No matter how many iterations are carried out, and no matter what the offset of the pen placement
on the gear, the pattern will have the same three vertices, since 4 is a factor of 12, and 12/4 = 3. (There are
three other possible initial placements for the pen tip – at 1, 2 or 3 – which will yield congruent figures
with three vertices, offset by one, two or three slots. Figure 4 shows this kind of pattern as part of a brief
discussion of necklaces.)

If we continued to use the hollow ring with twelve gear slots, but selected a gear with, say, 10 teeth
(a number not a factor of 12 nor relatively prime with 12, but sharing a factor of 2), the pen would trace
out a figure with 12/2 = 6 vertices – one vertex each at 10, 20 mod 12 = 8, 30 mod 12 = 6, 40 mod 12 = 4,
50 mod 12 = 2, and 60 mod 12 = 0 (ie. 12).  Notice that, while the small gear with 4 teeth traced all four
vertices in one revolution of 2 pi radians, the small gear with 10 teeth took 5 revolutions (ie: 10 pi
radians) to trace all its 6 vertices, ending up at the top of the “clock” at the zero mark (also called 12).

A small gear with a number of teeth relatively prime to 12 will trace out a figure with vertices at all
12 marks around the “clock”.  The number of revolutions needed to trace out all 12 vertices will vary. For
example, if the small gear had 5 teeth, it would take 5 revolutions (10 pi radians) to complete all twelve
vertices (at 5, 10 [end of first revolution], 15 mod 12 = 3, 20 mod 12 = 8 [end of second revolution], 25
mod 12 = 1, 30 mod 12 = 6, 35 mod 12 = 11 [end of third revolution], 40 mod 12 = 4, 45 mod 12 = 9 [end
of fourth revolution], 50  mod 12  = 2, 55  mod 12  = 7, and 60  mod 12  = zero or 12 [end of fifth
revolution]).  Similarly, a small gear with 7 teeth would take seven revolutions to complete all 12 vertices,
and one with 11 teeth would take eleven revolutions to complete all 12 vertices. (In fact, since 5 and 7 are
co-prime to 12 they act as “generators”-- that is all numbers 0 .. 11 can be generated by a product of 7
mod 12, or a product of 5 mod 12.)

Here, in chart form, is the pattern for all the numbers of small gear teeth < 12 for a hollow ring with
12 gear slots:

# of teeth Relative to 12 Number of
vertices

Number of
revolutions

Outer ring/inner
ring

1 A factor 12 1 (2 pi radians) 12/1
2 A factor 6 1 (2 pi radians) 12/2 = 6/1
3 A factor 4 1 (2 pi radians) 12/3 = 4/1
4 A factor 3 1 (2 pi radians) 12/4 = 3/1
5 Relatively prime 12 5 (10 pi radians) 12/5
6 A factor 2 1 (2 pi radians) 12/6 = 2/1
7 Relatively prime 12 7 (14 pi radians) 12/7
8 Has shared

factor(s)
3 2 (4 pi radians) 12/8 = 3/2

9 Has shared
factor(s)

4 3 (6 pi radians) 12/9 = 4/3

10 Has shared
factor(s)

6 5 (10 pi radians) 12/10 = 6/5

11 Relatively prime 12 11 (22 pi
radians)

12/11

Figure 2: Charting spirographic patterns.

It is easy to generalize these results to any hollow ring with M gear slots and any smaller gear with n
teeth (where n < M, and n, M are whole numbers):

Given M/n in its most reduced form, the resulting figure has M vertices and is produced by n
complete revolutions (or in 2n pi radians).

Thinking through this general result, there are three cases possible:
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a) if n is a factor of M, M/n will reduce to a denominator of 1. The figure will have M/n vertices,
produced by one complete revolution.

b) if n and M are relatively prime, M/n will be irreducible. The figure will have M vertices,
produced by n complete revolutions.

c)  if n is not a factor of M,  but neither are the two numbers relatively prime, then M/n will be
reducible, but the denominator will be greater than 1. The reduced form of M/n will give the
number of vertices as its numerator and the number of complete revolutions necessary to
complete the figure as its denominator.

Circular representation of musical rhythms

Observations about periodicity and the relative factorization of two whole numbers, (demonstrated above
using a number line and periodic clapping, marking, or rolling of regular polygons, or with a spirograph,
using graphic images) can also be experienced and explored using circular representations of musical
rhythms.

Toussaint [25, 26, 27] has explored relationships between musical rhythms and geometry using
circular representations of musical rhythms. I will borrow Toussaint’s representation of rhythms here to
offer a further, musical and auditory means of exploration of periodicity and factorization complementary
both to linear and to visual representations of the same phenomena. (Note that although Toussaint
independently invented the circular representation of rhythms, he later discovered a similar representation
used by Persian scholar Safi Al Din in the year 1250 [28, 31]. A similar idea, representing the notes of a
scale by a polygon, appears in a Krenek’s paper [13] published in 1937, and earlier in Vincent’s 1862
publication [30].)

Toussaint describes his circular representations of musical rhythms in terms of a clock with only a
rapidly-sweeping second hand [27]. The clock may have any number of numbers or hatchmarks on its
face, depending upon the number of beats in a measure of the musical rhythm in question. The numbers
marked on the face of this imagined clock correspond to the number of gear slots in the outside hollow
ring of the spirograph in our earlier example, but where the gear slots represented a physical mechanism
made to produce a graphic pattern, the numbers on the musical rhythm ‘clock’ represent evenly-spaced
rhythmic ‘beats’ in a musical pattern.

It is interesting that these two different kinds of ‘clock charts’ (the spirograph and the circular
representation of musical rhythm) can use the same form to represent widely divergent phenomena which
might share similar structures of pattern and periodicity. The number line referred to earlier in this paper
is also homologous to these ‘clock charts’; imagine choosing a number from the number line and then
wrapping the number line into a loop of concentric circles, all with that circumference. The resulting
circle would look very much like one of the clock diagrams used to represent musical rhythms or the
patterns of the spirograph.

Let us return to the ‘clapping on a timeline’ example given earlier in this paper. In this example, one
student marked out points on the timeline that were evenly spaced three apart, and the other student
marked points space four apart, and then clapped their two rhythms to a third student’s ‘metronome’ beat.
It was found that every twelve beats, the two students would clap at the same moment, and that the ‘four-
beat’ person would clap at first one, then two, and then three beats after the ‘three-beat’ person (at which
point they would coincide). The pattern would repeat indefinitely with a period of twelve beats.

Converting the timeline to a rhythm circle with a circumference of 12 (marked out as a clock with
twelve hatchmarks, but numbered for convenience with the ‘1’ at the top of the clock since, by
convention, music time is beaten starting with a downbeat on ‘1’), the four-beat and three-beat patterns
would look like this:
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Figure 3: A 3- and 4-rhythm on a clock of 12

Note that the ‘every-three-beats’ rhythm lands on beats 1, 4, 7, 10, and then 1 again, yielding a square
with four vertices; the ‘every-four-beats’ rhythm lands on beats 1, 5, 9, and then 1 again, yielding an
equilateral triangle with three vertices. This effect is homologous to the pattern yielded by rolling an
equilateral triangle and a square along the number line – but when the line is ‘rolled up’ into a circle, the
triangular gear yields a square, and the square gear yields a triangle! On the number line, we used a
triangle and a square with bases of equal length. Here, the square created within the circle of twelve has a
base length of three units, while the equilateral triangle has a base length of four units. This allows space
to contemplate the fact that 3 and 4 are complementary modulo 12.

Another interesting observation that can be made using three-beat and four-beat patterns on a circle
of twelve are the possible so-called ‘necklace patterns’. Toussaint describes a necklace as “the inter-onset
duration interval pattern that disregards the starting point in the cycle…If a rhythm is a rotated version of
another we say that both belong to the same necklace.” [26, p. 5]

The following figures give all the possible patterns in the necklace of two-beat intervals on a
rhythmic clock of six (figure (a)) and of three-beat intervals on a rhythmic clock of twelve. The figures
created are rather beautiful star shapes made up of overlaid discrete regular polygons (equilateral triangles
in figure (a) and squares in figure (b)).

Figure 4: Necklaces of a 3-rhythm on a clock of 6 and a 4-rhythm on a clock of 12

It is important to note that, as these are images of rhythmic patterns, the rhythms are meant to be
both sonic and visual. The visual representations of these rhythms can be treated as structurally equivalent
to the s o n i f i c a t i o n  (“the use of nonspeech audio to convey information”
http://www.icad.org/websiteV2.0/References/nsf.html) of the pattern. So these visual representations are
meant to be sonic and kinesthetic – meant to be clapped, drummed, played on other musical instruments,
stamped, even danced [3, 4, 5, 6, 29].

Gerofsky et al.

284



A different kind of star pattern can be created in sonifications of regularly-spaced rhythmic patterns.
In a pattern exactly parallel to the one discussed previously with reference to the spirograph, the number
of a rhythmic ‘clock’ may be overlaid with a regular ‘beat’ that is (a) a factor of the number of the clock,
(b) relatively prime with regard to the clock, or (c) one which is neither relatively prime nor a factor, but
which shares one or more prime factors with the number of the clock. The clock of twelve overlaid with a
beat of three or four, and the clock of six overlaid with a beat of two are examples of (a), beats which are
factors of the clock (since 3 and 4 are factors of 12, and 2 is a factor of 6).

Here, in contrast, is the visual representation of a beat of 3 on a clock of 7:

Figure 5: A 3-rhythm on a clock of 7, forming a star polygon

Since 3 and 7 are relatively prime, the beats fall on the clock at 1, 4, 7, 10 mod 7 = 3, 13 mod 7 = 6,
16 mod 7 = 2, 19 mod 7 = 5, 22 mod 7 = 1. The resulting figure is an aesthetically-pleasing regular star
polygon with 7 vertices – a figure very much like those produced on a spirograph. As predicted by our
earlier observations of the spirograph, the pattern of M/n with M  = 7 and n  = 3 yields a figure with 7
vertices that takes 3 full rotations to complete. In musical terms, this translates to a pattern that has salient
beats that eventually hit all seven beats of the 7-beat bars, and repeats after every three full bars or
measures.

Conclusion

The exploration above of visual, sonic and kinesthetic representations of aspects of multiplicative
relationships and factorization offers a starting point for the development of innovative teaching and
learning activities in mathematics education. It is hypothesized that students engaged in making multiple,
multimodal representations of mathematical relationships as well as learning to make sense of equivalent
structures represented in different sensory modes develops deeper understandings of those mathematical
structures and patterns [24]. Here we have presented an approach to teaching concepts of periodicity and
factorization that incorporates visual, tangible and audible representations.
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Abstract 
 

This paper explores the simulation of the weaving process on a computer with a simple graphic language. Details of 
some of the commands serve to illustrate general programming techniques which could be applied elsewhere. Then 
specific math-related designs are explored and finally, a reference is made to the history of both weaving and 
computer development and a connection between the two. 

 
 
The weaving of textiles is nearly as old as mankind and today is found throughout the world. The process 
itself, as practiced on hand looms, is very slow and labor intensive. 
 It is interesting to wonder if this pattern-making could be simulated on a computer. The process to do 
so evolved in a very modular, ordered and structured manner, and it soon became evident that this could 
serve also as a good example of programming techniques. This paper will present the development of the 
process in a manner suitable to be used for teaching in a classroom or for self-study. In particular, the 
following topics are introduced in a logical order that lends itself to beginning programming studies. 
 The outcome is not intended at all to be used on a professional level or as a general-purpose 
program. Rather, it is the process and programming strategies that are the most important product of the 
paper. Ready-to-use applications can be referenced on the web [1, 2, 3]. 

 
 

General Outline of Method 
 

Roughly speaking, the topics should be introduced in the following order.  
1. Analysis of the problem 
2. Identification of data structures 
3. Basic language commands  
4. Looping and subroutine implementation. This would include passing parameters, the concept of 

global and local variables and nesting subroutines. 
5. Modular construction of the program 
6. Refinements 

 
 

Basic Language Commands 
 

The LOGO programming language is a very simple language designed to be easily learned by beginners 
while at the same time being powerful enough for advanced use in more complex applications. It is free 
for downloading from multiple sites [4, 5, 6]. Additionally, there are many other versions available. 
Although programming books are scarce, a helpful reference can be found on Wikipedia [7] and in the 
program’s own help menu. 
 The most fundamental commands are those that move the drawing point (forward, back) and those 
that rotate the drawing direction of the point (right, left). Other commands used here are pen up (move 
without drawing), pen down, set pen color, set fill color, and fill (flood an enclosed area with specified 
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color). Subroutines can be defined as needed and nested which facilitates a modular design which is more 
easily designed, debugged, and understood. Comments begin with a semi-colon and variable names 
within an instruction must be preceded with a colon. 
 
 

Beginning the Process 
 

Examination of a basic under-and-over weave sample such as shown in Figure 1, suggests the 
fundamental unit should be a square. 
 

 
 

Figure 1: Basic under-and-over weave 
 
 Writing in the simple language called LOGO, where the basic commands are “forward”, “back”, 
“right” and “left”, a subroutine named (SQ) to draw a square and fill it with color is shown below. 
 

to SQ :size :color  ;Draw a Square--comments begin with semi-colons 
    setpc 0                ;set pen color 
    repeat 4 [forward :size   right 90]   ;repeat instructions inside [  ] Draw line, turn 
    setfc :color          ;set fill color 
;pu = pen up (do not draw)  pd = pen down   move inside square and fill with color 
    pu   right 45  forward  2   fill   back  2  left 45   right 90   forward :size    left 90   pd 
end 

 
 It is  easy to anticipate needing to move right at each step without drawing a line, and since 
subroutines can be nested, it is efficient to create a “Move Right” (MR) and corresponding “Move Up” 
(MU) subroutine (not shown). With both of them, a negative number will indicate a move in the opposite 
direction. 

 
to MR :amount         ;Move right without drawing 
;pen up, turn right, move forward, turn left, pen down 
    pu    right 90   forward :amount   left 90   pd 

            end 
 
 Finally, a pattern could be specified with two colors, one indicating the warp (vertical) thread is on 
top at a particular junction, and the other showing the weft (horizontal) thread is on the top. For a repeated 
pattern, only the fundamental portion needs to be specified. For instance, the unit in Figure 2, when 
repeated, results in the textile shown in Figure 3. Red indicates the warp thread is on top and white 
specifies that the weft thread is on top. 
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Figure 2: Basic weave pattern                                                   Figure 3: Resulting textile weave 

 
 The program that draws one row of the basic pattern is as follows: 

to pat2 :size :number       ;size of individual squares    number of repeats of pattern 
;color   4 = red   7 = white 
repeat :number[ sq :size  4   sq :size  7   sq :size  4]  right 180 ; red  white  red 
repeat :number[ sq :size  7   sq :size  7   sq :size  7]  right 180   ; all white 
repeat :number[ sq :size  4   sq :size  7   sq :size  4]  right 180   ; red  white  red     
repeat :number[ sq :size  4   sq :size  4   sq :size  4]  right 180   ; all red 
end 
 

 The weave patterns have an attractive quality of their own, but of course in a real example the fibers 
are narrower and show more texture. What we need now is a variation of the SQ routine which will show 
both fiber width and color as in Figure 4. 
 

 
Figure 4: Basic weave showing fiber width and color 

 
 
 Again two basic routines are called repeatedly depending on whether the warp or weft thread should 
be on top. The procedure for the first case is to calculate the difference (d) between the width of the fiber 
and the size of the square, move right half that amount, draw a rectangle and move to the bottom right of 
the square. Then go up d/2, turn, draw the weft fiber underneath the warp and return to the bottom right of 
the square. See Figure 5. An analogous routine draws a square with the weft thread on top. Color fill is 
also added in each case (not shown). The black outline is actually not drawn. 

 
Figure 5: Show fiber widths in square 
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to jsq5 :a  b                                       ;subroutine to draw Figure 5                           
;a = size of stitch square  b = width of thread 
;mr = move right,  pu = pen up,  pd = pen down 
;warp thread over  
   mr (:a - :b)/2   forward :a   mrd :b   back :a     ; mrd moves right with the pen down 
   mrd   -:a      mr :a     mr (:a - :b)/2        ; draw bottom of rectangle, move to bottom right corner 
;weft thread under 
   pu    forward (:a - :b)/2    left 90   pd ; move up to begin weft and rotate 90° to left 
; draw left side of weft, move under warp, continue weft 
           forward (:a - :b)/2   pu     forward :b    pd    forward    (:a - :b)/2 
           mrd :b   back (:a - :b)/2                ; move right with pen down and start right side of weft 
   pu     back :b    pd   back (:a - :b)/2      ; go under warp, continue drawing right side of weft 
   right 90    pu    back (:b + (:a - :b)/2)    ; rotate 90° to right, pen up, move to bottom right corner 
end 
 
 Now we have the ability to “weave” patterns from a small initial diagram. 

 

 
Figure 6: Woven Diamond pattern 

 
 We can change the orientation of the basic motif. 
 

 
Figure 7: Free-form object with glide reflection 

 
 

Weaving Mathematical Themes 
 

Searching for mathematical themes to incorporate into our designs can proceed along two different tracks. 
First, we can look for those items which fit naturally into our binary woven structures. For instance, 
cellular automata and binary truth tables both have characteristics which can be easily adapted to a woven 
structure.   
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A B A×B 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
         Figure 8: Truth Table         
 
 A 9x9 cellular automata is shown in Figure 10 with two similar starting conditions, the only 
difference being a small hole in the center of the second one. The rule governing each state is that a 
square with 3, 4 or 8 red neighbors will be red in the next step. Otherwise it will be white. One of the 
patterns has been used in the design of Figure 11. 
 

 
 

Figure 10: A cellular Automata with two similar starting states 
 
 

 
 

Figure 11: Design from last state of top row in Figure 10 
 
 Secondly, we can look at less obvious mathematical items and try to find characteristics which can 
be expressed on the “loom”. For example, even multiples of seven appear in this pattern in Pascal’s 
triangle [7]. 

Figure 9: Pattern woven using Figure 8 
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Figure 12: Even Multiples of seven in Pascal's Triangle 

 
 
 
 
 
 
 
 

Figure 13: Rows 8 - 13 of Pascal's Triangle (partial) 
 
 

Refinements 
 

Additional programs come readily to mind for the development of designs. Specifically, we could use 
subroutines which rotate a design by 180°, allow a design to be copied and saved, allow motifs to be 
varied within a row, add a border, and so on. The direction of enhancement can be tailored to the specific 
interests and abilities of the students as well. 
 
 

Historical Note 
 

 Finally, it would be remiss to not comment on the connection this theme has to computing history 
[8]. The mechanical Jacquard Loom (patented in 1804) revolutionized the weaving industry and the key 
idea behind it was the use of punched cards to control the lifting of particular warp threads at each 
passage of the weft. The use of punched cards was carried forward in other applications (Babbage’s 
Analytic Engine, Hollerith’s census-counting machines) and eventually appeared as input devices to early 
computers. Now we have used the modern computer to simulate weaving on a loom, bringing the process 
full circle. It seems especially appropriate to celebrate the progress made over the years by recreating the 
output of one of the early starting points in the computer’s developmental history. 
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ShamsehTrees: Providing Hierarchical Context for Nodes of Interest
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Abstract
Visualizations of hierarchical data usually focus on conveying structure. However, with really large hierarchies,
layouts tend to become overcrowded, making it difficult to see details about specific nodes. In contrast, ShamsehTrees
focus on layouts centered on a node of interest, provide interactive nested layouts that were inspired by artistic and
natural floral patterns, and make use of the natural symmetries in phyllotactic patterns. Instead of emphasizing
overall tree structure, these layouts are created to make the most space available for the node of interest. The basic
layout is comprised of nested circles that are centered on the node of interest. After selecting a new node of interest,
the resizing and repositioning of nodes is animated as they transition to the new layout.

Figure 1: Left: ShamsehTree, symmetric representation of the hierarchical context of the node of interest.
Right: Traditional design of Shamseh, a circular shaped Persian Floral Pattern.

1 Introduction

Many types of data in science, engineering and social sciences can be characterized as hierarchical. This
hierarchical or tree structured data can be represented in a variety of layouts, which are usually designed to
emphasize the structure and to show the relationships between parent, child, and sibling nodes. Hierarchi-
cally structured data occur sufficiently frequently that tree visualization continues to be an active research
topic. However, as the data being represented becomes huge the resulting tree layouts can easily become too
dense to be readable. While many tree visualizations exist (for surveys see [1, 5]) increasingly massive data
sets, expanding computational power and still relatively limited display space makes this a topic of ongoing

Bridges 2009: Mathematics, Music, Art, Architecture, Culture

293



interest. The problem of visualizing tree layouts can be more challenging when it comes to representing
huge trees in a clear and aesthetically pleasing layout.

In extremely large trees, representing overall structure can make access to and discovery of individual
nodes difficult due to limitation of available space. To address this, the ShamsehTree layouts presented in
this paper emphasize a node of interest (NOI) by making the most space available for the chosen node and
by displaying the hierarchical structure of the tree around the NOI.

Our node focused layouts are based on inspiration from Persian floral patterns and spiral arrangement of
phyllotactic patterns. In Persian floral patterns plant elements have been symmetrically arranged to form a
beautiful and complex concentric circular pattern (Figure 1) [3]. We also make use of the natural symmetries
and spiral arrangements of phyllotactic patterns [6, 11] to develop concentric, node-focused layouts (Figure
1).

Symmetry can be an important factor for recognizing elements within an image [13]. Symmetrically ar-
ranged elements can create a strong holistic impression and may be a useful feature for grouping individual
elements with the same properties. In general, symmetry is a pervasive phenomenon in both natural and con-
structed environments. It has long been recognized as playing an integral role in geometry and architecture
[13]. Symmetry is an important factor for harmony, balance, and proportion used in nature, art, mathematics
and computational sciences [7]. A symmetric representation of information is usually more aesthetically
appealing, and aesthetically appealing objects have been shown to better engage and motivate viewers [7].
Symmetry can be simple when the elements of an image are repeated by translation, rotation and reflection
(translational symmetry) or can be more complex and dynamic when scaled repetition is used (dilational
symmetry) [3]. In dilational symmetries, suitable scale factors and appropriate arrangements of the copies
(e.g. spirals) can create an aesthetically appealing and proportionally pleasing final composition. Some use
of symmetry has been explored in human perception [10] and graph layout [2, 8]. However, the full potential
and power of symmetry, most notably dilational, in terms of layout and interactive exploration methods,
has not yet been fully explored. The potential for a positive role of dilational symmetry in information
visualization is partially evidenced by PhylloTrees [9] and Botanical trees [8].

Since ShamsehTrees are intended for large real world trees, the images used for illustration in this paper
are ShamsehTree views of WordNet [4]. WordNet is a human-constructed lexical database in frequent use
by many Natural Language Processing (NLP) techniques. WordNet has a hierarchical structure that has been
created based on the IS-A relationship. For example, a cat IS-A mammal and a mammal IS-A animal. The
WordNet is a collection of English noun synsets (groups of synonyms) rooted at the word entity using the
IS-A relation (called hyponomy). The hierarchy consists of 73,736 synsets with a maximum depth of 14.
The data identifies a synset by the first word in the set, creating a hierarchy of words related by IS-A. Figure
2 shows a ShamsehTree view with the WordNet with labels in place. For the other figures in the paper, we
have not displayed the labels as the discussion is about the structure of visualization of ShamsehTrees not
about WordNet.

2 Representation

Our nested ShamsehTrees use a circle as the basic shape for their nodes. Although, our method can work for
any convex shape, the circle has a simple but rich geometry and is frequently found in nature and art. Also,
it has been suggested that circles make it easier to see groupings and structural relationships [12]. We use
a nested layout to visualize parent/child relationships without direct use of lines or curves. Wang et al. [12]
also describe a method for a nested tree layout where tree nodes at different levels are displayed by using 2D
nested circles with variable sizes. Unlike the available nested layouts such as those presented by Wang et al.
[12], in our representation we use nodes with the same size in each level which creates more symmetrical
patterns (Figure 1). The inspiration for the underlying layouts comes from the symmetric structure of Persian
Floral Patterns [3] especially the circular shaped known as Shamseh which means sun in Arabic language
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Figure 2: The ShamsehTree view of WordNet with the NOI set at hose. The five children of the NOI are all a
type of hose and a hose is a type of artifact.

(Figure 1) and provides the name for our layout.
In our representation, if node A is inside node B then A is a child of B. ShamsehTree layout shows a

subset of the tree. Figure 3 illustrates this in comparison with a more traditional, node-link, tree layout.
The red circle in the node-link tree layout on the left shows the NOI (node of interest). This same node
is also outlined in red in the ShamsehTree (right). In the node-link tree, children of the NOI are shown in
blue lines. In the ShamsehTree the children of the NOI are nested inside the NOI, and contain the NOI’s
children’s children. The ancestors of the NOI are shown in green lines in the node-link tree, and are shown
as progressively larger circles encasing the NOI in the ShamsehTree. In addition, two levels of children
are shown for each ancestor of the NOI. In ShamsehTrees the NOI is central and nested inside all of its
parents and contains two levels of its children. ShamsehTrees only display two levels of children in the NOI,
however, if further levels of children exist, they can be reached interactively. Our approach is an abstraction
that provides both ancestor and descendant context for an NOI. This dual context abstraction enables quick
exploration around NOI and ready access to the rest of the tree via the root’s children while keeping the
entire tree in a traceable and interactive size.

Nested layouts may address edge congestion, however, new challenges arise. For instance, one issue
is how to arrange sub-nodes. If A1,A2, . . . ,An are all children of B, then all these nodes must be inside
of B but their arrangement needs to be organized, if possible, to enhance the clarity of visualization. Our
layout is based on a node of interest (NOI), which is drawn as a circle and is nested within concentric circles
that represent its ancestors. The outer most circle is the root of the tree. In the initial layout the node of
interest would be the root. If the NOI has children, they are laid out inside the NOI using phyllotactic
patterns. If the NOI has siblings, they are evenly spaced in the NOI’s parent’s ring. This is repeated until
the outer ring is the tree’s root. The NOI and any drawn ancestor node will display its children, and its
children’s children depending on how much space it has. For the NOI this creates both an ancestrally-
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Figure 3: Comparing the circular node focused tree layout with a traditional tree layout.

based and a descendant-based context. For the layout of a node’s children, we use spiral patterns based on
basic phyllotactic arrangements. Suppose that (φn,rn) is the polar coordinate of the center of child n for
n = 1,2, . . . ,nmax where nmax is the number of children. We distribute the centers on spirals from inside out.
Therefore, both φ and r are increasing functions in term of n. In our implementation, we use:

φn = nα , rn = c(nmax)
√

n

n = 1,2, . . . ,nmax

where the constant α controls the angular increment between successive nodes and c(n) is used to control
the radius of the spiral. Figure 4 shows how changing α affects the layout.

Figure 4: Change of α creates different patterns. From left to right: α = 10,α = 130,α = 100.

The function c(nmax) controls the increment factor for the radius. To keep the symmetry of layout,
maintaining all siblings as the same size, we reduce the effect of c(nmax) when there are more children. In
our implementation we have used c(n) = 1√

nmax
to normalize rn in the range between 0 and 1. Therefore,

changing nmax results in different layouts as demonstrated in Figure 5.
When a node A is selected that node becomes the NOI and moves dynamically to the center of the layout

and its size is appropriately increased. Following this action, the NOI’s children are recursively resized and
re-positioned. Since the NOI’s siblings are to be arranged within the NOIs parent node B, the size of the
NOI must be slightly smaller than its parent to leave enough space for the siblings. We uniformly space the
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Figure 5: The effect of n in the layout. The three nodes shown on the right have from top to bottom 156, 50,
and 11 children, all of which have been laid out in the same size parent. For all three nodes α is the same.
Note how in the node with 11 children only the inner part of the spiral is used.

siblings of A in the space around A and inside B as demonstrated in Figure 5 (left side). The NOI and its
siblings are displayed with the same color. To describe these operations more precisely, let (xA,yA) be the
center of A (NOI) and rA be its radius. The new position of the NOI can be obtained by:

(xA,yA) = (xB,yB).

And the size of the NOI is increased by:

rA = d rB, 0≤ d ≤ 1

where d is a constant that controls how much smaller the NOI is than its parent. As illustrated in Figure 6,
larger values for d (left) provide more space for the NOI and smaller values for d (right) provide more space
for ancestors and their children. However, for really deep trees large values of d do not provide enough space
for the NOI. In addition, extremely small or large values for d do not produce proportional and aesthetically
appealing layouts. Setting d to the values near to the golden ratio (the right layout in Figure 6) seems to
make better layouts.

During the transition from one NOI to another, the NOI’s siblings and their children are dynamically
repositioned and resized as shown in the Figure 7. Assume S1,S2, . . . ,Sk are siblings of NOI. As a simple
solution, we distribute these nodes in a circle uniformly around the NOI and within their parent. More
precisely, we use the new NOI’s parent’s center (xB,yB) as the new NOI center and to obtain the position
of the sibling’s centers we calculate a sibling-base circle upon which all siblings will lie. The radius of the
sibling-base circle is

ρ =
1
2
(rA + rB)

where rA is the NOI radius and rB) is the NOI’s parent’s radius. For each sibling, we use a circle whose
center is on the sibling-base circle and whose radius will keep the sibling inside the parent and outside the
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Figure 6: Left: larger values for d gives more room for an NOI deeply nested in the tree; Right: smaller
amounts for d provides more space for the ancestors and their children.

NOI. To do this, we set the sibling-radius as

rsk = w(rB− rA)

where w is a contraction factor sufficient to keep the edges of the sibling’s circle just clear of both the parent
and NOI circles (see Figure 7).

Figure 7: Left: A node is selected node to be the next NOI; Left, middle: the new NOI’s children encircle the
new NOI; right, middle: the NOI starts to expand; Right: the new NOI and its siblings in their new positions.
To make a smooth transition for animation position and radius are functions of time

When an NOI is selected, the sibling nodes of the selected node are clustered around the new NOI. These
new positions are in a flower-petal arrangement around the NOI and as the NOI expands, the sibling nodes
spread apart similar to flower petals Figure 7. Animation plays an integral role in our interactive system. All
of the repositioning and resizing is done dynamically as demonstrated in Figure 7. Starting from the left, the
first image shows that the fourteenth of twenty-two siblings has been selected. The second and third images
show the transition in progress. The newly selected NOI is expanding, moving towards the center, and its 21
siblings have arranged themselves around its edge. In the fourth (right-hand) image the new NOI is in place,
centered in its ancestors and ringed by its siblings. To effect this transition, we change the center position
(xo,yo) and the radius ro of node S to a new position (x f ,y f ) and final size r f in a continuous manner. To
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make a smooth transition for animation, we make position and radius functions of time t

(xt ,yt) = (1− t)(xo,yo)+ t (x f ,y f )
rt = (1− t)ro + t r f

0≤ t ≤ 1

Color shades are used to show the hierarchy. The selected node can be seen as a circle with its children
inside it and all of its parents with their hierarchy relationships are shown as circular layers with different
shades of blue. Each circle in the hierarchy includes its children which are evenly and symmetrically posi-
tioned around the circle. The presentation shows the NOI with its children and its ancestors and their children
through to the root of the tree.

Figure 8: Left: Comparing nodes. Right: Searching for a node with its label.

3 Interactive Exploration

It is also possible to compare two different sibling nodes in our interactive system. The two nodes that are
being compared are drawn the same size and are positioned inside their parent’s node. All of their siblings
are positioned around them inside their parent’s node (Figure 8). While nodes can be dynamically selected
node search is also supported. A search for a specific node can be conducted by entering the label of the
node. The node related to the label will be highlighted using a contrasting color (Figure 8). The relation
between the selected node and the root still stays visible. The tree can also be edited by adding and removing
the nodes. During exploration, the tree can be modified by interactively adding and removing nodes in any
desired level.

4 Conclusion and Future Work

In this paper, we introduced an interactive tree layout that makes some use of dilational symmetry and was
inspired by natural and artistic floral patterns. This tree layout provides a node-focused approach that centers
the node of interest and sets it in its symmetrically drawn context. Nodes of interest can be interactively
changed and the transitions are animated. In a given layout the subset of the tree that contains the node of
interest’s ancestors and all of its immediate children. The whole tree can be explored interactively. Further
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investigations into the type of interactivity provided and the effectiveness of this type of contextual layout
are underway.
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Abstract 
 

Thoughts on discussing mathematical art, concerning the appreciative yet tongue-tied lay viewer. 

 

 

Apologia 

 
After much thought, I’ve decided not to add here to the literature on the production of geometrical art. 

The mathematical techniques I use are neither technically difficult nor conceptually deep, and anyone 

who is interested will find no obstacle to reverse engineering them should that be desired, or better, 

developing their own directions to a greater degree.  Nor do I wish to repeat an introduction to the use of 

3D printing technology, which is now widely known and well documented.  What concerns me here is the 

central transaction of art: what happens when someone not the maker, be they naive or mathematically 

sophisticated, sees a sculpture.  I can speak of this only from personal experience and opinion, so this 

paper – essay, rather – must stand unsupported by citation. 

 

Enthusiasm, Interrupted 

 
I’ll guess that everyone who has made a piece of math/art has had the experience of showing it eagerly to 

a layperson and hearing the response “Neat!” followed by a long silence.  This is characteristic: the work 

is well liked almost universally, and the market for it is strong, but viewers are at sea on how to discuss 

it.  I wish to begin exploring what happens after the “Neat!”.  How can we get rid of the pause, and what 

is it hiding? 

 

 This is not entirely a matter of personal egotism, for it seems to me that a lack of clarity about how to 

discuss this art form is a real obstacle to its wider spread.  As we – researchers, popularizers, artists, 

educators – create this field, we must also create a climate for discourse, in which the viewing public can 

build a language and context to discuss it.  Although math/art is ancient, it has never been commonplace 

or mainstream, and certainly has not received the mass-pop currency which the new technologies are now 

enabling.  Thus there is little historical precedent or culture in which to evaluate these works.   

 

Artspeak 

 
The literature of the history, appreciation, and criticism of art must, a fortiori, be applicable to math/art.  

We are accustomed to hearing nonmathematical sculpture evaluated in terms of expressiveness of line, 

composition of mass and void, balance and variety of viewpoints, choice of color and material, and so 

forth.  It is vital to the development of this artistic movement that viewers have permission to discuss 

math/art in identical language.  A blobby, insensitive or misbalanced sculpture has problems whether it is 
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a Muse or a minimal surface, and it is not crass or uninformed to say so, regardless of the delicacy or 

abstruseness of any mathematical concept involved.  I submit that as creators and informed mediators, we 

must explicitly give permission for this type of comment.  

 

 In particular, it’s necessary to resist any tendency to assert that conceptual or technical 

considerations may override those of good taste.  To do so is analogous to stating that a work can be 

immunized against aesthetic criticism because it carries a moral or political message, and that dog won’t 

hunt: viewers, and still less history, cannot be constrained to evaluate a work conditionally on terms set 

by its author or presenter.  If we don’t wish to remain marginal to the wider practice of art, we must 

accept its criteria fully, in addition to those peculiar to this form. 

 

Cloak of Invulnerability 

 
In math/art, the subject matter carries an intellectual authority that is widely perceived as impeccable, to 

the point of being overbearing.  Mathematically naive viewers, even those knowledgeable about art, tend 

to feel disqualified from applying ordinary artistic criteria to the work, or indeed having any reaction but 

awe.   They perceive the entire edifice of mathematics to inhere in each piece, and are cowed.  It’s an odd 

phenomenon as art goes – no one feels bashful opining about landscapes for lack of geological or 

botanical knowledge, and why should they?  But I believe that this is the source of most of the pause, and 

that it must be specifically denatured before useful commentary can occur.  

 

 This is difficult.  The temptation to the creator is powerful: the impervious aura I’ve described is 

about as unfair an advantage as a piece of art can have, and it is correspondingly difficult to resist 

leveraging it as a potent marketing tool.  What is worse, the aura becomes viewer-driven.  In my own 

presentation I take pains to distinguish works of my authorship from those that illustrate preexisting ideas, 

but I find that it’s very difficult to make this message stick.  Although my site says otherwise, many 

customers believe that I invented the gyroid, and that my own works illustrate deep, complex geometrical 

truths.  (Neither is the case.)  It’s understandable that buyers and presenters should prefer that the work 

remain unassailable, but this confusion acts strongly to stifle even the limited level of comment that is 

normally made to an artist about their own work – I’ve led an astonishingly criticism-free artistic life – let 

alone thoughtful discourse.  Before the pause can end, the aura must be exploded. 

 

Approaching the Divine 
 

Should math/art then be spoken of exactly as other art?  Is it merely a style – a style so constraining that 

in many instances the usual decisional process of art-making is subsumed almost entirely into the 

requirements of the form?  Haiku is a free format compared to what we do when trying to create a 

credible, informative physical representation of a polytope of dimension >3, and also make it beautiful. 

 

 This art is not abstract in the sense of being idiolectic; obviously it refers to the shared language and 

experience of mathematics.  Thus it is representational, an interpretive form, but one whose subjects are 

objects and experiences unfamiliar to most viewers.  Perhaps one productive way to look at it is as a stop 

on the path toward mysticism, which translates ineffable experience.  In speaking of mystical art, the 

crucial thing is that it cannot be evaluated in terms of that original experience, which is by definition 

inaccessible.  In encouraging speech about math/art we need not go quite this far – there is some evidence 

that mathematicians exist – but it is necessary that we strongly resist conflation of the inspiring subject 

matter, which is as immune to criticism as rocks and trees, with the present object.  An artwork is an 

evocative lump of material, a single data point in art history, and for the pause to end, we must give 

permission for ours to be approached on exactly those terms.  And for this field to become a full part of 

art culture and history, the pause must end. 
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Abstract 
 

I describe my musical realization of the motion graphics of experimental animation pioneer John Whitney. The 
Whitney Music Box casts John Whitney’s visual idea of “incremental drift” into musical form. 

 
About John Whitney 

 
 
John Whitney (1917-1995) was an innovative filmmaker who pioneered a number of methods for 
producing experimental animations based on precisely defined motions.  All his life, perhaps beginning 
with his youthful obsession with the Mount Palomar telescope, Whitney was especially interested in the 
mathematics of circles, including polar coodinates and sine waves.  Whitney's earliest films, made with 
his brother James during the 1940s, used a pendulum device to produce music and graphics 
simultaneously. 
 
In the 1950s, Whitney converted a surplus World War II analog computer, originally used in the sighting 
mechanism of an anti aircraft gun into a versatile and accurate motion control rig, the first of its kind.  
This "cam machine," was used by the Whitney brothers to realize a series of commercial film effects as 
well as more personal experimental films all featuring elaborate and fluid abstract motions.  In their films, 
they used multiple exposures while rotating both the camera and a variety of  photographed objects and 
light sources, all moving in complex paths, such as nested arcs.  The striking spiraling figures in the Saul 
Bass designed opening credits  of Psycho, were animated by Whitney on this equipment, as well as James' 
most successful movie, the mandala-like Lapis. 
 
In the early 1960s, Whitney changed his medium from analog to digital, and began making a series of 
pioneering computer graphics shorts, including his 1968 film, "Permutations".  Whitney continued 
working in the computer graphics field until his death in 1995, making the film Arabesque and the film 
series Moon Drum. 
 
Whitney’s films were highly geometrical in nature, often consisting of nothing more than colored points 
of light, moving over mathematically defined paths, such as sine waves, controlled by either electro-
mechnical or digital computation.  Whitney was principally interested in the cumulative effect of these 
motions on the viewer. 
 
Incremental Drift. The motions of the objects in Whitney's  mid to later films often were based around 
a type of mathematically choreographed motion Whitney called "incremental drift."  Whitney described 
incremental drift in his 1980 book, Digital Harmony, in which he elaborated on his belief that the the 
mathematical properties of music could be applied to motion graphics on a computer. 
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An early intuition about how to control total dynamics led me to activate all graphics elements 
through a motion function that advances each element differentially.  For example, if one element 
were set to move at a given rate, the next element might be moved two times that rate.  Then the 
third would move at three times that rate and so on. Each element would move at a different rate 
and in a different direction within the field of action.  So long as all elements obey a rule of 
direction and rate, and none drifts about aimlessly or randomly, then pattern configurations form 
and reform. This is harmonic resonance and it echoes musical harmony, stated in explicit terms.  
I tried this procedure in several films, and was gratified by the consistency of the confirmation it 
demonstrated. 

 
– John Whitney, Digital Harmony, pp. 38 

 
The Whitney Music Box 

 
In the book, Whitney goes on to describe a few simple examples of this type of motion.  The book 
contains sample code in the back, in the BASIC programming language.  One of those examples is 
constructed of points moving around a series of increasingly wider concentric circlular paths. 
 
I noticed the resemblence of the circular paths to the dots on the disc of a music box, and thought it would 
be interesting to use Whitney's dots to trigger a series of notes on a chromatic scale.  Although this 
arrangement is very similar to a regular music box equipped with chromatically tuned tines, the rotational 
speed of the dots differs in a way that can't be produced with a single disc - rather such a music box 
would require a single disc or cylindar for each dot, each moving at a slightly faster speed. 

 
Much like Whitney, I was "gratified" by the quality of 
the music this system generated, and even more so by 
the effect of listening to the music while watching the 
animation that triggered it [Figure 1].  What to the ear 
sounds like a complex piece of music becomes more 
lucid when the eyes are confronted with the evidence of 
a relatively simple and predictable system of motions 
triggering those sounds.  The overall effect  can 
produce a strong sense of wonderment in the listener / 
viewer, which I found pleasing. 
 
I went on to produce a series of variations of this basic 
experiment, using different numbers of dots, tunings 
(both chromatic, harmonic, and modal, with forward 
and retrograde assignments) as well as a few different 
methods of sound production. 
 
A close inspection of Whitney's writings reveals that he was much more of an artist than a mathematician.  
The mathematics of Whitney's movies can be quite simple, based on nothing more than the simple integer 
ratios of Pythagoras.  Like medieval music theorists, Whitney believed that the appeal of his animations, 
like the appeal of tonal music, was based on these simple ratios. 
 
For the casual mathematician, and casual listener, the Whitney Music Box provides a beautiful and 
fascinating introduction to some elementary and beautiful mathematical ideas. 
 
For more information about this project, including an online Flash demonstration, visit 
http://www.coverpop.com/whitney/ 

Figure 1 :  
The Whitney Music Box 
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Abstract 
 

The sona designs of the Chokwe people of Angola/Congo are a particularly attractive form of “mirror curves,” 
which can be visualized as a curve drawn through a lattice of dots, bouncing off the edges of the lattice and off 
“mirrors” placed between some of those dots. Most such designs are drawn as a single, uninterrupted line, and most 
contain symmetries of some type. The mathematics of the designs reflect issues of common divisors of numbers, 
Eulerian cycles, and symmetry groups. This talk will investigate ways to use a sona-drawing program to investigate 
these topics with students from middle school through college, with particular emphasis on the experimental 
discovery of mathematical facts. The sona program developed by the author is cross-platform and free. 

 
 

Introduction 
 

The Chokwe people of Angola and Congo have a drawing tradition, done both in sand drawings and on 
more permanent objects, that has attracted a substantial amount of mathematical attention (e.g. Ascher 
[1], Gerdes [4], Jablan [5]). Although their sona (singular “lusona”) drawings arise in several different 
forms, one of the more common, and the most mathematical, can be viewed as a grid of dots with a curve 
passing through the grid, “bouncing” off the boundary and off internal “mirrors,” to create a single 
continuous curve. The “Leopard with Cubs” lusona shown in figure 1 is an example of such a drawing 
without internal mirrors. This sand drawing includes 
a few features added to the fundamental design to 
indicate the heads and tails of the mother leopard 
(vertical) and her two cubs (horizontal). Figure 1 
shows it in three forms: a photograph of the drawing 
made in the sand, a computer rendition of the 
drawing showing it with the heads and tails of the 
leopards, and a computer drawn form of the 
underlying Eulerian drawing, as the sona drawing 
program draws it, without the artistic additions to 
personify the animal forms the artist has seen in the 
principal monolineal drawing. 
 

The “Leopard with Cubs” is a sona example 
with no internal “mirror” walls for the curve to 
bounce off. A classic example of a sona that uses 
such mirrors is the “Chased Chicken” of figure 2, 
so called because it seems to capture the path that 
a chicken might take if you were trying to catch it. 

 

Figure 1: The “Leopard with Cubs” lusona 
drawn in the sand, with additional heads and 
tails of the mother leopard and her two cubs. On 
the right is the underlying monolineal curve, as 
drawn by the sona program. 
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Figure 2 shows both the sona as it would be drawn by a 
Chokwe artist, and the “hidden” walls that help to define the 
shape. The artist making this drawing lays down the grid of 
dots shown, does not draw the walls, but draws the Chased 
Chicken sona directly on the dot grid. There is some evidence 
that the Chokwe artist envisions the walls as they draw the 
sona. In many cases, the wall layouts help us to see more 
clearly the symmetries within the sona design. Both parts of 
figure 2 were drawn by the sona program.  
 

The range of sona designs gives rise to many types of 
investigations, both mathematical and artistic. The use of the 
computer program to try different layouts of dots and walls 
allows a student to imitate what might be months worth of 
work by a Chokwe artist looking for interesting designs. A 
fundamental challenge is that not all grids lead to acceptable 
sona drawings: they may not be monolineal, or to make them 
monolineal may require extra walls that disrupt the symmetry 
or aesthetic appearance of the design. Our experience, with 
students from 4th grade through college, is that these 
experiments and open-ended design questions are enjoyed 
greatly by the students, many of whom continue to work on 
designs well after the assignments have been completed.  

 
Figure 2: The “Chased Chicken” 
lusona, on a 7 X 12 grid, along 
with the mirror walls that define 
the curve. The design has pmg 
symmetry. 
 

 
 

Some Mathematical Investigations 
 

Greatest Common Divisor Investigations. A basic experiment with sona is to determine for what 
dimensions an m X n rectangle, with no walls, will give a monolinear sona. The answer is “when m and n 
have no common factor,” i.e. when gcd(m, n) = 1. In most cases, the students’ original hypothesis is that it 
happens whenever one of m and n are odd. A little experimentation, occasionally with suggestions of 
rectangles to try, generally leads students to the correct answer. (For young students, this is especially true 
if they have recently been simplifying fractions.) A similar investigation is to ask “If a rectangle does not 
give a monolineal sona, how many lines does it take to draw the sona?” (Answer: It takes gcd(m, n) lines.) 
 

Some African sona designs are built from combinations of rectangles, such as abutting rectangles or 
overlapping rectangles, as shown in figure 3. This leads to easy extensions of the basic rectangle 
investigation just mentioned. For example, we can ask “When do rectangles abutting (i) along a single 
dot, or (ii) abutting along two dots, give monolineal sona?” (Answer: (i) If both rectangles have 
dimensions with gcd’s of 1; (ii) If one rectangle has a gcd of 1 and the other has a gcd of 2.) Similar, but 
slightly more complicated answers, apply to rectangles overlapping by 1 or 2 dots. 
 
Additional GCD Investigations: The exercises below have answers that can be discovered through 
experimentation, and which are simply enough to be found empirically. As with the examples above, 
these investigations are usually too tedious to do by hand, but fairly easy to do with computer assistance 
from the sona drawing program. Additional exercise are online at <http://math.beloit.edu/chavey/Sona>. 
 
1) If a single dot is erased from a corner of a rectangle, when will the resulting sona be monolineal? 

(Answer: If, and only if, the rectangle dimensions have a gcd of 2.) 
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2) If a rectangular grid has dimensions with a gcd of r, 
r > 1, can you erase dots along one edge, starting 
from the corner, to create a layout with a 
monolineal sona? If so, what is the smallest number 
of dots you need to erase?  (Answer: Yes, by 
erasing r–1 dots.) 

 

3) If two rectangular grids with gcd’s of r and s 
respectively are aligned so as to overlap at one 
corner dot, can you tell how many lines the 
resulting sona will need? (Answer: r + s – 1.) 

 

4) If you have two identical rectangular grids, with a 
gcd of r, can you overlap them in a 1 X n rectangle 
so the resulting sona is monolineal? (Yes; they 
should overlap in a 1 X r rectangle.) 

 

5) By starting with a monolineal rectangle sona, and 
then attaching squares of dots, what interesting 
sona (e.g. animal or naturalistic shapes) can you 
construct? Look at examples of authentic Chokwe 
sona for ideas of shapes that might be appreciated 
by those artists. 

 

 
 

 
 
Figure 3: Monolineal sona built from 
abutting and overlapping rectangles. 
On the top, two rectangles “abut at 
two dots,” while on the bottom they 
“overlap at two dots.” 

 
Figure 4: The tri-lineal sona 
constructed on a 3 X 6 
rectangle grid. This sona can 
be made monolineal by many 
different choices of 2 symme-
trically placed mirror walls.  
 
 

Mirror Investigations. An important result about mirrors (see [3]) 
is that if a sona with one or more lines has a mirror added where two 
different lines cross, those lines will merge into one, while adding a 
mirror where a line crosses itself splits that line into two. The sona 
drawing program draws multiple lines in separate colors, so it’s easy 
to locate places where adding mirrors will reduce the number of 
lines. We can use this idea to construct monolineal sona while 
meeting the Chokwe symmetry aesthetic. For example, in figure 4 
there are many ways to find symmetric placements of two walls so 
that each wall merges two of the three colors, resulting in a 
monolineal sona. One such placement, with rotational symmetry, is 
indicated. In open-ended investigations, students can construct a 
tentative sona, then use this technique to change it to be monolineal.  
 

Symmetry Group Investigations. To imitate the 
Chokwe aesthetic, we want to build symmetric sona. 
Many authentic sona have bilateral or rotational sym-
metry, although often with disruptions to the symmetry 
from adding animal or natural features. Creating such 
symmetric sona is an enjoyable investigation by itself. 
One particular area for interesting, open-ended artistic 
exploration is the construction of sona with wallpaper 
pattern symmetries. The Chased Chicken design of fig. 
2 is one such example. Figure 5 shows another. Several 
other examples can be found in Chavey [2]. This 
suggests several options for investigation of new 
designs that the Chokwe would likely appreciate: 
 

Figure 5: A monolineal sona with p4g 
symmetry, This sona uses a wall motif of the 
form:    This design will be monolineal for 
all dimensions of the form (4m+1) X (4n+1). 
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1) The design of figure 5 uses a pair of walls ( | |  ) as a building block to construct a 2-dimensionally 
symmetric pattern, while the Chased Chicken design uses a T shape (truncated on the sides) to 
construct such designs. What types of simple building blocks can we use to construct such designs? 
Some students have found examples answering this in 40–60 minutes, but I think of this type of 
question as part of a longer exploration. I generally have students work in pairs. 

 
2) For a given building block (a.k.a. “fundamental region”), what wallpaper symmetry groups can be 

applied to that design to give monolineal sona? With what types of spacing between the wall motifs? 
And for what sizes of rectangles will that building block and symmetry group generate such designs? 

 
 

The Sona Program 
 
The sona program itself allows the user to place rectangles of dots in a grid on the screen, and construct 
more complicated layouts from unions of such rectangles. A wall tool allows the user to place walls at 
any location within the grid layout. The draw tool then initiates the process of drawing a sona line from a 
user-specified point as defined by the grid layout and the walls. If a sona configuration requires multiple 
lines to complete the sona, each successive line will be drawn in a new color (within limits). The scale of 
the drawing, the pen width, the speed of the drawing, and whether the walls are shown or hidden are each 
adjustable by the user. Designs can be printed or saved to a file, e.g. to be turned in to the instructor. The 
instructor can also use these files to demonstrate interesting sona, without constructing them in real time, 
or as starting points for student investigations. The program is written in Java, hence should be fully 
cross-platform, and is freely available from <http://math.beloit.edu/chavey/Sona>. 

 
 

Summary 
 
Sona are useful designs to show students at many levels some of the interactions between mathematics 
and patterned artwork. They allow students to do both directed experimental investigations, or more open-
ended investigations. Explorations topics include common divisors, the Euclidean algorithm for common 
divisors, and implementations of many types of symmetry groups. The students are challenged to find 
patterns that would be appreciated by the Chokwe artists, while using the mathematical properties to 
direct their explorations. Many years of experience by the author, and others, with the software used to 
construct these sona show the topic to be interesting and exciting to students of various ages, including 
some who have discovered original results through its use. We will demonstrate several of these 
explorations in the process of showing the functions and capabilities of the Sona drawing software. 
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Abstract 

 
This paper describes how atypical assignments in a mathematics seminar encourage students to explore mathematical ideas 
through multidisciplinary lenses.  Students enjoy an extraordinary journey on a remarkable mathematical road with astonishing 
curves and twists from art, music, writing, and more. 
 

Philosophy of the Seminar 
 

The focus of the seminar is on classroom strategies including seminar discussions and small group work 
that encourage students to creatively engage in mathematical investigations.  The student is expected to 
take a dynamic role in all parts of the class, including classroom discussions and presentations.  The 
assignments and activities both in and out of class are designed for active student participation and to 
enhance each student's understanding, appreciation, and practical experience of the bridges connecting 
mathematics to the world around us.  The role of the instructor is merely to provide questions and 
suggestions to facilitate a student centered classroom.  The course focuses on classroom strategies that 
encourage students not only to enjoy exploring mathematical connections to other disciplines, but also to 
learn how to creatively engage in investigations linking mathematics to those disciplines.  In this article 
we will explore a selection of activities and projects to achieve this goal.  We only begin the journey; it is 
never ending. 
 

The First Class 
 

 

 
Tie a piece of yarn around each of your wrists.  Tie another piece of yarn 
around your twin's wrist and overlap your yarn as shown in the picture.  
Separate yourselves without taking the string off of your wrists, without 
breaking the string, and without untying the knots. 

Figure 1: Siamese Twin Challenge 
 
As students enter the room the first day of class, they are immediately given pieces of yarn and presented 
with the above challenge.  As they contort their bodies, searching for a solution, the atmosphere vibrates 
with laughter and discussions of how to find the solution.  Sometimes a pair of students shouts with glee 
as they solve the puzzle.  Sometimes frustration mounts, and after a reasonable period of time, I lead the 
students to the solution which is rather simple.  Person A takes their yarn and pulls it through the wrist 
yarn of person B from the inside to the outside.  It is really neat to see that, almost magically, the yarn 
separates!  Of course, there is no magic involved, just knot theory.  The class begins to hear about an 
unusual area of mathematics and a particular application.   
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 Toothpick challenges are next.  Students are given six toothpicks and must create designs you 
consisting only of equilateral triangles.  The entire toothpick must be the side of the triangle. Design 1:  
Use five toothpicks to make two identically sized equilateral triangles.  Design 2:  Use six toothpicks to 
make two identically sized equilateral triangles.  Design 3:  Use six toothpicks to make four identically 
sized equilateral triangles.  The first two designs are readily found.  Design 3 is impossible in two 
dimensions, but easily solved in three by a triangular pyramid.  As one student commented “I learned 
about people’s natural assumption of “flatland.”  As we discuss the problem, we talk about how the 
problem itself was not particularly hard, but many made it not only harder, but impossible, to solve 
because they added an assumption that was not there.  This helps students to recognize that we need to 
keep ourselves from making such assumptions. 
 
 In a reflection, one student commented that he had always thought “that all math was a series of 
steps to obtain a solution.  That is, until I reached this class.  The first class we were already forced to 
think outside the box.”  This sets the tone for the semester.  Students anticipate an intriguing adventure to 
examine mathematics in an unusual fashion. 
 

The Mathematical Autobiography 
 
Good teaching orchestrates the learner's experience so that all aspects of brain operation are addressed 
such as analytical thinking, imagination, and emotions.  The first assignment in the seminar is to write a 
mathematical autobiography.  The goal of the project is to share glimpses of one’s life through the lens of 
mathematics.  There are many options for this project ranging from a writing an essay to composing a 
song.  Students are limited only by their imagination.  The work must be creative, lively, and engaging.  
Interestingly, students are generally uncomfortable with the freedom to make interesting choices.  Yet the 
results are utterly amazing.  The words of one student illustrate how many view the world of 
mathematics, “My first reaction was, “is this even possible?”  On top of having to write an autobiography 
we were told to be creative.  This is way outside my realm.  I always thought there was no room for 
creativity in math.”  As you consider the following examples, each unique in its own way, observe how 
the students created links from their mathematical lives to literature, geometric shapes, and music. 
 
Example #1 is a wonderful illustration of using literature to describe the nature of mathematics. 
 

Imagine a vast nation that stretches from sea to sea, with terrain as varied as the 
personalities of its citizens.  Most people spend at least thirteen years of their life here, 
sprinting for the borders as soon as their paperwork clears.  Others, however, are willing 
to give everything they have to stay, fearing what lies abroad.  This country is made up of 
an almost uncountable number of states; some with mountains that stretch past the 
capacity of most climbers, others with barren uninteresting desert.  This country, of 
course, is the United States of Academia. 
 
Although I currently live in the state of Mathematics, I have spent time all over the 
country.  As a young man, I moved around a lot.  Many of my favorite places included 
my current home state, English, Physics, History, Chemistry, and even Music Theory.  At 
one time or another, I thought I could find a home in each one of these states, going from 
one to another on a daily basis (gas was cheaper back then).  After spending thirteen 
years as a vagabond in the USA, it was about time for me to find a permanent residence. 
 

Example #2 shows how one student uses geometric shapes as symbols of her personality. 
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I am a square.  With its four right angles and equal sides it is truly symbolic of my 
perfectionist nature. 

 

I am a sphere.  It takes great artistic talent to be able to shade a drawn circle properly so 
that it appears to the viewer as a sphere.  Therefore, it is symbolic of my creative talent. 

 

 

I am a rectangle, standing proud and confident.  Once becoming comfortable with those 
around me, I tend to voice my opinion without concerns of what those around me will 
think of me because of it. . . . However, I am not a towering rectangle looking to be in 
the spotlight, but one that prefers to get silently recognized for my accomplishments. 

 
Example #3 illustrates how one student uses music to show “a glimpse of musical, mathematical, 
authorial “me.”  She cleverly creates a miniature story book accompanied by an audio CD containing 
“musical interludes from . . . my favorite artists.”  For example, one segment contains an illustration of 
the Beatles Yellow Submarine and reads “The fun simplicity of ‘All Together Now’ with its 1, 2, 3, 4” 
lyrics reminds me (in hindsight) of the relaxed, happy math of elementary school.  Math was no longer 
my address or my telephone number – it was counting the little girls in my Madeline book, timing my 
friends in races around  . . .” 
 

Brain Teaser Leads to a History/Mathematics Connection 
 
Brain teasers delight students of all ages.  The following helps to introduce students to mathematical 
history. 
 
The Initial Question: Consider the first five entries in a sequence of letters.  Can you determine the 
pattern?  What are the next five letters?  O T T F F 
The Solution: Consider the numbers we count with, 1, 2, 3, 4, 5, etc.  Take the first letter from each 
number to form the sequence.  The next five letters come from 6, 7, 8, 9, and 10, S, S, E, N, T.  Students 
enjoy this challenge and frequently work together in their search for the answer.   
 

 
Figure 2: An Ancient Clay Tablet 

 
 After solving the brain teaser, students are informed that they will be playing the role of 
mathematical archeologist for the day by exploring the Babylonian cuneiform symbols found on a clay 
tablet from ancient Babylonia.  The tablet was likely the equivalent of a worksheet from an elementary 
level classroom.  The obverse is the front side of the tablet and the reverse is the back side of the tablet.  
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The clay was often well preserved so by putting pieces together, mathematical historians have been able 
to uncover and understand the world of ancient Babylonian mathematics. 
 
 Each group of students is given a copy of the tablet shown in figure 2.  The first challenge is to 
examine only the first column and determine how the symbols represent numbers.  As each group hunts 
for the solution, intense discussions on individual theories echo through the class.  Since they have just 
solved the brain teaser, counting is in their minds.  Quickly, almost all students conjecture that the vertical 
triangle represents the numeral 1 and the horizontal triangle represents the numeral 10.  As the students 
decode the first column, a stumbling block frequently occurs after the numbers one through twenty.  The 
next symbol consists of three horizontal triangles, which represents thirty, not the expected twenty-one.  
But further examination shows that the writer is now counting by tens until fifty is reached.  Another 
curiosity – the last line doesn’t fit the pattern.  This is called the catch line and really belongs to the next 
topic to be covered.  Thus, it does not need to be considered for our work.   
 
 Next, students are asked to find the relationship between the first column entry and the second 
column entry.  After many conjectures and directed questions, students conjecture that the table appears 
to a multiplication table for 9.  However, their original conjecture for the meaning of the symbols breaks 
down in line 7 because the symbols for 63 are one vertical triangle followed by a group of three vertical 
triangles.  Why is this 63 and not 4?  We then discuss that the vertical triangle represents a 1 or a 60 or a 
60^2 or a 60^3, similar to how in the following numbers the digit 1 can stand for a unit, ten, hundred, or a 
thousand depending on its location.  1, 15, 132, 1987.  The excitement in figuring out how the number 
system works arouses student curiosity.  We use the Babylonian sexagesimal number system today when 
we refer to time; there are 60 seconds in a minute and 60 minutes in an hour. 
 
 This project connects mathematics, history, and archeology; it begins to help students recognize 
the interdisciplinary nature of mathematics. 
 

More Mathematics Connections 
 
During the seminar, students are expected to engage in scholarly discourse that focuses on expanding 
awareness of how mathematics relates to our lives.  Here are brief descriptions of some of the other areas 
we explore.  A colleague from the art department visits to provide a workshop on the use of the golden 
ratio in artwork.  Students explore paintings using a ruler and a calculator to discover how the golden 
ratio appears when examining important locations on paintings.  The world of art becomes intertwined 
with mathematics.  Another colleague presents a workshop on mathematics and makeup, describing how 
makeup is applied to provide the illusion of the golden ratio for various facial measurements.  Students 
are amused with the unexpected makeup and mathematics connection.  Through a guided discovery 
project, students investigate the symmetries of a square to learn the basic concepts of group theory.  
Strangely enough, this abstract mathematical theory explains why particular items cause a cash register to 
bleep, how the machine knows a UPC code is not being read correctly, why passports have particular ID 
numbers, and how the ISBN number of a book is constructed.  All of these experiences illustrate how 
mathematics is intricately woven into the fabric of our lives. 
 

Conclusions 
 
Students delight in the variety of mathematics used to explore a smorgasbord of disciplines in an 
engaging, hands on fashion.  By the conclusion of the course, students see mathematics not only as 
numbers and symbols, but as a means to link disciplines as varied as music, art, literature, and more. 
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Abstract 

 
Fractal images enjoy a great deal of abstraction and are very wonderful and out of expectation for observers. These 
mathematical paintings are clear exposures of complexity, all-scale features and self similarity which are presented 
simultaneously and provide unique views. On the other hand, fractals are representations of the nature behaviors 
and rise from nature. Therefore, it must be possible to use these fractal properties and images in the creation of 
natural and realistic phenomena and landscapes. In this article, I am going to briefly explain the way of creating an 
absolutely realistic painting, as real as nature landscapes, called Sea at the sunset only by means of Mandelbrot set. 

 
 

Process of Creating a Realistic Painting with Mandelbrot Set 
 

To create a realistic illustration, it is not absolutely essential to obtain a fractal exactly similar to our 
subject, instead we should try to exploit the properties of the nature that are presented in that fractal and 
apply them in our image making process. So, we ought to produce an image according to properties like 
self similarity, complexity, chaos which the last years` artists were disappointed with in creation of their 
artworks. The Mandelbrot set has no similarity to any imaginable natural phenomenon, but contains a 
great deal of nature traits; therefore this fractal can be used to create a perfectly realistic painting 
including many nature qualities. There will be no difference by which program or software we do the 
processes of our image making. We only use Mandelbrot fractal with some magnifications and sometimes 
color transparencies. Therefore, never do we use any distortion, erasing or any image processing software 
like Adobe Photoshop. Here, I have used Ultra Fractal software [1] to create my piece and started with 
this basic formula: 

Initial Condition: z = 0 Loop: z = z * z + #pixel Bailout Criterion: |z| < 2 

 
 

Figure 1: A close-up view of the Mandelbrot set, 
zoomed in by a factor of 5.8x10^7 relative to the 

bounding box of the entire fractal. 

 
 

Figure 2: Our painting with 11 separated layers of 
Mandelbrot set. 

 
We use our Mandelbrot set to create our painting and zoom in a piece of its outer border until we 

attain an image which can be seen in Figure 1. Afterwards, we change our point of view to the image by 
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changing angle of the image from horizon to make it flat and provide ten other different layers of this 
image, each of which has only a little difference in zoom and transparency from the previous ones.  The 
result of over punching these ten layers on the first layer is observed in Figure 2. 

Now we arrive at the phase that we should control the dispersion of the painting’s colors. 
Accordingly, we can change and regularize the colors near what we want by putting nine other layers of 
Mandelbrot set with more blue, red, yellow and white colors on previous ones. It should be mentioned 
that in most stages of the color control process I have not changed the color of Mandelbrot fractal, but I   
zoomed in the suitable color I needed. After adding another layer that present the sun in the painting (by 
changing the amount of z in Initial Condition to 1 and in the Loop to #pixel), we obtain the complete 
landscape (Figure 3). What you can watch is the magic of fractals. However, our painting now consists of 
21 layers of complex and disordered views of Mandelbrot fractal, but by managing the convolutions of 
different layers and controlling the dispersion of colors in the whole image, we have obtained an 
evidently ordered painting representing a blue sea at a reddish and yellowish sunset. 
 

 
 

Figure 3: Completed “Sea at the sunset” with 21 layers (2008; © Mehrdad Garousi). 
 
Now we have a 21 layer landscape in which every part of the canvas is covered with detail, just like 

a real landscape, which faces to more and more complexities. If we have a look at the space between two 
waves, we will observe other more irregular waves that sequentially continue towards the infinity and 
clouds of the painting similar to real clouds in the sky which do not have any clear border with sky. Now, 
we have a perfect and exclusive sunset painting which would not be created on any canvas or in any 
photograph. Its creation is dependent on computer assistance and on exploiting advanced fractal 
mathematics and geometry. To have a better look at the images I invite you to watch the color version of 
the paper on the CD-ROM. 

 
Conclusion 

 
Not all fractals provide an artistic and aesthetic image, but they present us several properties and 
behaviors of the nature, however rarely do some of their raw abstract formats have eye catcher beauties, 
too. It is the creative artist that, by enjoying and applying these properties, should create an artistic and 
aesthetic work of art. I hope fractal image making goes further than limited boarders of abstract images 
and some professional painters will be interested in realistic painting by using fractals. Mandelbrot says 
[2]: “For many years I had been hearing the comment that fractals make beautiful pictures, but are pretty 
useless. I was irritated because important applications always take some time to be revealed.” 
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Abstract
The concept of symmetry, including what it means in mathematics, how it occurs in other disciplines, and how the
mathematical ideas are applied to symmetry in art and architecture, is investigated in an interdisciplinary first seminar
at Allegheny College.

The Freshman-Sophomore Program at Allegheny College

Allegheny College requires each of its students to complete a sequence of three First-year/Sophomore semi-
nars that emphasize writing and speaking. Each faculty member who teaches a first-year seminar may choose
his or her own topic, and interdisciplinary topics are encouraged. My course, “Symmetry through the Eyes
of Mathematics”, investigates the interdisciplinary nature of symmetry.

What is Symmetry?

On the first day, I begin with an exercise asking students to define what it means for a figure to possess
symmetry. While most students begin by focusing on bilateral symmetry, the discussion naturally leads to
an introduction of the four rigid motions of the plane.

I also assign for reading and discussion the introduction to Patterns of Symmetry [3], which is the
proceedings of the 1973 “Symmetry Festival” held at Smith College. The reading foretells many of the ideas
we discuss in my course: the universal nature of symmetry, the rigid motions, groups, the idea of analyzing
symmetries in a pattern, and the fact that there are only finitely many possible symmetry types.

The reading also primes students for the first major paper and speech assignment, which asks them
to investigate how symmetry occurs in any discipline other than art and architecture (which is discussed
later in the course). Examples of possible subject areas include biology, chemistry, physics, dance, music,
neuroscience, psychology, theatre performance, and literature. Students address, for their chosen field, what
the concept of symmetry means, where and how symmetry occurs, the significance of symmetry (its purpose
or how it is interpreted), and how and why symmetry is broken.

The Mathematics: Rigid Motions and Symmetry Groups

The major mathematical goals of the course are to understand how rigid motions are combined (multiplied),
the concept of a mathematical group, and how we can describe the symmetry type of a figure in the plane.
Many of the activities I use in class are, or are inspired by, tasks in Chapters 2-5 in Farmer’s book Groups
and Symmetry [2].
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I begin with worksheets that I developed which ask students first to determine where a particular combi-
nation of rigid motions moves a given triangle, and then to conjecture a general result. My primary goal is to
investigate what happens when a reflection is followed by another reflection. We discuss why any translation
and rotation can be described as a product of reflections.

The language of rigid motions provides us with the usual mathematical definition of what it means for a
figure in the plane to possess symmetry. Beginning with regular polygons and other simple finite shapes, the
students investigate the multiplication (or group) tables of the symmetries of the figures and classify figures
as having either cyclic or dihedral symmetry type.

Moving on to strip (or frieze) patterns and wallpaper patterns, the students discover why there are at
most 24 = 16 possible symmetry types of strip patterns. After some experimentation, they conjecture that
only 7 of the 16 apparent possibilities actually occur. The facts about rigid motions investigated earlier in
the course enable us to explain why some of the other possibilities cannot occur. Students classify a variety
of strip patterns, using IUC notation. Since working out why certain combinations of symmetries cannot be
present in a wallpaper pattern is mathematically very difficult, we focus on using the standard flow chart to
analyze the symmetry types of these patterns.

Connections

As mentioned earlier, the first major assignment asks students to investigate the meaning of symmetry in
disciplines other than art and architecture. Patterns and symmetry in art or architecture are the focus of the
second major assignment. Students choose an artist or architectural style to examine; some examples (many
taken from Farmer’s book [2]) include the art of M. C. Escher, William Morris, or Robert Adam; Islamic art
(including the Alhambra); Turkish art or architecture; African art or textiles; American Indian pottery, rugs,
or beadwork; Asian carpets or pottery; Amish quilts; and Mayan art and architecture. Students are asked to
include a summary of the history of the culture, artist, architect, etc., in question. They must also include
and analyze examples of at least six symmetrically different patterns that are appropriate to their topic; any
combination of wallpaper patterns, strip patterns, or finite figures is permitted.

In an effort to reinforce the message that symmetry is ubiquitous and expose students to ideas from
other cultures, I also require students to read a portion of the chapter “Symmetric Strip Decorations” from
Ascher’s book Ethnomathematics [1]. This chapter compares the strip patterns found on the rafters of marae,
the community and spiritual meeting places of the Maori, to the strip patterns found on Inca pottery.
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Abstract

In  this paper I  advance the notion that the depiction of a mathematical  equation becomes a piece of art  if  its 
representation carries a narrative resonance that allows it to communicate with the viewer.  Following Mullins [1] 
there is greater potential for an equation of importance and depth to carry this resonance well beyond any real world 
object that it may represent. 

Introduction: equations as visual objects

The  landmark  article  Truth  +  Beauty,  by  Mullins  [1],  questioned  why  the  beauty  of  mathematical 
equations had not been harnessed more widely as a form of contemporary art. He was having a show in 
London at the time, of photographs of typeset equations from many branches of mathematics and physics. 
As iconic pairings, Truth and Beauty, Mathematics and Art seem to have a linked duality.  Indeed I admit 
an affinity for the practice of writing equations in, and as, art for more than 30 years. Mullins outlined in 
his article an intriguing approach: he not only photographed typeset equations, but used an intriguing wall 
text to spin a narrative around his images, enough to draw the viewer in to take a closer look. I would call 
this approach, one of bringing a  narrative resonance to communicate with the viewer, possibly from 
different standpoints, but all with the endpoint of bringing in an audience. 

In compiling his new 2008 book Formulas for Now, Hans Ulrich Obrist [2] invited artists, writers, 
architects, mathematicians and scientists each to contribute an equation for the twenty-first century. The 
resulting book with an equation per page is a spectacular readable array with a hardcover trapping of pink 
binding against  1950’s-green covers.  Respondents  took many approaches,  from the humorous  to  the 
deadpan formulaic. The contributor’s name appears at the top of their page, similar in function to named 
wall texts in museum exhibitions. This work really catalogues how contemporary minds think—‘and is 
testament to the vital role that formulas play in contemporary culture’, [2]. The depicted equations are 
treated as visual ‘design’ objects. Some of these equation objects surprise: Gerhard Richter provides a 
page from his Atlas containing diagrams reminiscent of graph theory; Tacita Dean’s working method text 
equation is written chaos / chance = process,  while more mathematically, Benoît Mandelbrot gives his 
landmark iterative equation  z → z² + c that is used to generate the fractal Mandelbrot Set . 

In his quest for mathematical beauty that is art, Mullins [1] noted that ‘A piece of mathematics must 
give some important  or  original  insight  to  be  beautiful’.   He quotes  the  example  of  Euler’s  famous 
formula 

                                                                             e πi + 1 = 0

which links together some of the major symbols of mathematics and complex number theory. Mullins 
suggests that an equation such as this is visually more powerful than geometric figures and models so 
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often associated with beauty and mathematical art by the general public. Thus, it is the equation that is art, 
rather than a model of it. On a more geometric scale, for example, the mathematical representation of 
complex numbers in the plane is more artful than an image of the plane itself. But how is the bridge 
between  mathematics  and  art  crossed?  I  would  suggest  that  the  key  lies  in  how the  equations  are 
represented.

                                                                      Transcendence

The abstract thinking that configures Euler’s equation seems to be given an encouraging push along in 
Obrist [2] by virtue of the fact that it is handwritten, and, has Mandelbrot’s signature appended. Suddenly 
there is a narrative guiding our thinking, and capturing our interest: did Mandelbrot really write this in 
this  hand?  There  is  an  intrigue  around  viewing  the  handwritten  notes  of  a  mastermind.  The  final 
handwritten image, as a piece of art, has transcended its original mathematical role in this context. The 
white handwriting on the dark ‘blackboard’ page seems quite resonant of the viewer’s own schoolroom 
histories. 

The notion of ‘transcendence’ seems key to understanding why other types of texts, markings, lines 
and scribbles have the capacity to intrigue and move people, even though their original function is not 
based on logical deduction. The potential take-up of images or text by contemporary culture is not based 
around logical reasoning and deduction (as is exhibited by the pictorial role of equations), but rather by a 
resonance  with  a  subculture.  Transcendent  images  and  text  communicate  to  subcultures.  Successful 
images  get  in  there,  are  threshed about,  and are  taken up and used.  Perhaps this  is  why the  highly 
resonant, but entirely illogical and scribbled, residue texts, installations, films and acts by Joseph Beuys 
have infiltrated twentieth century art history (a subculture), forced their way to the top, and remained 
there, still highly influential. The related term ‘trace’, which Ingold [3] describes as ‘any enduring mark 
left  in  or  on  a  solid  surface  by  a  continuous  movement’  seems  to  give  appropriate  visual  narrative 
resonance for the viewer. For example, a standard musical score is simply a text of notes on staves that 
show the performer  which notes to  play.  After  a violin score  has  been annotated by the  performing 
violinist, as illustrated by Ingold [3], it seems to be a transcended document of  performance carrying 
‘bowings and markings’. This equation is art.

Another  contributor  to  Obrist’s  book  of  formulas  is  the  Swiss  artist  Bernar  Venet,  who  offers 
Related  to  ‘The  Homology  (Co-Homology)  Sequence  of  the  Pair  (X,A)’,  2000.  In  this  work,  Venet 
carefully paints a museum wall fluorescent yellow, and then overpaints the field with precisely extracted 
equations from a research paper on Algebraic Topology. McEvilley [4] felt that ‘the viewer is left with 
the  experience—delight  in  colours,  amusement  at  chance  resemblances  and  a  confrontation  with  an 
essential unknowability’. This is because the audience cannot read research-level mathematics.

We have noted here that interpretation, handwriting and authorship can assist with the process of 
visually representing equations as art. Indeed, to become art, an equation, like any object in the world, 
must  be  transcendent—and  refer  to  our  understandings  of  culture  beyond  its  original  mathematical 
function. Venet, for example, has specifically chosen mathematical texts to block viewer understanding of 
the depicted image, rather than appealing to the viewer to bring their own histories of similar texts. This 
narrative remains ‘confrontational’ rather than resonant, and following McEvilley’s advice we are left to 
delight in the colours. 
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Abstract

I explain the design of a set of graphic geometrical modules - based on the letters of the (Dutch) alphabet - with which 
various patterns can be drawn. The matrix used as a basis for the (this) design, also determines the guidelines for com-
posing these patterns. From an artistic point of view, the patterns illustrate a view on interconnectivity.

1. Introduction

Around 1975, inspired by the slogan of Marshall McLuhan: ‘The medium is the message’[1], and by a trend 
known by the name of ‘ Minimal Art’[2] (in which the fewest and barest essentials or elements in the arts, 
literature, or design are used in order to relate to the environment), I began to experiment with letters taken 
from the Dutch alphabet, as a basis for creating a set of graphic geometrical modules. This choice ensures 
consistency of the various shapes within the set, and it limits their number.

Along with that, I tried to eliminate any reference to optical or subjective components that shape a module, 
reducing it to its essential geometrical form. With the traces of emotive charge removed, these modules were 
meant to stand on their own, as meaningless objects. In contrast as for instance in the case of the alphabet 
‘Azart’ by Belgian artists Rombouts & Droste[3], they keep the basic characteristics of the Latin alphabet.

2. Drawing the alphabet.

I drew the alphabet on the bases of four geometri-
cal figures, which can be regarded to as being uni-
versal: square, cross, diagonal and circle (and/or 
dot) (Figure 1). Placing these figures on top of each 
other they form a grid like matrix, which is shown 
here by means of dotted lines (Figure 2). 
 I use these lines as guides for drawing each letter. 
Square and cross, turned into guides help to draw 
horizontal and vertical letter strokes. Diagonal and 
circle are used to draw diagonal and circular letter 
strokes. 25 dots, matching the thickness of a letter 
stroke, help shaping the joints and endings of each 
letter. Each letter may use one or more elements of 
the four geometrical figures. 

In the example the letter ‘R’ is being drawn: of the 
square, the left and left half of the upper stroke are 
used, followed by the curve of the circle, followed 
by the horizontal stroke of the cross and finally by 
the downward stroke of the diagonal. (Figure 3).

3. Rules for composition,
derived from the matrix.

As figures 4 and 5 show, the matrix also determines 
the way with which the letters are drawn on a sur-

Figure 2: The letter ‘R’ drawn onto the matrix.

Figure 3: The letter ‘R’ drawn using parts of the 
matrix.

Figure 1: Universal, geometrical figures: square, 
cross, diagonal and circle (and/or dot).
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face. Figure 4 indicates directions of possible hori-
zontal, vertical and diagonal moves. Figure 5 shows 
the possibilities for turning, rotating and mirroring 
of the letters. In case letters are placed next to one 
and other, the preferred distance in between equals 
the thickness of a letter stroke. (Figure 6) In case a 
letter overlaps another, the overlap should be no less 
than the thickness of a letter stroke.  More precisely, 
it should at least overlap one of the 25 circular dots 
as can be found within the matrix. (Figure 7)

4. Composition.

Since the dimensions of the letters match each 
other, this provides an outline with which composi-
tions can be made. Likewise the rules by which they 
can be turned, rotated, mirrored, moved and placed 
separated from each other or overlapping. 

Conclusion

It is possible to turn letters of an alphabet into mean-
ingless symbols, but as an ultimate consequence 
there is no need for them to exist at all. Changing 
the (minimalist) view on the concept of geometry, 
in favor of a holistic approach, vast opportunities 
emerge to produce various works of art. 

Given this viewpoint, the challenge is to create pat-
terns within the boundaries of the mentioned com-
position rules, and yet to make a design that is as 
powerful and attractive as possible. 

This is to be done by the use of color, dimension, 
and material, and not by choosing words derived 
from the sources of inspiration as a starting point in 
creating patterns. 

Incidentally, the set was given the name ‘ZenArt’, a 
reference to a mystic language ‘Zenzar’ and to Zen 
philosophy. Also it refers to the mentioned alphabet 
‘Azart’ of the artists Rombouts & Droste.
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Figure 6: The alphabet (lower case only), placed 
with a space in between that equals the thickness of 
a letterstroke.

ABCDEFGHIJKLM
NOPQRSTUVWXYZ

Figure 5: The letter ‘R’ turned, rotated and mir-
rored according to the restrictions of the matrix.

Figure 4: The letter ‘R’ moved in different ways 
according to the restrictions of the matrix.

Figure 7: A composition with letters that form the 
word ‘BRIDGES’ showing overlapping letters.
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Abstract

This short paper elaborates on findings presented at the 2007 Donostia Bridges Conference [1], first bringing some 
classifying logic in the family of labyrinths of which the 'Classic' and 'Chartres' are the best known examples, with 
the interesting inclusion of spirals.  Second, another 3-dimensional morphing is offered on the surface of a sphere, 
which underscores the inherent antisymmetric nature of the 'Classic' and Chartres' designs. Third, appealing 3-D 
forms can result from projections onto polyhedra, here the octahedron/cube duals. Fourth, a recent arrangement of 
the 'Classic' into a rose-shape is proposed for possible mathematical analysis.  The figures of this paper, including 
an important erratum correcting a wrong figure that didn't make it in the printed Donostia Proceedings, are provided 
as an appendix in the CD-Rom of the Proceedings of the Conference, but not on the printed Proceedings. They are 
further expanded by entries at the accompanying Bridges 2009 Mathematical Art Exhibit [2].  

Introduction

The title “Amazing Labyrinths” [1] goes beyond a mere easy play of words.  In the class of unicursal 
'labyrinths', we consider from a geometrical viewpoint the subclass 'centered' around the characteristics 
(see [1]) of the 'Chartres' design amplifying the old 'Classical/Cretan/Knossos' design. Its members share 
the interesting property that their 'walls', i.e. the space delimiting the 'Ariadne' journey that meanders to 
the  center,  actually  constitute  'walkable'  multicursal 'mazes',  complete  with  'choices'  and  'dead-ends' 
(refer to those mystifying paths enjoyed by children and adults alike in labyrinthine theme parks and 
which in fact are mazes).  The essential  point that makes so special those mazes stemming from this 
subclass of labyrinths is that their 'dead-ends' are opposite pairs that can be joined by tunnels, bridges or 
Japanese  steps  for  these  mazes  to  be  turned  into  'closed circuits',  when in  addition the  'transversal 
choices' are denied access! This was fully expressed in several 'trompe-l'oeil' works and in the sculpture 
project presented at Bridges Donostia [1] and at the accompanying Mathematical Art Exhibition [3].

1. From Spirals to the 'Classic', 'Chartres' and Beyond

As suggested by Raket [4] the meandering plowed track packing the agriculture field might prefigure  the 
labyrinth, and Kern  [5] as well as Raket again see in the spiral a precursor of the 'Classical' labyrinth.  So, 
spirals and 'Chartres'-like labyrinth layouts can be brought in a comprehensive system based (a) on their 
'seeds' as in  earlier remarks by Tony Phillips found on-line in [6], where some necessary corrections have 
been introduced, and (b) on further developments of the typical Chartres' 'opposite returns' mentioned in 
the Introduction.  This has led to combining 'seeds' and 'opposite returns' in large complex labyrinths that, 
with a leap into still further developments as hinted to in the next section, could go 3-D!  In the same vein 
of strange/magic labyrinth generation, we need referring to another spiral-to-'Classic' transform by Slavik 
Jablan as cited and shown in [7], and, in a ludical context, placing half as many children as there are 
'perimetric dots' around a given labyrinth 'seed', seashore or chalk labyrinths can readily be generated in 
choregraphic pleasing dynamics as displayed in the Math Art Exhibition [2].
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2. From Disk to Cylinder to Sphere and Beyond 

The Donostia paper [1] illustrated a disk-cylinder morphing transform. Here, pushing this 3-dimensional 
interpretation to the end, by swelling the mid-part of the cylinder, brings about the spherical labyrinth (see 
[8,9]) that magnificently stresses the inherent antisymmetric nature of the 'Classic' and 'Chartres' designs 
related themselves, as described in previous paper and elsewhere, to a Greek freeze meander. 'Chartres' 
typical turnabouts and trough passages giving rise to the 'pilgrim steps' [1] remain as apparent as on the 
cylinder and on the rectangle (that by could be curled into a cylinder in the other direction as well, I found 
out) and suggested the idea this class of labyrinths can be generated from infinite lattices of such steps 
[10].     No doubt Dick Termes  could develop this brilliantly further in  his trademarked craft [11]!

3. Projection of Labyrinths onto Polyhedra

This alternate kind of 3-dimensional interpretation to the above-mentioned stems here from the square 
and hexagon as projections of the octahedron (and of the pyramids it's composed of) and the cube, where 
the squared and hexagonized micro-Chartres labyrinths have been used.  Such exercises could be further 
tempted with other polyhedra, which recalls some maze work by Xu and Kaplan [12].

4. A Labyrinth/Knot Rose Submitted to Mathematical Scrutiny

'Roses'  are  this  year's  theme  of  the  'Jardins  d'Aywiers'  garden  fair,  so  my  eighth  ephemeral  veggie 
labyrinth there had to feature some rose-like shape, beyond what could have been more simply suggested 
by the central rose of the Chartres design reflecting the huge stained glass rose above the front porch of 
the  famous  cathedral.  Pairs  of  'walls'  of  the  classic  labyrinth  have  been  twisted,  which  reminds 
architectural work by Glaeser and Gruber [13]. 
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Abstract
A new theory of space travel using low energy chaotic trajectories was dramatically demonstrated in 1991 with the
rescue of a Japanese lunar mission, getting its spacecraft, Hiten, to the Moon on a different type of route. The design
of this route and the theory behind it is based on finding regions of instability about the Moon. This approach to
space travel was inspired by a painting of the Earth-Moon system which revealed these regions and the new chaotic
trajectories. The brush strokes in the painting revealed the dynamics of motion which are verified by the computer.
The painting itself can be used as a way to uncover dynamics in the field of celestial mechanics that cannot be easily
found my standard mathematical methods.

A New Approach to Space Travel

The classical route from the Earth to the Moon uses the Hohmann transfer, named after the German engineer
Walter Hohmann [1]. Let’s assume a spacecraft is to go from a circular orbit about the Earth to a circular
orbit about the Moon. The Hohmann transfer is a nearly straight path, actually half of a highly eccentric
ellipse, from the circular orbit about the Earth to the circular orbit about the Moon. To leave the orbit about
the Earth, the spacecraft briefly fires its engines to gain the necessary velocity, then coasts to the Moon in
three days. At the Moon, it needs to be captured into the lunar circular orbit. To do that it needs to slow
down by about one kilometer per second by firing its engines again. This is called a capture maneuver. It is
risky to do and also uses a lot of fuel, which is expensive. Is there a better way to do this?

It would be desirable to go into orbit about the Moon, automatically, without needing to slow down and
firing the engines. This is called ballistic capture. Prior to 1986 it was thought to be impossible to do. If
it could be done, however, then a spacecraft could go to the Moon and then into orbit with much less fuel
and more safely. I got interested in this problem at that time when I was working at NASA’s Jet Propulsion
Laboratory. I knew that ballistic capture may be possible due to my training as a mathematician, from New
York University’s Courant Institute. My specialty was celestial mechanics and chaotic dynamics. I figured
that there may be a way to utilize the gravitational forces between the Earth and Moon to achieve ballistic
capture, but with a longer flight time. In early 1986, I was given three months to try and find a way to achieve
ballistic capture for a robotic lunar mission study, called LGAS (Lunar Get Away Special). The ability of
achieving ballistic capture would provide a new approach for how spacecraft could go orbit about the Moon
with many exciting possibilities. Due to the time allotted, and the complexity of the problem, with nothing
in the literature, I felt it was not going to be possible to figure out.

Dynamic Channels, Chaos, and Paintings

To gain an insight into the problem, I sought out help from my other profession as an artist doing paintings.
The hunch I followed was something that is evident from looking at a Van Gogh painting, for example,
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Figure 1 : Orbit to the Moon, 56”×72”, oil on canvas, 1991

Starry Night. The brush
strokes he used are applied
very quickly, in a spontaneous
manner, being guided by in-
tuition. His paintings reveal
a deeper aspect to reality. I
felt that if I used his painting
style, and painted the Earth-
Moon system, the brush strokes
may reveal patterns that would
give insight into ballistic cap-
ture trajectories. The painting
I did revealed a region about
the Moon that seemed to lie
at the boundary of the gravi-
tational field of the Earth and
Moon, allowing a trajectory to
delicately be captured about the
Moon ballistically, which ap-
peared to be a chaotic, that is,
sensitive, process, see [1, Fig-
ure 6.2]. When I went to the computer and simulated this, I found the ballistic capture transfer and the
regions supporting it about the Moon, called weak stability boundaries [1,2]. From a mathematical per-
spective, these boundaries are associated to a complex network of surfaces called invariant manifolds which
define dynamic channels where these chaotic trajectories can move [2,3].

However, a more useful and important ballistic capture transfer was found a few years later in 1990.
It was found in order to resurrect a failed Japanese lunar mission and get its spacecraft, Hiten, to the Moon
in 1991 [1]. This transfer utilizes the more complex four-body problem in celestial mechanics, where one
has to take into account the gravitational interactions of four bodies: Earth, Moon, spacecraft and the Sun.
The flight time is only four months making it far more useful. A painting of this transfer is shown in Figure
1. The trajectory starts near the Earth, travels out about 1.5 million kilometers from the Earth where it
encounters the boundary of the gravitational fields between the Earth and Sun. In this region, the spacecraft
is essentially balancing on the gravitational fields of these two bodies, like a surfer would balance on a wave.
It then arcs back to go to ballistic capture about the Moon at an analogous boundary, due to the balancing of
the Earth and Moon gravitational fields. As it falls towards the Moon, one can see the brush strokes defining
the gravity fields.

These pathways and the underlying theory were inspired by brush strokes in a painting.
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Text from Truchet Tiles
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Abstract

A way to create text with Truchet tiles is presented where each letter is represented by a particular grouping of
Truchet tiles. The resulting text is rendered in a surprisingly and visually appealing manner within a tiled region.

1 Introduction

In 1704, Truchet investigated the patterns obtainable from a single square tile that was bisected along a
diagonal into two uniquely colored isosceles right triangles [5]. In 1987, Smith [4] published an article
containing a translation of Truchet’s original paper with some commentary and new ideas including the use
of a random tiling rather than a structured pattern. Smith also included a variant of the Truchet tile that
replaced the triangular segmentation with two quarter-circle arcs, resulting in a tiling that is comprised of
an aesthetically pleasing, meandering set of mostly closed curves. These tiles are illustrated in Figure 1.
Pickover [3] proposed using randomly placed Truchet tiles as a way to visually detect patterns in binary
data, noting “the eye perceives no particular trends in the design.” However, he does note small features
such as circles and dumbbells. Esperet and Girou [2] discuss a variant where the plane is randomly tiled
using two tile types, each bicolored as shown in Figure 1. They note the tile’s type can be selected using a
parity process (row + column mod 2) to create filled regions, regardless of the tile orientation. Browne [1]
describes how to generate a closed path (a Truchet contour) using a spanning tree. Browne also gives the
simple formula for computing the perimeter and enclosed area of a contour.

Figure 1: Truchet tile examples. From left to right: Truchet’s original tile, tile with arcs, and the two
bicolored versions of tiles with arcs.

2 Creating Text from Truchet Tiles

One interesting application of Truchet tiling is to intersperse structured sections among a generally random
field. More specifically, one can represent each symbol in a font with a simple Truchet contour. An example
tiling containing the text “Bridges 2009” is shown in Figure 2. Because of the nature of the connections
in the tiling, the baseline of each letter is oriented 45 degrees from the horizontal. While the tiling can be
performed relatively easily, one must be careful of a few details. When using colored tiles, parity should
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be preserved by selecting an appropriate spacing between letters, words, and baselines. Also, the tile size
should be large enough for the curvature of the Truchet contours to be visible, yet small enough to allow
rendering of all of the letters required for the text.

As Browne notes, the perimeters and enclosed areas of each Truchet contour are easy to compute. This
suggests an interesting exercise for children in which they create their initials or a word and then compute its
perimeter and enclosed area. Other applications include quilt making and architecture, where the designer
might choose to include a name or other text as a subtle message in an otherwise random field.

The subtle nature of the text’s appearance enhances the pleasure in discovering a message in the tiling.
While not shown here, visibility of the text can be greatly enhanced by using a contrasting color for the
contours or the interior regions of the letters.

B

Figure 2: Examples of a Truchet tiling containing the words “Bridges” and “2009” using uncolored arcs
(on left) and colored tiles (on right). The tiling grid is shown in the last four rows. The baseline of the word
“Bridges” is along the line defined by the two line segments outside the grid. The start of the word along the
baseline is indicated by the “B” at the bottom of the grid.
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Abstract 
 

In order to stimulate interest in geometry, model the use of complex, real-world applications of mathematics for 

prospective teachers, and draw a connection between mathematics, history, and culture, a lesson was designed in 

which students replicate the experiment of Eratosthenes of Cyrene (c. 275-194 B.C.) to estimate the circumference 

of the earth.  During the lesson, students measure the angle of inclination of the sun on a date near the spring 

equinox and build models of the situation using dynamic geometry software.  This process helps prospective 

teachers develop knowledge about modeling situations, measurement, similar figures, and other geometric topics.   
 

 

Introduction and Context 

 
A central concern for those professors teaching mathematics content courses for prospective elementary 

school teachers is how to maintain a high level of mathematical inquiry while stimulating students’ 

interest and confidence in doing mathematics.  Recent recommendations by policy groups and literature 

analyses [1, 2] suggest that in these courses, a high priority should be put on developing prospective 

teachers’ conceptual understanding of mathematics and modeling effective methods of mathematics 

instruction.  In particular, the Conference Board of the Mathematics Sciences [1] emphasizes the 

importance of building visualization and modeling skills and encouraging mathematical communication 

in geometry courses for prospective teachers. 

 

I designed the “Geometry and Geodesy” lesson in an attempt to fulfill these recommendations in a 

geometry class for prospective elementary teachers.  Prior to the lesson, students had completed a three-

week unit on basic geometric constructions and attributes as well as a one-day lesson on similar figures.  

Throughout the course, students are encouraged to describe geometric situations using increasingly 

precise language and investigate conjectures beginning with empirical methods (such as by using 

dynamic geometry software to test a conjecture for many examples) and moving toward deductive proof.   

 

The problem under consideration is one that has interested humans since ancient times: how big is our 

planet?  The study of geodesy (the science of measuring the size and shape of the earth) originated with 

Aristotle, who gave a value for the size of the earth but did not describe his procedure for obtaining this 

value [3].  The first scientific approach to finding the circumference of the earth was used by Eratosthenes 

of Cyrene (c. 275-194 B.C.), whose other cultural contributions include a prime number sieve and the 

invention of the leap day.  According to legend, Eratosthenes knew (perhaps by looking into a well and 

seeing no shadow) that on the day of the summer equinox, the sun was directly overhead in Syene 

(present-day Aswan, Egypt).  By measuring the angle of elevation of the sun on the same day in 

Alexandria (roughly on the same longitude as Syene) and calculating the over-land distance between the 
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two cities, Eratosthenes was able to calculate the circumference of the earth using proportional logic (see 

Figure 1) [3].  Note the elementary geometrical concepts involved, including the ability to identify 

corresponding angles on parallel lines, the use of proportional reasoning with similar figures, and the 

ability to model a real-world situation with a condensed and abstract geometric diagram.  These are all 

goals of conducting the activity with prospective teachers.   

  

  
Figure 1: Eratosthenes’ method for calculating Earth’s circumference 

 

 

Steps of the Activity 

 
In order to carry out the estimation, students are divided into groups, with 3-4 students per group.  Each 

group is given a yardstick and string to measure the length of a shadow.  Because these students are 

unfamiliar with trigonometry, they cannot compute the angle of elevation directly from the 

measurements.  Instead, they use dynamic geometry software to construct a triangle similar to the one 

formed by the vertical stake and its shadow.  They can then use this similar triangle to determine the angle 

formed.  Through an activity sheet, students are then directed to design a model of the earth and sun’s 

rays using dynamic geometry software, determine which angles are congruent, and set up a proportion to 

solve for the circumference.  In order to solve the proportion, students must then use the internet to 

research the north-south distance between Towson, MD (their location) and the equator.  Once the 

distance is determined, students can solve the proportion.  The different groups’ estimates are compared 

and differences explored.  This discussion can lead to a rich exploration of the sources of error in a 

measurement.  In this way, students are able to participate in an interactive, engaging lesson which 

explores an accessible application of geometry to a serious and realistic problem from history. 
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Abstract 
We discuss the possible application of techniques inspired by the theories of G-convergence and homogenization to 
understand mixtures of colors and how they appear as observed by the human eye.  The ideas are illustrated by 
pictures describing the equivalent of a convergence process  for different kinds of mixtures of colors. 

 
The mathematical theory of homogenization and G-convergence (see [1]) deals with the convergence of 
balances  

        fuA hh =  
between a source f,  material properties hA  and a response hu . When h passes to infinity we may reach a 
limit state described by a similar equation  
        fBu =  
where B is the effective property of the limit material. This could deal with elasticity or heat conduction 
in heterogeneous media or flow in porous media so why not colors? Here f could be the light illuminating 
an object, hA  distributions of colors, B the “effective color” in the limit and hu  and u the way the objects 
are judged by the human eye, see Figure 1. 

 

 
 

Figure 1: A sequence of mixtures of colors. 
 
For periodically arranged materials there are methods to find B and hence to compute u for any given f. 
Different distributions of materials in the representative unit will result in different limit materials when 
the size of the repetitive units containing this mixture of materials shrinks to zero and their number hence 
goes to infinity. The stabilization during this process can be described by the result u for the limit 
equation and a corrector hu1  as 

hh uuu 1+=  

Translation to colors u is again the limit color as it is observed by the human eye and hu1  the disturbance 
of this impression by the heterogeneous pattern of colors that is still possible to view, see Figure 2.  
The patterns below have about the same proportions between blue, yellow and white, but the colors are 
arranged in different ways. We can see that both cases approach a homogeneous green color but is maybe 
this process faster and passes through other nuances for one of the arrangements than for the other? 
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Figure 2: Two sequences of periodically arranged colors. 
 
 
We raise the question whether techniques similar to mathematical homogenization can be applied to 
understand what mixtures of colors in different patterns look like when they appear in front of the human 
eye. This means that we would like find out if it is possible to find a relationship between this impression 
and the microstructure of the arrangement of colors that can be subject to computations based on 
equations formulated on one representative unit in a similar manner as in periodic homogenization. If this 
is successful the next challenge would be to study the corresponding issues for non-periodic structures. 
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Abstract 
 

We present a method for transforming a simple plane figure or motif into another, which is related to it in a definite 
way, by applying a group of systematic geometric transformations. The method creates certain classes of star motifs 
from a basic plane figure. We demonstrate that surface design is an ‘atomic’ and a ‘self-assembly’ process, and 
expansion, figure and motion are the only properties in design which can be directly represented geometrically. By 
applying a group of fundamental point transformations of the plane, and rearranging the axis of the reflection, we 
transform a simple figure into a series of complex star motifs.  Our ultimate aim is to develop the invariants of 
design and creative process, and to bring the formal side of art within the purview of mathematics. 

 
Self-Organized Motifs 

 
In order to gain a quantitative and mechanistic understanding of creative design, it is important to 
understand the recurrence relations and sequential moves in the transformation process. Although the use 
of symmetry and geometric transformations to make patterns is well-understood and applied to practical 
applications at a certain extend [2,4], however, there is no established mechanism for creating  a range of 
aesthetic designs and highly extended structures from first ‘building blocks’. 
 
Any figure, drawn, painted, printed, embossed, woven, or otherwise executed on a surface, is termed a 
‘motif’, provided there is at least one possible motion which moves the figure, as a whole but not point 
for point or part for part, back to its initial position [2]. If A and B are two (not necessarily distinct) sets, 
then a mapping of set A onto set B in which distinct elements of A have distinct images in B will be a 
transformation (or one-to-one mapping) of A onto B [3]. In three consequent stages, Figures 1, 2 and 3 
shows how this method can be applied to construct chains of two dimensional surface designs in which 
successive designs are derived from the initial figure and earlier ones in the chain. These designs are all 
composed entirely of one single very basic rectilinear geometric figure and nothing else. A given figure or 
the first ‘atom’ is transformed into a new figure by applying certain transformation or symmetry rules.  In 
Figure 1, if O be a fixed point of the plane figure and θ the angle of rotation, we first apply rotation R(O, 
θ), the figure is rotated in the plane through a certain angle, 180º in this case, about a point, and it turns as 
a whole to its initial position if we apply an inverse transformation. In this case, the individual points are 
rotated through this angle about the point. In the second step, we apply mirror superimposed 
transformation, thus a type of reflection symmetry R(O) about the same point. In order to achieve 
expansion, in final two steps, we rearrange the point of transformation into another point (O’) and apply 
rotational mirror symmetry R(O’, θ),  to achieve the final design.  
 
Figure 2 shows the next step and application of first, superimposed mirror transformation R(O’) of the 
final motif of the Stage I, and then rotational transformations R(P, θ), to the resulting motif, where P is 
another fixed point outside of the final motif. An arrowhead star and cross design is reproduced and 
rearranged from the building blocks in its whole expanse. Figure 3 shows the application of additional 
superimposed mirror symmetry R(O’) to the final motif of Stage II and then the application of rotational 
mirror symmetry R(P’, θ) to the resulting surface design, where P’  is the new fixed point on the plane. 
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Figure 1: Geometric transformations in self-organized four-armed arrowhead motif (Stage I)  

 
Figure 2: Geometric transformations in self- organized arrowhead star and cross motif (Stage II) 

 
Figure 3: Geometric transformations in self- organized star motif (Stage III) 

  
Geometric transformations, as indeed groups and symmetry in mathematics [4], are useful not only for 
solving problems and discovering new facts, but also in creating new designs [6,8]. This paper shows that 
the concept of symmetry as understood in light of transformation theory has several advantages in its 
applicability to many design problems. The process which resembles very closely the self-reproduction of 
biological molecules also sheds light on uncovering the mathematical mystery in different cultural 
practices and artifacts[5], such as the geometric decorative motifs in Islamic arts and early Turkish tile 
and carpet design motifs [1,7]. 
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Abstract 
 

This work is a simple exercise in algorithmic poetry. A generative poetry structure, the quinary, is devised and 
implemented. Simple lines and images are ordered randomly within a fixed structure of five groups of five lines 
(four lines and an image, actually). There’s a boy, a girl, aspects of weather and living nature, and random images. 
Each time the poem is read the lines and images reorder in a random permutation. Meaning slips ever so slightly as 
haiku meets Hollywood in an Oulipian playground.  

 
 

Oulipo 
 

This work follows from the ideas of the French group Oulipo, Ouvoir de Littérature Potentielle 
(Workshop of Potential Literature), an interdisciplinary group started in 1960 and interested in 
experimental literature and algorithmic process. Raymond Queneau, a founding member, stated their 
purpose clearly, “What is the objective of our work? To propose new ‘structures’ to writers, mathematical 
in nature, or to invent new artificial or mechanical procedures that will contribute to literary activity: 
props for inspiration as it were, or rather, in a way, aids for creativity [1].” 
 

Queneau himself is known as the author of one of Oulipo’s seminal works, Cent mille milliards de 
poèmes, a set of ten sonnets each with the same rhyming scheme and grammatical structure [2]. The 
poems were printed on cards, with lines cut in strips. This permitted any and all of the 14 sonnet lines 
from the 10 poems to be freely combined with each other, while each line keeps its place in the overall 
structure of the sonnet. This allows for 1014 different poems! It is estimated that, reading 24 hours a day, it 
would take 200,000,000 years to read them all. 

 
 

Generative Poetry 
 

Queneau’s poem is an example of generative poetry, where poetic text is data that is organized by some 
algorithmic process. This process lends itself well to computing, and plenty of examples have appeared 
over the Internet. One example of note, an inspiration for this project, is Snaps by Dirk Hine [3]. Snaps 
combines several short lines of poetry with a large collection of photographs. The user clicks a word and 
it leads to a new photo and lines. This unfolds as long as the “reader” chooses to participate in the work. 
The words and images are selected at random and will repeat.  
 

The work Snaps exists online as a Javascript program, and it is possible to read and explore the code 
as freely as one can explore the work itself. This raises questions in regards to digital poetry. Can the code 
be read as a literary work too? Can an algorithm itself have an aesthetic or artistic/poetic value [4]? 

Bridges 2009: Mathematics, Music, Art, Architecture, Culture

333



The Quinary 
 
The quinary was created as an experiment in poetry and programming. It is an invented structure (as are 
all poetic structures). In contrast to the model of Snaps, it was decided to fix and close the form, and to 
focus on permutation rather than combination as the controlling process. Rules were specified as follows: 
 
1) The quinary is defined as a structure of five short poems, each of five lines (or perhaps a 

combination of text and image, where the image might be substituted for a line). 
 
2) Each line has a general focus, subject or action (in the example the lines include: action of a male, 

action of a female, an index of organic nature, an index of weather, and a photograph with aspects 
of nature and man-made objects, but no people). 

 
3) Random permutations of the lines occur, while keeping one of each focus in each poem. (Once a 

line or image is selected it may not be repeated.) 
 

In this first instance of a quinary, two literary formulas are followed, freely varied, and mixed.[5] 
First is the cliché Hollywood narrative—boy gets girl, boy loses girl, boy gets girl. The second is the 
Japanese haiku—two objective descriptions of moments in nature combine to create a Zen-like gestalt. 
The photographic image provides a link to “new media” and post-modern visual culture. In the spirit of 
Oulipo, cultural content and mathematical process combine to engage, to experiment, and to play. 
 

 
 

 4. 
 

 he wiped the tear secretly 
 

 cloudless thunder rumbles 
 

 she pretended not to hear 
 

 mud dauber buzzsaw 
 
 
 

 
 

Figure 1: sample page from quinary #1. 
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Abstract 

The set of 2D spline curves named ‘cyclons’ by Palmer [1] that are derived from polyhedra are used in combination 
to produce more strangely attractive curves for use in print and graphic animation. 

Introduction:  As reported at Bridges 2005, I used Rhinoceros software to construct a database of 
polyhedra within unit radius circumspheres.  These are projected to the plane and exported to Corel Draw. 
Here the hard edged linear maps are ‘converted’ to a set of spline curves, ‘cyclons’ that are useful in 
design applications.  Some additive properties of these cyclons are explored here. 

Four methods for combining cyclons: 

1)  Spins: Copies of a cyclon are circularly arrayed with rotation angle equal to S/n, where S is the 
cyclic group angle (e.g. 120 degrees or 2/3 pi) and n is prime so as to avoid duplication. 

Figure 1: Tetrahedral cyclon with Spins (n= 2, 3, 5) 

2)  Like with Similar: Cyclons are combined with other members of their symmetry groups. 

Figure 2: Pas de Dual.
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3)  Scale: Cyclons derived from polyhedra modeled with variable circumsphere radii are combined. 
In the example, radii for five related polyhedra were chosen such that their relative volumes are 
proportioned (1, 3, 4, 6, and 20). 

Figure 3: Cyclons from pairs of polyhedra scaled to rational tetrahedral volumes [2]. 

4)  Close  Pack:  Space  frame  arrays  of  polyhedra  are  modeled  in  Rhinoceros  and  their 
cyclons are produced. 

Figure 4: Close Packed Truncated Cubes. 

Conclusion:  These  methods  of  cyclon  combinatorics  have  provided  an  endless  variety  of 
pattern to pique the author’s artistic and pedagogic curiosity and drive further spelunking of the 
‘spline mine’.  “What would that look like?” 
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The Neidhart frescoes (located in Tuchlauben 19, 1010 Vi-
enna) from the 14th century are depicting a cycle of songs
of the 13th century minnesinger Neidhart von Reuental.
The picture on the left shows a part of the Neidhart fres-
coes. The white holes in the fresco are due to the wall
which covered the fresco until a few years ago. They arised
when the wall was removed.

In the following we want to apply digital restoration (inpainting) methods to these frescoes.
Thereby the main challenge is to capture the structures in the preserved parts of the fresco and trans-
port them into the damaged parts continuously. Due to their great age and almost 600 years of living
by owners and tenants in the apartment, saturation, hue and contrast quality of the colors in the fres-
coes suffered. Digital grayvalue, i.e., color interpolation, in the damaged parts of the fresco therefore
demands sophisticated algorithms taking these lacks into account.

In our previous Bridges paper [1] we presented two inpainting methods based on partial differ-
ential equations (PDEs) and their application to the reconstruction of the Neidhart frescoes. Because
of the lack of space in this paper we refer to Burger et al. [2] for a motivation of the PDE approach
and relevant references. The first method in [1] constitutes in a modified Cahn-Hilliard equation for
the restoration of the binary structures of the frescoes [2, 3, 4], see Figure 1 for a specific example.
The second method is a generalization of this binary inpainting approach for grayvalue images and is
called TV-H−1 inpainting [2]. The grayvalue approach produced fairly good results for the inpainting
of homogeneous areas in the frescoes, but not very satisfying results for the continuation of edges into
the holes [1].

∗This publication is based on work supported by Award No. KUK-I1-007-43, made by King Abdullah University of
Science and Technology (KAUST).

†M. Fornasier acknowledges the financial support provided by the European Union’s Human Potential Programme under
contract MOIF-CT-2006-039438.

‡P. A. Markowich also acknowledges support from the Royal Society as Wolfson Research Merit Award Holder.
§is partially supported by the project WWTF Five senses-Call 2006, Mathematical Methods for Image Analysis and

Processing in the Visual Arts project nr. CI06 003, by the FFG project Erarbeitung neuer Algorithmen zum Image Inpainting
project nr. 813610 and by KAUST (King Abdullah University of Science and Technology).

Bridges 2009: Mathematics, Music, Art, Architecture, Culture

337



Figure 1: from left to right: Part of the fresco; binary selection; binarized selection of the fresco; initial condition for the
inpainting algorithm where the inpainting region is marked with a gray rectangle; Cahn-Hilliard inpainting result after 200
timesteps with a large diffusion coefficient; Cahn-Hilliard inpainting result after additional 800 timesteps with less diffusion
for sharpening the edges

In this work we propose a combined strategy for the restoration of the frescoes, which we call
binary based restoration method. This method is motivated by the previous work of Fornasier [5],
and Fornasier and March [6]. More precisely we propose an inpainting model for grayvalue images
which uses a given (or previously obtained) binary structure inside the missing domain D. Thereby the
binary structure of the image is usually obtained by a preprocessing step with Cahn-Hilliard inpainting
[3, 4] and Figure 1. This new approach is described in the following paragraph and in Figure 2.

Let f ∈ L2(Ω) be a given image which is a grayvalue image in Ω\
D and binary in D. We want to recover the grayvalue information
in D based on the binary structure given by f by means of the
following minimization problem:

u∗ = argmin{ µ

2
∫

Ω\D |u(x)− f (x)|2 dx
+λ

2
∫

D |Lbin(u(x))− f (x)|2 dx
+ |Du|(Ω), u ∈ L2(Ω,R+)

}
.

In our case Lbin is a transformation which projects the grayvalue
range of u, e.g., [0,1], on the binary range {0,1}. For our purpose
Lbin is modeled by a relaxed version of the Heaviside function
depending on a (presumably) given threshold τ .

Figure 2: Binary based grayvalue in-
painting: (l.) initial condition; (r.) in-
painting result with µ = λ = 102 and
5000 iterations.
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Planar construction in design integrates aesthetics, spatial choreography, structural integrity, folded
proportions and relational geometry. As such, I have developed a five-tiered exploration of planes and space
to explore these relationships. Specifically examined is the work of one multi-tiered studio project in which
students approach, synthesize and construct a variety of complex planar and spatial exercises and fold them
into one final sculpture/construction.

Planar construction is the process by which any form is expressed through planes. The number, shape,
character and spatial relationships of the planes are the focus of this project. The formation of this project
reflects research the I have conducted in Japan on the nature of folded space in everything from the folding
of the Kimono around a body to the folding of Shoji screens to confine and define a space. It also reflects the
work of Picasso, Braque, Tatlin and how their explorations grew into modernism and the international style.
As such, planes can be engaged as a structural system, proportioning system, measuring system, folding
system, visual rhythm system, polyglot rhythmic system, boundary/border/barrier, tool of analysis, pathway
for the eye and choreographer of space.

Before addressing the five stages of the planar analysis, students engage in three preliminary exercises.
The first, based on the golden section, addresses creating a freestanding structure which both contains and
defines space. For this exercises the design operations are limited to folds, tabs and cuts in which no ma-
terial may be removed. The second exercise is based on the Japanese proportioning system exemplified by
the Tatami mat. The guidelines of this exercise are similar to the previous one except all cuts and folds
are placed within the formalist grid. The two classical systems are discussed, contrasted and explored in
relationship to the exercise. The third exercise consists of constructing five platonic volumes/forms. Once
the exercises are constructed, students deconstruct and reconstruct them using deconstructivist techniques to
create a sculpture. A discussion of Plato and Derrida follows to highlight their ideas and their relationship
to design. Once students have completed the initial exercises and have been exposed to several disparate
aesthetics and notions of form, they are ready to proceed to the project. The objective of these preparatory
exercises and ideas is to introduce creating a volume through folding a 2D plane. It is also about initiat-
ing the play between volume and void and the continuum of inside and outside spaces. Finally, it is about
introducing some rudimentary philosophical structures of which this project engages.

Upon completing the exploratory exercises, students enter into a five-stage process by which they con-
sider the progressively complex interaction of planes and space within a form. The stages and concepts that I
have organized to guide students through the process engage an innovative use of planes and spatial expres-
sion. The first stage, Encapsulation, is the shielding of a volume with a skin of planes. This is conceptually
the most concrete stage and only discussed in preparation for the next stage. Secondly, Rational Ribbed Con-
struction, utilizes an internal rib structure in which the edges of the planes define the external contours of the
form. The geometry is perpendicular, hence the label rational. The third stage, Organic Ribbed Construction,
utilizes an internal ribbed armature but the planes are assembled and organized in a non-cartesian, fluid and
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dynamic mode. The fourth stage, Cubism, utilizes planes as spatial containers and defines a form through the
interplay of confined and defined space. The final stage is a hybrid of the previous stages in which multiple
creative operations are utilized to engage planes thoughtfully. The visual and spatial complexity of the stages
is both additive and increasingly difficult. After students have prepared maquettes of the last four stages, they
select one mode for a final project that will challenge their design growth.

Demonstrated through one studio project are a variety of applications of planes, use of proportioning
systems and utilization of design operations as an innovative and rigorous approach to design. Also examined
is the perception of space in relationship to math, design, art and science. Illustrated is how planes and space
can be seen, understood, developed and integrated in a comprehensive studio.
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Abstract
In an effort to create a visual and historical basis to my classroom instruction, I began quilting high school mathe-
matics topics in the early 1980’s. The visual approach to teaching a lesson was successful in that the quilts engaged
the students immediately. Students’ motivation and enjoyment of mathematics were evident in their enthusiasm for
the topic being studied. Cultural and historical connections evolved with the story of each quilt.

Introduction

During the early years of generating classroom quilts, two authors inspired me: Dan Pedoe [13] and Thomas
Banchoff [1]. I began to think that a whole new way of teaching mathematics would be possible. Could I
use color, form, composition, perspective and formulas to interest students in mathematics? Banchoff and
Pedoe inspired me to show the beauty in mathematics.

As the number of quilts grew and lesson plans to go with the quilts were written, I found that other
teachers were interested in learning about my unique classroom. Cloth quilts inspired paper quilts and
mathematical placemats. My classroom was evolving creatively!

Most recently, I have taken the 39 mathematical quilts and organized them into a PowerPoint presenta-
tion that many groups have enjoyed over the last few years. The quilts are organized historically. Each quilt
has been used in the high school classroom or could be used in the high school classroom. There is no need
to limit the use of these quilts to the high school level.

Topics in the PowerPoint of the Mathematical Quilts

1. Golden Rectangle—around 500 B.C.E.
2. Golden Rectangle at Givemy
3. Fiddle Dee Dee Golden Rectangle #3
4. Labyrinth at Chartres Cathedral—Golden Rectangle
5. Blue-Breasted Hummingbird—Golden Rectangle
6. The Sacred Cut-around 500 B.C.E.
7. The Lutes of Pythagoras—582–502 B.C.E.
8. Spiraling Pythagorean Triples
9. My Spiraling Pythagorean Triples

10. Mathematical Harmony—500 B.C.E.
11. The Wheel of Theodorus—400 B.C.E.
12. The Six Trigonometric Functions—400 B.C.E.
13. The Parabola—375–325 B.C.E.
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14. The Hyperbola and Ellipse—375–325 B.C.E.
15. Spiraling Squares—300 B.C.E.
16. Fibonacci x 3—1175–1250
17. Leonardo’s Dessert no Pi—1452–1519
18. Leonardo’s Claw
19. Lucy’s Quilt of Leonardo
20. San Gaku—1603–1867
21. Pascal’s Surprise—1623–1662
22. Pascal’s Pumpkin
23. Mascheroni Cardioid—1797
24. Poincaré Plane—1854–1912
25. Koch Curve—1870–1924
26. Sierpinski’s Gasket—1882–1969
27. Sierpinski’s Carpet
28. Indiana Puzzle—Snail’s Trail
29. Clifford Torus—1845–1879
30. Tessellation
31. Tessellation
32. Worlds of Geometry—1990—The Geometry Center
33. Orthic Triangles—talk by Douglas Hofstadter at Indiana University
34. Graeco-Latin Squares and Sudoku
35. Fabulous Fibonacci Flowers
36. The Music of the Genes—2007
37. Spiraling Spidrons—2007
38. Buckyballs and Bubbles—2008
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Abstract 

The architect Antonio Gaudi created visionary imagery from often profoundly mathematical forms. A sculpture in the garden of 

his home in Parc Guell ,Barcelona, embeds the Platonic solids and uses these to represent the heavens in the same cosmographic 
spirit as that of  Johannes Kepler in his Harmonices Mundi. 

In the garden of Antonio Gaudi’s home in Barcelona’s Parc Guell stands a sculpture by the famed 

architect entitled “Cosmos”. Actually a copy of an ornament cresting a spire on his unfinished temple, the 

grand Sangrada Familia, it nevertheless carries all the spatial integrity and thematic clarity of an 

exceptional stand-alone sculpture. A key ingredient is Gaudi’s masterful inclusion of significant 

mathematical forms, especially those introduced by Johannes Kepler in his 1619 text Harmonices Mundi. 

 

   

Figure 1: Antonio Gaudi, Cosmos, ferro-concrete, ca.1907. Figure 2: detail of Cosmos. 

The sculpture (Figures 1 and 2) presents as a concrete nebula embedded with stars out of which a hawk-

like bird streaks earthward. The stars radiate three-dimensionally with various numbers of points spiking 

outward. About half of the spikes remain embedded in the cloud with the others bristling outward. A 

closer inspection reveals that these stars possess 4, 6, 8, 12, and 20 points respectively and that they are 

actually stellated versions of the five Platonic solids. 

 
The star-studded nebula clearly supports the title “Cosmos”, but the integration of the Platonic solids 

greatly extends the sculpture’s cosmographic complexity. Historically, the solids have served as insignia 
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of four classical elements of earth, air, fire and water, plus the fifth element – the quintessence – that to 

the ancients formed the crystalline substrate of the celestial spheres (Figure 3, lower right.) In this 

symbolic scheme the hexahedron, octahedron, tetrahedron and icosahedron reference the first four 

elements respectively, while the dodecahedron signifies the quintessence. A second cosmographic 

allusion is Kepler’s “discovery” that the spheres of the planetary orbits have their proportions determined 

by these same five polyhedrons (Figure 4.) Gaudi's forms also reference the stellations described in 

Kepler's Harmonices Mundi of 1619. 

 

                              
 
Figure 3: Johannes Kepler, Harmonices Mundi , 1618, detail from page 54. Figure 4: detail of page 186 

 
In keeping with the hierarchy implicit in this scheme a single dodecahedral star bobs at the top of the 

cloud (Figure 2.) Distributed over the cloud below the dodecahedron are two copies each of the 

hexahedron, the octahedron and the icosahedron, as well as three tetrahedrons. Gaudi’s starry polyhedrons 

are structured so that the point of each ray of the stars corresponds to a vertex of a polyhedron. Given that 

a dodecahedron has 20 vertices, for example, his dodecahedral star has 20 rays. Technically, the 

dodecahedron is then the stellated version of its dual, the icosahedron. However, since the star is half 

submerged in the cloud and its treatment is somewhat loose and organic, it reads primarily as a 

dodecahedron with each grouping of five points demarcating a pentagon (see stellation in figure 3, lower 

left.)  Similarly, his hexahedral star boasts 8 rays, one for each vertex of the hexahedron. In effect the 

geometry of each solid is defined by stellations of their duals. 

 
In “Cosmos” Gaudi has orchestrated organic, physical, astronomic, religious and mathematical emblems 

of the heavens into a churning, multi-layered of faith and nature. In order to do so he needed to 

understand both the geometry and symbolic history of the Platonic solids, especially as put forth by 

Kepler. 
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Chaos – The Movie 
 

Susan Happersett 
Jersey City, NJ, USA 

E-mail: fibonaccisusan@yahoo.com 
Web site: www.happersett.com 

 
It is my personal mission as an artist to illuminate the intrinsic beauty of mathematics in a purely 
aesthetic realm. Translating mathematical subject matter to the picture plane of my drawings, I 
strive to enable viewers to appreciate this aesthetic, regardless of their mathematical background. 
I express the grace and beauty I find in mathematics through symmetries, patterns and 
proportions in my art. Many of my drawings are related to growth patterns such as the Fibonacci 
sequence and binary growth. I begin my work process by creating a plan or an algorithm. I make 
all of the decisions for the work beforehand and make a detailed plan in a large spiral drawing 
tablet that I refer to as my plan book. After I write out all of the specifications, I generate the 
actual drawing by hand using the rules from the plan. Through my drawings I hope to express 
both the aesthetics of my mathematical subject matter, as well as the aesthetics of the process of 
algorithmic generation. 
 
In the past few years I have become interested in generating drawings using fractal forms based 
on the repetition of similar shapes. I begin with a largest instance of a shape and incorporate 
copies scaled by powers of ½. I developed a drawing based on the four quadrants of the 
Cartesian coordinate system. Each drawing begins with 8 spokes. The line segments fall on the 
coordinate axes and the lines y=x and y=-x. Once I have drawn the initial shape, each spoke 
becomes the starting point for a new 8-spoke shape in which the line segments are ½ as long as 
the original spokes. Then those 64 spokes become the starting point for 8-spoke figures with line 
segments ¼ the length of the first line segments. Next, the 512 spokes each become the bases for 
an 8-spoke shape with line segments 1/8  the length of the original spokes. This process creates a 
circular fractal network of lines. While producing these drawings, I have developed a type of 
mantra to remember where I am in the drawing. I need to keep count and this becomes quite 
complicated and rhythmic especially when I reach the third iteration. 
 
Mathematics and art both enable humans to better understand the world around them by 
uncovering patterns and structures. Chaos Theory is one of the topics in mathematics that, I feel, 
particularly throws light on the intricacies of the human condition. Chaos Theory shows that 
even within apparent disorder there can often be found both order and structure. My 
investigation took me to the earliest ideas on Chaos Theory. In 1961 Edward Lorenz 
inadvertently discovered the phenomenon of sensitive dependence on initial conditions by 
noticing the effect of rounding off decimals had in a computer-generated sequence of 
calculations for weather prediction. This event marked the (re-) discovery of what is now 
commonly known as Chaos Theory. I decided to visually interpret this phenomenon in my 
drawings, by using my basic 8-spoke pattern and continuing with multiple iterations using 
stencils with a small margin of error. The errors accumulate to create these cloud-like, chaos-
derived drawings. If the viewer spends a few moments gazing into what at first appears to be a 
chaotic cloud they will begin to see the pattern of the fractals develop. There is a hidden structure 
to these drawings, as well as a sense of growth through time. This process of layering iteration 
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on top of iteration takes weeks of work and through the process the drawings go through 
interesting changes and developments. I wanted a way to incorporate this sense of time and 
change into my art. It was time to make a movie.  
 
I started with a fresh large black sheet of paper. Then I installed a digital camera over my 
drawing table. I began my drawing process, but after each line I took a still shot of the drawing. I 
continued this process over months. I wanted the movie to have an organic handmade feeling to 
it so I made a number of changes throughout the process. The frequency with which I 
photographed the drawing fluctuated. Sometimes I would take a picture after each line, 
sometimes I would complete a small cycle of lines before taking a picture. This change produced 
skips and jumps in the rhythm. Occasionally, I moved the camera closer to or farther away from 
the drawing. I also included myself in the photos as the generating mechanism: there are a few 
shots where you can see my hands. At a point where the drawing was getting quite complicated, 
I adjusted the camera so you could see my feet coming and going from view: the drawing was 
becoming a dance. Leaning over to draw and then pulling away to take a picture created a very 
physical element to this work and I wanted to express that physicality. Thousands of still digital 
photographs were taken during the drawing process. These photographs were put into 
consecutive order and then repeated in reverse to create the sense of both growth and decay. The 
edited product is a 6 minute video titled “Chaos Night”.  
 
I knew from the beginning of the process that I would add music into the final production. I 
contacted composer Max Schreier, and discussed the structure and mathematics I wanted 
incorporated into the music. I 
wanted to make sure the number 8 
played a major role in the structure 
of the music to mirror the 8 spokes 
of the drawing. Max agreed to write 
and perform a 6 minute 
composition based on these 
specifications. Influenced by 
Arnold Schoenberg, he based the 
music on a series of 8 sequential 
notes. While the bottom voice of 
the organ plays a drawn out rhythm 
associated with the first iteration of 
the drawing, the violin accelerates 
with the increased speed of the 
smaller iterations. The right hand of 
the organ creates small 
disturbances, each catalyzed by the 
random insertions of hands, feet 
and rulers in the video. 
 

 
Figure 1: Drawing for Chaos Night video 
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Abstract 
 

One source of frustration for some mathematicians is their inability to express sophisticated and beautiful ideas in a 

language more accessible to the broader community. Five examples of mathematical concepts are provided which 
lend themselves to artistic interpretation and inspiration, in areas ranging from precalculus to real analysis and 
differential equations, along with capsule descriptions of the mathematical processes and thumbnail graphics to 
help illustrate ideas difficult to capture in equations alone. The hope is that these ideas could serve to inspire artists 
and musicians who are more capable than most mathematicians in alternative forms of expression.     

 

 

Five Favorite Frustrations 

 
Introduction. Over the past eight years, an artist colleague (Keith Lord) has team-taught an advanced 
interdisciplinary general education course with me, entitled “The Mysterious Dance of Art, Mathematics, 

and Music”, which we collaborated on developing.  We have eight times now experienced anew the joy, 

wonder, and fascination of learning about the content, methods, and ways of knowing in our disciplines. 
As wonderful as this experience has been, one source of frustration has been my attendance at Bridges 

conferences where I have realized that my utter and complete lack of competence in all things artistic 

prevents me from realizing in any artistic medium ideas inspired by mathematical concepts or problems 

encountered in the course of earning my livelihood as a mathematician.  One possible solution to quelling 
this frustration might be to share some of those ideas with artists who have an interest in communicating 

and giving expressive form to mathematical ideas, and what better way to accomplish that than by sharing 

these thoughts with the mathematically inclined artists and musicians at a Bridges conference?  Very few 
artists and musicians have formal advanced training in mathematics (think Helaman Ferguson as the 

canonical counterexample), but there is a large set of artists living in the complement of my space, those 

people who are thoroughly versed in some mode of artistic expression but who search for nuggets of 
mathematical inspiration and understanding to push their creativity toward new boundaries.  It is to these 

folks that I address this paper.   

 

To Infinity and Beyond. I first encountered the system of nonlinear ordinary differential equations 

 as a graduate student over three 

decades ago, but I still recall the wonder with which I regarded the solution curves and limit cycles as 

described on the chalkboard by my professor (since it was not at all an easy task back then to actually 
produce a high-resolution graphic plot of such a solution). The solution consists of an infinite number of 

limit cycle circles of radius 1/(n , where the space between any two limit cycles is completely filled by 

an infinite number of non-intersecting spirals which both spiral inward toward the next smallest limit 

cycle and outward toward the next largest limit cycle (see Fig. 1). This is one of the most amazing visual 
expressions of infinity that I have ever encountered, and certainly deserves a more creative form of 

expression than simple output from a computer plotter.       
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Bridge to Infinity. A standard problem in many calculus books illustrates the extremely slow yet 

inexorable growth of the harmonic series  toward infinity.  The problem is to stack as many 

blocks on top of each other so as to produce the largest overhang possible without the stack of blocks 

tumbling down. The maximum overhang is achieved when for  stacked blocks, the k
th
 block extends past 

the block below it by  blocks for a total overhang of  blocks, which of course 

approaches infinity in the limit, thus permitting extensions of any length desired (see Fig. 2). This appears 

to be a prime candidate for some type of creative sculpture or painting.   

 
Lunar Origami. This example was born in a general education mathematics course, when to illustrate the 

rapid growth of the exponential function , I offered a $20 bill to any student who could fold a 
sheet of notebook paper in half, then in half again perpendicular to the original fold, and so on, for a total 

of eight folds.  To illustrate just how quickly that function grows, on the spur of the moment I gave them 

a problem for extra credit to determine the exact number of folds in a piece of notebook paper, which if 
they could be carried out, would produce a thickness of paper which would reach from the earth to the 

moon. Assuming a ream of 500 sheets of paper has thickness two inches, the answer is  just 42 folds, and 

a “Folding to the Moon” painting or sculpture conceptualizing these 42 folds in some way seems natural. 

 
Noncommutative Sums. The lecture at my very first job interview provided a demonstration that the 

equality  does not necessarily hold when , a rather 

counterintuitive and surprising result. Divide the surface area of a cylinder into  bands of equal width, 

with each band broken down into  congruent isosceles triangles, then sum the area of the triangles and 

let the number of bands ( ) and the number of triangles per band ( ) approach infinity in different orders.  

The result will be two very different answers for the surface area (see Fig. 3).  

 
Fubini Vindicated. The final example illustrates that exchanging the order of integration in a double 

integral may resulting in different answers if conditions necessary for applying Fubini’s Theorem are not 

satisfied. If we define a function  on the rectangle  where 

then interchanging the order of integration yields 

 (See Fig. 4 for a rough illustration of the function 

.) The notion that summing the heights of columns in two different directions produces different 

results is an idea begging for an artist to approach it with more finely tuned visual aesthetics.   
 

                    
Figure 1: Circles and spirals   Figure 2: Bridge to infinity    Figure 3: Sums           Figure 4: Fubini  

 
Conclusion. It is the hope of this author that these examples will serve to pollinate the minds of artists 

and musicians with mathematical notions which in some way may spawn creative reflections on 

significant mathematical concepts, and ultimately lead to artistic works which might otherwise not receive 
the benefit of the perspectives and expressionist forms of painters, sculptors, weavers, musicians, and 

other artists.  
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Abstract 
 

We have built a Sinai cube to illustrate and investigate the scaling properties that result by iterating chaotic 
trajectories into a well ordered system. We allow red, green and blue light to reflect off a mirrored sphere, which is 
contained in an otherwise, closed mirrored cube. The resulting images are modeled by ray tracing procedures and 
both sets of images undergo fractal analysis. We offer this as a novel demonstration of fractal geometry, utilizing 
the aesthetic appeal of these images to motivate an intuitive understanding of the resulting scaling plots and 
associated fractal dimensions. 

 
  It is rather simple to create a fractal object such as the Sierpinski triangle by using a 
mathematical prescription or an iterated function.  Since fractal geometry offers a useful description of a 
wide range of physical phenomena, It is not surprising that a physical process such as light rays scattering 
off of curved surfaces would produce similarly complex images. Intrigued by the apparatus described by 
Sweet et al.,[1] and others [2], we first built a light scattering system consisting of four reflective spheres 
stacked in a pyramid formation. Expanding on this we built a “Sinai Cube” [3]which offers an analog of 
an infinite set of stacked spheres. Using front surface mirrors we construct a cube with openings at the 
upper corners. We suspend a reflective sphere from the top mirror creating the Sinai cube. Three of the 
top corners are illuminated with colored light, and in the fourth corner we place a camera to capture the 
image created by the lights repeated reflection off of the center sphere. Figure 1 shows both systems. 
 

 
 

Figure 1: The two experimental apparatuses are pictured above. On the left is a recreation of the 
laboratory model presented by Sweet et al. On the right is our Sinai cube shown here without the top 
mirror in place and with a Sinai diffuser whose diameter is approximately equal to the wall width. 

 
We use ray tracing techniques [4] to model both the stacked sphere and Sinai cube images with. 

Figure 2 shows the image obtained from the bottom opening of the stacked sphere configuration (top 
middle) as well as the ray tracing model (directly below). We also show the experimental (top right) and 
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modeled (directly below) Sinai cube in which the diffuser diameter is roughly 1/3 the width between the 
walls. A box counting analysis was performed on both systems and in each case there was good 
agreement between the simulated and actual images. For the stacked spheres we found D=1.6 in 
agreement with Sweet et.al., similar to the analytic value of the Sierpinski triangle D =1.58. In contrast 
the Sinai cube has significantly higher value of D = 1.8.  The bottom left corner of Figure 2 we show the 
resulting scaling plots. Since D is the gradient of the scaling plot it is essentially quantifying the ratios of 
coarse to fine structure, such that fine structure plays a more dominant role in the high D pattern than the 
corresponding low D pattern. Consequently the high D pattern appears more visually complex as can be 
seen by visual comparison of the fractal images generated by the Sinai cube and the stacked spheres. 

 

 
 

Figure 2: Clockwise from top left: Sierpinski Triangle, image of the stacked sphere configuration, 
image of the Sinai cube, ray tracing of the Sinai cube, ray tracing of the stacked spheres, scaling plots of 
the box counting analysis of the Sierpinski triangle (lower dashed blue) the stacked spheres (lower solid 

black), and the Sinai cube image (upper dashed red) and ray tracing (upper solid green) 
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Abstract 

 
This paper demonstrates the use of Geometer’s Sketchpad to construct 3-dimensional pop-up polyhedra for students 
to handle in the study of Platonic and Archimedean solids. It explores some history of the use of pop-up polyhedra 
to illustrate mathematical shapes, as well as survey strategies for construction.  A cloth book for a new 
granddaughter Eleanor inspired this project. Its pop-ups were an early favorite of Eleanor and her parents. 

 
Historical Context 

 
Visualizing three-dimensional objects has challenged generations of geometry students. Pop-up 
models take up little space yet provide rigid figures to study. 
 
Examples prior to 1950.  Tufte [1] includes a model of a regular tetrahedron fastened to a page 
that replicates one from John Dee’s preface to Henry Billingsley’s Elements of Geometrie. 
Published in London in 1570 this is the first English translation of Euclid’s Elements. The 
University of Toronto Library has an original copy of this text and provides pictures on the 
Internet [2]. Cameo Wood posted a movie on You Tube that demonstrates the operation of these 
pop-ups [3].  John Lodge Cowley’s Geometry Made Easy first published in 1752 also used pop-
up models to illustrate solid geometry.   The University of Michigan’s rare books library has a 
copy believed to date from the 1760’s [4]. Steinhaus [5] included a dodecahedron that consisted 
of two six pentagon “flowers” placed back to back with an elastic band threaded alternately 
above and below the pentagons on opposite sides (see also Ball [6]). Struyk [7] based three 
models on basic nets of polyhedra with pyramids glued to each of the faces to illustrate a cube 
with an inscribed regular tetrahedron, a rhombic dodecahedron with an inscribed cube and a 
rhombic dodecahedron with inscribed regular octahedron. These are interesting folding models, 
but they do not fold flat for easy transport. 
 
More recent examples.   In 1972 Trigg [8] cut a regular octahedron along some edges to 
achieve a collapsible polyhedron net augmented with regular triangles in strategic places. He 
described similar constructions for a collapsible tetrahedron from earlier papers. By 1982 Johnny 
Ball included some basic pop-up models of Platonic solids [6]. In 1992 Baranowski [9, 10] 
explored properties of some collapsible models of the tetrahedron, cube, octahedron, rhombic 
dodecahedron and cubo-octahedron.  He formulated conditions that these constructions should 
obey: “Each vertex of the folded model must belong to parts of at least two faces, each paper 
fold is along an edge, … [and] the surface of the model should have ‘no ends’.” His models are 
assembled like a ring. Hans Walser and Scott Johnson have written extensively about folding 
polyhedra [11, 12]. In 1996 Walser shared an office with Jean Pederson who was working on a 

Bridges 2009: Mathematics, Music, Art, Architecture, Culture

351



project involving extensions to the Pascal Triangle. Pederson wanted a model that would fold flat 
in a brief case to travel to lectures [11]. Walser developed a model that interested many of 
Pederson’s students. One, Scott Johnson, was eager to help in the development of a number of 
pop-up polyhedra.  Johnson and Walser described their models and the techniques they 
developed to build them in [11].  Most of the models they describe are models of the Platonic 
solids although Walser built a cuboctahedron [13] as the original motivation for their project. 
 

A Catalog of Techniques 
 
Definition of Terms. Ball [6] used rubber bands for automated opening of his polyhedra. 
Johnson and Walser use rubber bands, pull strings, and paper fastener rotation centers [11]. Dee 
[2] and Cowley [4] simply used flaps attached to a page and fingers to lift and erect the models. 
Johnson and Walser [11] describe “edge-jumping” models that open as the result of two edges 
being caused to move towards each other. The cube, octahedron, icosahedron and dodecahedron 
all have parallel edges that make this possible.  Since the tetrahedron has opposite edges that are 
not parallel (but are perpendicular when collapsed) they had to design “webbed hinges” that 
incorporate folding triangles at vertices of adjacent faces to include triangles that touch only at a 
vertex.  They built a “face-jumping” icosahedron and a “vertex-jumping” cube that use brass 
paper fasteners as pivots. They also introduce “spiral models” where the top and bottom layers 
turn relative to each other as the models collapse.  
 

Using Geometer’s Sketchpad to Construct the Models 
 
Tools from Sketchpad. Geometer’s Sketchpad [13] (similar to Cabri) is a tool that can provide 
precise constructions of the polygons and fold lines. In the process students learn to identify 
centers and angles of rotation, length and directions of translations and placement of lines of 
reflection. Ball, and Johnson and Walser [11] provided the examples for classroom use.   
 
A simple place to start.  Although Ball [6] used the end of an envelope for his construction of a 
regular tetrahedron, we will use the tools of Geometer’s Sketchpad [13].  A regular tetrahedron 
has 4 equilateral triangles as faces.  We need to fold two of these triangles along their altitudes to 
enable the model to collapse.  Use a unit segment that is not part of the model (see AB in Figure 
1 left) to begin construction.  This permits us to adjust the size of the model without distortion at 
some time in the future.   First construct an equilateral triangle using this unit.  Construct a line 
through two points C and D.  Use C as center and AB as radius to construct a circle. Locate one 
of its intersections with CD.  Label it E.  Now construct a circle with radius AB and center E. 
Locate both intersections of our two circles (F and G). Note CF=FE=CE and CE=EG=CG 
(Figure 1 left). Connect pairs of these points with segments to construct two equilateral triangles 
with side lengths equal to AB. Hide any construction objects we no longer need. We need two 
more faces that will be folded. Construct four more triangles on the sides of our original 
triangles. Half of each of these triangles will be parts of the faces and half will be tabs to glue 
together to facilitate the pop-up. Mark segment FE as a mirror and reflect triangle CEF over EF 
using the reflection transformation. Similarly reflect triangle CEF over CF, and triangle CFG 
over CG and GE (Figure 1 center).  Re-label the images of C and E as shown (C1 and C2 and E1 
and E2). Select point C and segment E1F to construct a line perpendicular to E1F through C.  This 
line is also perpendicular to C2G.  Why? Complete the model by making all edges of the final 
model thick and coloring the tabs.  Cut around the perimeter of the figure and fold all interior 
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segments away from you (Figure 1 right). With glue on the yellow tabs, place triangle C1JE on 
top of C2KE and E1HC on top of E2IC. Push gently on the sides and a tetrahedron will pop-up. 

 
Figure 1: Geometer’s Sketchpad construction of the tetrahedron. 

 
The cube (Figure 2 left) and octahedron (Figure 2 right) use Johnny Ball’s model from [6] 

page 134 in a similar way.  

 
Figure 2: Sketchpad construction of a cube (left) and an octahedron (right). 

 
An icosahedron with pivots. This model uses Johnson and Walser’s face jumping icosahedron 
to illustrate the use of pivots.  Central (purple shaded) equilateral triangles are connected with 
trapezoids made of equilateral triangles attached to triangular tabs that pivot.  See Figure 3. Cut 
and fold as before. With the tabs folded to the back, arrange two copies with the central triangles 
back to back and oriented so that a base of one is opposite the base of the other.  Matching one 
holed tab from the back with a neighboring holed tab from the front insert a brass paper fastener 
out of sight at 6 different places.  Gentle pressure on the “star points” produces an icosahedron. 
See Figure 3.  This pivot method also produces an interesting cube that shows the intersection of 
the plane intersecting the perpendicular bisector of the diagonal of a cube with the cube.  When 
assembled the folds in the faces of the cube create a regular hexagon. 
 

 
Figure 3: An icosahedron with pivots constructed, assembled, and activated. 

 
Original Pop-up Figures 

A Truncated Octahedron and Rhombicuboctahedron. A natural extension of the Platonic 
models is to see what Archimedean solids might be modeled this way.  
 

 
Figure 4: The truncated octahedron (left) and rhombicuboctahedron (right) flattened and popped up. 
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 The truncated octahedron and rhombicuboctahedron are two of the simple Archimedean 
solids. Decide which polygon to use as you start the Geometer’s Sketchpad construction. For 
both models use the parallel square faces as the starting place. Any folded polygons will be 
folded symmetrically along altitudes or diagonals. See Figure 4. 
 

Conclusion 
 
Ideas for further study. Magnus J. Wenninger [14,15] describes the remaining 11 Archimedean 
solids and stellated and compound polyhedra.   
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Abstract

During the workshop, we introduce the main concepts and principles of chaos theory (positive and negative feedback, 
bifurcation points, attractors, complexity, self-organization, dissipative structures) through brief introductions, 
discussions, and a variety of stimulating and interactive activities like improvisation, active imagination, exercises of 
self-reflection, and techniques of disappearing. To illustrate some concepts we use the author’s paintings. Then we 
analyze the process of creativity by applying these concepts. Creativity could be referred to as “self-organizing 
dissipative structures,” originating spontaneously in far-from-equilibrium conditions. They emerge only through a 
constant exchange of energy/information with their environment, continuously create bifurcation points of 
instabilities and fluctuations, and transform themselves into new organization of increased order and complexity. 

      
Introduction

In this workshop I will introduce the basic concepts of chaos theory and analyze the process of creativity 
by applying these concepts. I will guide the participants through a variety of stimulating and interactive 
activities like improvisation, active imagination, exercises of self-reflection, and disappearing techniques 
designed to assist in understanding and increasing their creativity.   
      During the early eighties chaos theory, nonlinear dynamics, fractals, and self-organization were 
widely discussed and employed in a variety of physical, chemical and mathematical problems. 
    Now, chaos theory is actively applied to almost everything from psychology to neuroscience, from
economics to social dynamics.
       A number of researchers have accumulated experimental evidence that the brain is a nonlinear 
feedback device and some studies show that diverging thinking, considered the general process 
underlying creative production, can be distinguished from convergent, analytical thought based on the 
dimensional complexity of ongoing electroencephalographic (EEG) activity [1]. This shows that 
irregularities (chaos) lead to complexity. Chaos is what makes life and intelligence possible. 
      

                                                  Chaos Theory

        “We believe that chaos represents the true nature of most psychological phenomena. 
         It provides the alphabet of thought, because it represents the complexity of mind, brain,
         and behavior. We believe that chaos is the archetype that drives the universe, is its deep
         structure.” 
                                    Frederick Abraham [2, p. xxvi]
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In the last thirty years, new ways of study and understanding of complex systems have emerged – called 
chaos theory. Chaos theory acts as a conceptual umbrella for various approaches and explorations of 
complex systems, like dynamical system theory [3], self-organization [4-5], fractal geometry [6], 
catastrophe theory [7], theory of dissipative structures [8-11], and complexity theory [12].  
       Chaos theory studies open, nonlinear, and dynamic systems that constantly interact with and adjust to 
their environment, changing, growing, learning, and evolving. Chaotic systems exhibit an extreme 
sensitivity to their initial conditions, called popularly the “butterfly effect.”  Slight differences in their 
starting points make a very large difference in their outcomes. Such systems are highly sensitive because 
they are always changing through the loops of positive and negative feedback, and never precisely 
recycling to their initial states.  Systems that change radically through their feedback are said to be 
nonlinear.  In some conditions nonlinear systems behave in a regular, cyclical manner until something 
sets them off; a critical point is passed and suddenly they go chaotic.  This critical point where a system 
changes character of the motion is a bifurcation point, and the states of chaotic motion are attractors.  

      
Negative and Positive Feedback

In chaotic systems, everything is connected to everything else through negative and positive feedback
[13].  Negative feedback keeps things in check and regulates the stability of a system.  Positive feedback 
pushes a system for change, where more leads to more and less to less. Sometimes positive feedback 
drives a system to explode or spiral out of control. One of the most important discoveries of chaos theory 
has been that positive feedback can cause complex, even chaotic behavior to unfold inside orderly 
systems.  Also that negative feedback can grow inside an otherwise chaotic system, suddenly organizing 
it and making it stable.  Theory of chaos and complexity encourages us to understand how change unfolds 
through circular patterns of interactions. 

Activity I: Improvisation is the root of creativity and can lead to the discovery of new ways to act and 
new patterns of thought. Improvisation excites self-expression areas and suppresses self-control regions 
in the brain.

 “Make a scene using the concepts of positive and negative feedback”
In this exercise between two people, one person is given the role as the leader. That individual is given an 
opening sentence, which is spoken aloud. The second person uses that sentence (paying attention to the 
tone and words) to “create” a scene that makes sense. 

 “Become the psychologist” 
This exercise involves you becoming a psychologist and by using your imagination, you have to talk about
a subject chosen by the leader. The purpose of this exercise is to introduce the concept of an attractor. 

Attractors

Attractors [13-17] characterize the behavior of a system; the same system can evolve into different types 
of attractors during its development. 
There are three types of attractors: (a) point attractor, (b) periodic attractor, and (c) strange or chaotic 
attractor.
      The most predictable one is the point attractor, when the system moves toward it in a condition of 
asymptotic stability. An example of the point attractor from life dynamics is a fixation on one desire or 
addiction to drugs, to alcohol, to success, to sex, or to some idea. It leads to monotony, to misery, to 
depression and very often to death. It is a single-minded attractor: black or white, good or bad, hate or 
love.
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      To the group of periodic attractors belong a cycle attractor and a torus attractor. The cycle attractor
has the ability to resist change.  Both the point and the cycle attractors describe systems that are highly 
regular, and thus, predictable.  Routine is the perfect life example for the cycle attractor: when we are 
attracted to two activities, we tend to oscillate between them (e.g., work and family). Another example is 
our egocentric desires to acquire wealth, power, fame, and to have pleasure of one sort or another. This 
state of life, when we are moving from one situation to another, fluctuating from one mood to another, 
and repeating the very same process again and again, brings only dissatisfaction and suffering. 
       The three-dimensional periodic attractor is the torus attractor.  It has a higher degree of regularity 
and complexity than the cycle attractor, but the pattern is again fixed and finite.  The torus attractor
expresses, for example, a complex set of attracting events that occur to a person on many levels over the 
course of a year.  Then these events repeat again, year in and year out. 
        The strange or chaotic attractor describes systems that are in a state of turbulence, such as weather, 
violent river, brain activity, or our life dynamics.  In general, the chaotic attractors can take an infinite 
number of different forms. Their patterns are fantastic, complex maps that capture the interplay between 
stability and change in a system.  For example, a chaotic attractor portrays our state of consciousness, as a 
combination of moods, thoughts, memories, and images. They are constantly changing, memories come 
and go, thoughts pass through the mind only to disappear and return again later and so on.  Consciousness 
exhibits periods of calm, periods of more or less regular oscillations, and periods of chaotic activity. The 
ability of a system to move in and out of chaos gives it a creative advantage. 
        Essentially, a chaotic attractor is a process that unfolds through the complex interactions between 
elements in a system. It is through a pattern of folding and stretching that the structure of the chaotic 
attractor emerges.  Chaotic attractors are the foundation for hidden order in natural systems. 

Activity II: Analyze your state; which attractors best describe your actual life dynamics. How do you 
express your state in the form of art (painting, poems, and music)?

Bifurcations

                                                            Bifurcation is a source of innovation and diversification.
                                                                                                                       Nicolis &Prigogine [8, p.74]

In nonlinear dynamic systems, through the process of positive feedback, abrupt changes of behavior can 
be observed. These changes called bifurcation points [4], [8 -11] occur when system orderliness breaks 
down, sensitivity to perturbations increases, and new patterns of organization rapidly self-amplify. Far 
away from a bifurcation point, a system can be well behaved; but as a bifurcation is approached, the 
system's trajectory becomes random and unpredictable (large fluctuations occur). At this point, the system 
"hesitates" among various different possible directions of change. Even little fluctuations in the 
subsystems can combine through positive feedback loops, becoming strong enough to shatter any pre-
existing organization.  At this point, the disorganized system either disintegrates into chaos, or leaps to a 
new higher level of order of organization.  
        When we think of ourselves as nonlinear, dynamic systems, bifurcation points can be viewed as 
special events along the flow of our lives during which choices can be made to influence future 
possibilities.
       Psychological bifurcations are the rapid transformations of sensory, perceptual, cognitive, and 
affective experiences that may radically alter our lifestyle.  They appear in the process of learning, in 
motivational states, in brain activity, in developmental stages and in their associated increasing 
complexity, in personality and family organization [18]. Here are some examples of psychological 
bifurcation points: a)."Aha!" moments or insight experiences: when rapid perceptual or cognitive 
restructuring takes place in the context of working on a difficult problem; b) moments when we 
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experience overwhelming emotional transformations (e.g. falling in love); and c) the moment when "of 
body" information rises to attention (e.g. feeling of hunger) [19].

Activity III: Reflect upon your life using concepts of attractors, bifurcation, and positive and negative 
feedback. How do you apply this self-reflection to your art?                

Complexity

Complexity theory, which has been developed in the last twenty years, appears to be applicable to an 
enormous range of phenomena in physics, chemistry, social sciences, economy, psychology, 
neuroscience, and many more. Complex systems are everywhere; they are our bodies, our brains, our 
society, our culture. These systems contain many elements interacting reciprocally and nonlinearly by 
positive feedback mechanism. Two dimensions of differentiation and integration characterize complex 
systems. Differentiation means variety, it means that the different parts of the system behave in different 
ways. Integration, on the other hand, means to link the component parts to one another. Complexity 
arises when both of these aspects are present [20].
      The science of complexity shows how a spontaneous process of self-organization can take place 
when a dynamical system finds itself in a state that is far from equilibrium, without any external force 
acting on the system. 

Self-organization and Dissipative Structure

       ”At equilibrium molecules behave as essentially independent entities; they ignore one another. 
        However, non-equilibrium wakes them up and introduces coherence quite foreign to equilibrium.  
        This is the concept of “order through fluctuations.”  
                                                                                                           Prigogine and Stengers [10, p.180]

       All living [5] and psychological [21-22] systems evolve through the process of self-organization. An
open, nonlinear and complex system acquires a new state without specific interference from the outside.
With a continuous change in one or more control parameters, new states emerge spontaneously purely as 
a function of the dynamics of non-linear interactions between the system’s components. The control 
parameter creates the necessary conditions for far from equilibrium states and critical fluctuations. Near 
equilibrium fluctuations are harmless, but far from equilibrium, they play a central role. Fluctuations are 
continuously probing the system and providing an opportunity to discover new patterns. The emerging 
patterns are created by the coordination between the parts of the system, but in turn influence the 
behavior of the parts. This is called a circular causality [23]. 
       Prigogine introduced the concept of dissipative structures [8-11]. Such structures, to maintain their 
existence, must interact with their environment continually, maintaining the flow of energy into and out 
of the system. Self-organizing system becomes more ordered and more complex over time. Through this 
process, the system generates something new, unexpected structures, patterns, properties known as 
emergence [20]. 

        The human brain is an example of a complex adaptive system in which single neurons interact in 
simple ways yet their collective neural network produces highly complex properties such as creativity and 
consciousness. Creativity and consciousness are examples of emergence. The interaction of the processes 
that form a complex system such as the mind - thoughts, images, memories, and so on - give rise to new 
processes. These new processes now interact with the original ones to create yet other novel processes, 
second order emergent events, and these are in principle entirely free and unpredictable.
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Activity IV: Techniques of disappearing invented by Keith Johnstone [24]

All participants are asked to open eyes as widely as possible and on a signal start to walk around the 
room, point at any and every object, and shout as loudly as possible the wrong name.
.
Purpose: To look by fresh eyes on our surroundings. All our habitual overlays of interpretation and 
conceptualization are removed from the objects and people in front of us. This chaotic state can be 
described by a pure awareness of things-in-themselves. As adults, we can often give our best 
performances when we are not aware of ourselves and able to suppress our egos.  

The Process of Creativity

         “Creativity is a very paradoxical state of consciousness and being. 
           It is action through inaction.
           It is allowing something to happen through you. 
           It is not a doing, it is an allowing.
          It is becoming a passage so the whole can flow through you.
          It is becoming a hollow bamboo, just a hallow bamboo.”                    
                                                                                                            Osho [25, p.31]

Creativity as an extremely complex process is generally defined very broadly as the capacity to bring 
something new into existence. Rogers’ definition [26, p. 139] that “the creative process is an emergence 
in action of a novel relational product, growing out of the uniqueness of the individual and materials, 
events, people, or circumstance of his life” is the closest to our understanding of creativity. 
      We show that creativity could be described as “self-organizing dissipative structures” originating 
spontaneously in chaotic (far-from-equilibrium) conditions. 

Chaos – The Differentiation Phase 

When we approach some challenging, open-ended problems, we plunge into the process of questioning, 
researching, collecting, and exchanging of information. We work under conditions of emotional 
fluctuations, tensions, internal conflicts, doubt, and uncertainties. 
     Our mental state could be described by a variety of chaotic attractors like passion, love, knowledge, 
freedom, etc. They are constantly changing, interacting, bifurcating from one to another through the loops 
of positive and negative feedback. Since an enormous amount of information is created, this is the 
differentiation phase.
      During this time we have to be “open” to the external and internal environment. Rogers [26] writes
that in the person who is open to experience each stimulus flows freely through the nervous system. 
Whether the stimulus originates in the external or internal environment, it is available to our awareness. 
This means that we are aware of this existential moment as it is. We are able to accept ambiguity and to 
receive a considerable amount of conflicting information.
       Sometimes we reach a point at which we become overwhelmed or blocked by contradictions, 
difficulties, and inconsistencies. In this situation we should willingly bifurcate to a different state. We 
should relax, go for walk, meditate, take a nap or start other project, and rely on our unconscious. 

Activity V: “Dream and its Images” - Exercise based on Jung’s “Active Imagination”

Participants choose a partner. They sit quietly and one tells the other about his/her dream. The partner 
listens with attention and then asks a participant to choose an image from his/her dream. Then they act 
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out on the image. They associate to the image. What does the image remind them of? What associations 
do they have with it? They switch roles. Now the second participant tells a dream to the first, and so on.

Purpose: An active imagination is a state of readiness, and through this process, the images from the 
unconscious are clarified and brought closer to consciousness. Sometimes active imagination takes place 
mainly inside our minds. Other time, the imagination is given form through painting, drawing, writing, 
and so on. As an example we will discuss a painting “Persona”, which I painted after having a dream. 
   

Complexity – The Integration Phase 

The second phase refers to “the process of removing a problem from conscious awareness temporarily as 
means of gaining new perspectives on how to solve it” [27, p.389]. Free from rational direction; ideas, 
thoughts, images, and memories can combine and pursue each other every which way. Because of the
freedom, original and new connections have a chance to be established. These new connections now 
interact with the original ones to create yet other novel processes, second order emergent events, and 
these are in principle entirely free and unpredictable.
      Both increasing order and increasing complexity rely on a basic mechanism of self-organization, the 
coupling of reciprocally interacting system elements. Through this process, the system generates 
something new, unexpected structures, patterns, properties known as emergence. The emergent 
phenomena can be understood on a higher level than the lower level components they emerged from.
This is generally the integrative process. Complexity arises when differentiation and integration are 
present. It increases when the number and/ or variety of the elements (thoughts, images, memories) that 
constitute our mind increase and when the number of relations that link them, i.e. the degree of 
integration between the elements, increases.

        Contrary to the conscious brain, the unconscious brain appears to be a parallel processor, so that 
novel combinations of information are constantly generated, regardless of the state of attentional control 
[28].     
        Neuroscientists [1] show that divergent thinking, considered the general process underlying creative 
production, can be distinguished from convergent, analytic thought based on the dimensional complexity 
of ongoing electroencephalographic (EEG) activity. EEG complexity was comparable during divergent 
thinking and mental relaxation, but reduced during convergent thinking. Results indicate that the basic 
process underlying the generation of novel ideas expresses itself in a strong increase in the EEG’s 
complexity, reflecting higher degree of freedom in the competitive interactions among cortical neuron 
assembles. Frontocortical EEG complexity being comparable with that during mental relaxation, speaks 
for a loosened attentional control during creative thinking. 

Creativity – The Dissipative Structures

             “One evening, contrary to my custom, I drank black coffee and could not sleep.
             Ideas rose in crowds; 
            I felt them collide until pairs interlocked, so to speak, making a stable combination…”    
                                                                                                                           Poincare [29, p.81]

The spontaneous insights, the “Aha!” moments, and the new ideas usually become conscious by 
appearing in a working memory during periods of mental relaxation after hard work and mental and 
emotional struggle.        
      They are a result of a successful self-organization of the chaotic activities in the unconscious. They
are unexpected and unpredictable. They emerge at the “edge of chaos” as an expression of a new order 
that originates spontaneously from inside the system itself and creates completely new “emergent 
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property”: a new picture, a new mathematical function, or a new song and so on. They are dissipative 
structures [8-11]. Usually the moment of insight is itself a dense, wordless, and sensory experience. 
Mihaly Csikszentmihalyi [30] mentions that most people recall with great intensity and precision a 
particular moment when some major problem crystallized in their mind in such way that a solution 
become all but inevitable, requiring only a matter of time and hard work. 

Activity VI:  Close your eyes and think about moments when and how you experienced an insight (your 
mental and external conditions) and what happened next.

       After an insight occurs, one must check it out to see if the connections genuinely make sense. When 
we are being immersing in chaos, bifurcation happen and moments of flow appears. The flow introduced 
by Mihaly Csikszentmihalyi, is the period in the creative process when self-consciousness disappears, and 
is total absorption in the activity. It is the most enjoyable process any human can be involved in. The 
main elements of flow experience are: (a) immediate feedback to one’s action; (b) balance between 
challenges and skills; (c) action and awareness are merged; (d) no worry of failure; (e) sense of time 
becomes distorted [31].

Summary

We demonstrate here how chaos theory describes the complex process of creativity.   Chaos stimulates
creative thinking and creates a necessary condition to initiate the process of self-organization. In the first 
phase of the process of creativity, the diversity of elements of knowledge appears to be essential. Then 
through the process of self-organization, these elements; thoughts, ideas, images, and memories
interconnect freely and spontaneously and create a completely new organization of an increased order and 
complexity. 
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Abstract

Stories Count: Narrative Approaches to Quantitative Learning is an interdisciplinary approach to education,
communication, personal development, and creativity that uses the essential kinship of verbal and
mathematical/logical/quantitative systems of coding and decoding to help people think, reason, understand,
communicate, and create. Stories Count workshops are anchored by original narratives (stories) having significant
math and logic embedded in their structure and in their content. The result is that listeners enter into the stories,
engage with the narrative form, and simultaneously “do the math.”  They realize that they can master new and
unfamiliar codes as readily as they manage codes in their comfort zones. This workshop program includes
storytelling performance by the workshop leader, an interpretive and analytic discussion of the narrative by all the
workshop participants, and an opportunity for the participants to explore how they use codes, symbolic structures,
and patterns in their own work. In addition, participating in the workshop may lead them to bring Stories Count into
their own classrooms, programs, and creative projects.

Learning/Discovery Objectives

• To explore the operational kinship of verbal and mathematical/logical/quantitative codes, structures,
and patterns

• To enable people to transfer comfort and competence in one domain to the other
• To identify and analyze those codes, structures, and patterns we already use in our work and those

that challenge us to new explorations and achievements
• To recognize and develop new ideas, new patterns of meaning, and new connections among

established ideas and knowledge
• To demonstrate how narrative can align with other forms of expression and conceptualization and can

facilitate learning, communication, personal development, and creativity

Background

Stories Count: Narrative Approaches to Quantitative Learning is an interdisciplinary approach to
education, communication, personal development, and creativity that leverages the essential kinship
among verbal and mathematical/logical/quantitative systems of coding and decoding to help people think,
reason, understand, communicate, and create. Stories Count are original narratives that I develop to be
told, analyzed, and discussed in participatory learning/discovery workshops, which the stories anchor.

The narratives at the heart of Stor ies  Count  are simultaneously verbal and
mathematical/logical/quantitative compositions. They have memorable characters, inviting settings,
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intriguing plots, and all the other traditional features of narrative. They also have math and logic
embedded in their structure and in their content: huge numbers that can become large without limit;
binary decision-making; chance, probability, and certainty; classical paradoxes and more. The result is
that listeners enter into the stories, engage with the narrative form, and also exercise quantitative
capabilities beyond computational skills as they “do the math.” For people who think they are either
verbal or quantitative but not both, the stories help transform strength in one domain into competence in
the other. In addition, the stories always invite analysis, critical interpretation, and creative thinking and
so they engagingly, comfortably, and immediately lead to a participatory experience that complements the
performance/listening, which begins and ends each workshop. Workshop participants can expect to
develop new insights, new perspectives, and new connections among concepts they already understand.

Many concerns, experiences, and ideas provide the basis for Stories Count. As a math major, a math
teacher, and a veteran of the corporate workforce with over 30 years of experience in developing,
supporting, and managing corporate computer projects, I know from my experience the value of the
mathematical/logical way of thinking, which is convincingly documented in materials published by the
National Numeracy Network on its website; see [4]. As a math teacher, and even as a successful learner
of mathematical and logical material, I also know first-hand the great resistance people can have to math
and logic, whether due to math anxiety (see [7]), matters of style and preference (see [2]), or other causes.
Finally, as a student of literature and a performing storyteller, I know that a good story, well-told, can
reach the human ability to make sense while attention is focused externally, on the story, not on the
encoding medium, or on the psychological process of constructing meaning; see [6]. Having
communicated ideas about quantity, equality/equivalence, and logic in the course of telling a story, I
recognize the phenomenon that Roland Barthes examined in S/Z: An Essay (see [1]), namely how the
mind moves among codes; and I know the thrill of eliciting that movement in my listeners.

To see me perform a Stories Count narrative based on a binary logical scheme, as suggested by John
Allen Paulos (see [5]), please visit YouTube: http://www.youtube.com/watch?v=lJ0qjCCm-kY ; see [3].

A Stories Count workshop typically begins with introductions and formulating/stating goals for the
workshop. Then I tell/perform a story. Next the group discusses the story. The discussion always
addresses the embedded mathematical and logical content—my agenda—as well as any literary,
philosophical, cultural or other observations, issues, or topics the other participants introduce. Either
combined with the discussion or following it, a more focused discussion, a question-and-answer session, a
worksheet, a brainstorming activity, a storytelling game, another exercise, or a combination of these
activities addresses the theme of the workshop (example: specific math topics for an Overcoming Math
Anxiety workshop). We debrief by articulating takeaways. Finally, I tell/perform a concluding story to
end the program. At the Bridges Conference, we will address how we use codes, structures, and patterns
in our own classrooms, programs, and creative work, and we will look for connections, insights, and
challenges that can help us improve and move forward. Suggestions and requests for topics and for
content to develop into new Stories Count, and any other questions/issues the stories and discussion might
raise will also be encouraged and welcomed.

The workshop will also demonstrate application of the Stories Count concept and program. The large and
ever-growing Stories Count repertoire includes stories and invites discussions to engage learners at
different age levels and with a range of interests and concerns. Stories Count can subvert math anxiety,
encourage insight and creativity, and reinforce connections and convergences that align different
symbolic systems. Stories Count can be a powerful addition to any teacher’s, educator’s, or explorer’s
toolkit of approaches and techniques.

Workshop Experience
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Workshop Title: Stories Count: Narrative Approaches to Quantitative Learning

Workshop Components:

• Live telling by presenter of original stories with embedded mathematical/logical content.

• Discussions of the introductory story, to include review and explanation of the math/logic.

• Exploration of the codes, structures, and patterns that workshop participants use in their own
work. Identification of related and/or contrasting approaches to explore. This activity will begin
with worksheets and will move to debriefing in pairs or small groups, question-and-answer, or
other activities as permitted by time and by the size, interests, and learning/interactive styles of
the participants.

Sample workshop agenda (60-75 minute program):

Topic Description Time

Introduction We’ll introduce ourselves to the entire group or in
pairs/small groups and state why we’re attending
and our goals/what we hope to get from the
program. I’ll briefly describe the program and
review the agenda.

5- 10 minutes

Narrative Opening
(Live Storytelling)

I’ll tell an original math-and-logic-laden story. 10 minutes

Group Discussion We’ll discuss the story. I’ll moderate. We’ll
discuss any aspects the group wants to explore. I’ll
make sure we address any awareness of the
math/logic that the participants recognized during
the telling and how the math/logic patterns work
within the narrative.

10-15 minutes

Personal Applications Participants will receive and be asked to complete
a worksheet/questionnaire designed to help them
identify and analyze the codes, structures, and
patterns they use in their work and to explore new
possibilities. If time permits, and depending on
participant preferences, we might discuss insights
and possibilities in pairs or small groups or explore
them in another interactive way.

20-30 minutes

Summary I’ll ask for each participant (including me) to note a
learning takeaway.

We’ll tell the takeaways to the entire group or in
pairs/small groups as appropriate.

5-10 minutes

Narrative
Closure—I’ll tell
another story, to close.

Also with embedded math/logic. There won’t be
follow-up discussion of the story in this session,
although there can be discussion later or “off-line.”

10 minutes
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Presenter Biography

I’m an experienced computer programmer and system designer, a Project Management Professional
(PMP), an interpreter of narrative and texts, a veteran teacher of mathematics and of literature, and a
storyteller. I’m grounded in technology, the sciences, and the humanities and equally at home in the
worlds of business, academe, and performance. I bring this diversity of interests and perspectives to new
experiences, environments, and associates wherever I go.

As a designer, developer, and manager of software systems, I’ve worked with diverse
stakeholders—clients and customers, frontline staff, managers, executives, and technology
professionals—throughout the retail, financial, manufacturing/distribution, and healthcare industries. I’ve
developed and presented corporate training programs. I’ve designed and taught academic classes in
mathematics, humanities, and critical thinking to students at all levels from middle school through post-
graduate, both on-line and at bricks-and-mortar institutions including inner city community colleges, 4-
year colleges, and elite universities. I also perform traditional, literary, historical/biographical, and
original stories at folklore and storytelling festivals, public concerts, and private events.

I was educated at the University of Illinois, Mills College, and The Johns Hopkins University, and I hold
a doctorate in Humanities/Comparative Literature as well as an MBA. I’ve also studied mathematics at
the post-graduate level. I’m certified by the Project Management Institute (PMI) as a Project Management
Professional (PMP), and I’m an active member of many professional and cultural organizations including
the PMI, the International Institute for Business Analysis (IIBA), the National Numeracy Network, the
National Storytelling Network and its Storytelling in Organizations special interest group, Illinois
Storytelling, the Northlands Storytelling Network, the North Shore/Nature Center Storytelling Guild and
the Fox Valley Storytelling Guild.
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Abstract

In this practical workshop participants will learn how to fold shapes including squares, equilateral triangles and
hexagons from colored paper circles and A-size paper. The participants will then have the opportunity to make
Islamic patterns for themselves using the folded shapes. This work can be extended to include participants
designing and making their own patterns. There will also be opportunities to discuss implications for classroom
practice, and ways in which the ideas can be used for students of varying interests and abilities.

Introduction

Geometry is at the heart of Islamic art. The designs and patterns use a finite number of geometric shapes
that combine in many different ways. Traditionally, Islamic patterns are created through compass and
ruler constructions but this method is often time consuming and can be complicated to oversee in the
classroom. Students frequently do not exercise the precision required to achieve accurate results. An
alternative method of creating Islamic patterns in the classroom is through manipulation of folded paper
shapes cut from circles or A-size paper. Metric (A-sized) paper is mathematical paper system based on
root 2 rectangles and is commonly used throughout the Europe, see [1, 2]. Squares, equilateral triangles,
hexagons and rhombi can be quickly and easily folded from colored circles or A-size paper. Fixing these
folded shapes onto large sheets of backing paper or card enables the quick assembly of eye-catching and
colorful patterns. A photograph of pupils exploring how to create a tiling pattern from folded paper kites
is shown in Figure 1.

Figure 1: Pupils exploring Islamic patterns using folded paper kites
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The aim of this workshop is to ensure that participants become familiar with the methods for making
a variety of folded shapes and using these to create Islamic patterns. This will act as a creative stimulus
for designing other patterns, exploring the properties of the folded shapes and investigating how to fold
other shapes. Participants will be encouraged to reflect on their own teaching which, in turn, will allow
them to introduce new teaching strategies that help to:

• make cross-curricular connections between art and mathematics
• develop two-dimensional spatial awareness
• broaden students’ creative outlook and develop practical skills
• increase students’ motivation and enjoyment of mathematics

These activities assist in increasing pupils’ understanding of two-dimensional shapes, symmetry and
pattern. The material in this workshop can also be combined into the teaching of a larger cross-curricular
project across the art, religious education and mathematics departments, which could include topics such
as symmetry, two-dimensional shapes, tessellations, paper folding and a study of Islam and Islamic
geometric patterns. Further examples of patterns that can be created using folded paper shapes are
available from [3].

 A series of successful workshops have been delivered by Meenan and Thomas to school groups
alongside an exhibition of tilings and polyhedra, presented at the University of Leeds [4]. Photographs
from one such workshop are shown in Figure 2. A report on a workshop by the accompanying teacher and
her class is available from [5].

Figure 2: Students in a practical paper-folding workshop

Geometry and Symbolism in Islamic Design

Patterns are symbolic in Islamic culture [6]. It is within the circle, the symbol of unity, that polygons, the
building blocks of tiling patterns, are constructed. The circle has also been regarded as a symbol of
eternity, without a beginning and without an end. The compass and ruler constructions of the three
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fundamental shapes used in Islamic art – the equilateral triangle, the square and the hexagon – are shown
in Figure 3.

Figure 3: Constructions of a) a triangle, b) a square and c) a hexagon

The equilateral triangle, the simplest regular polygon, consists of only three equal lines connected at
three vertices. Two lines cannot enclose a plane – three are needed – and so three is the beginning. By
tradition the triangle is a symbol of harmony and human consciousness. The square is often taken as the
symbol to represent the earth and its four corners symbolically represent the four directions – north, south,
east and west or the four states of matter – water/liquid, earth/solid, air/gas and fire/ether. The hexagon
represents heaven [6]. Another symbol commonly found in Islamic decoration is the star. The star
symbolizes equal distance in all directions from a central point. All stars, whether they have 6, 8, 10 or
more points, can be created through division of a circle into equal parts. The center of the star is the center
of the circle from which it was created, and its points touch the circumference of the circle. The rays of
the star spread out in all directions making the star an appropriate symbol for the spread of Islam.

Repetition and variation are important aspects of Islamic design. A series of tiles may consist of only
one or two shapes, although the patterns on the tiles themselves may be different. In other designs, a
number of different shapes are combined to create a complex interlocking pattern, as shown in Figure 4.

Figure 4: A tiling pattern found at the Alcazar, Seville, Spain

In many Islamic patterns, different elements seem to dominate, depending on how the pattern is
viewed. A simple example is shown in Figure 5. It can be considered to be a six-pointed star surrounded
by six rhombi or as three rhombi surrounded by three six-pointed stars. For further examples and
discussion of Islamic geometrical patterns and their constructions see [6, 7, 8].
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Figure 5: Six-pointed star tiling

Creating Shapes and Tiling Patterns

Workshop participants will have the opportunity to fold two-dimensional shapes from colored paper
circles or A-size paper. All the shapes are straightforward to accurately fold following the instructions and
diagrams shown in Figures 6 – 9. Short video clips demonstrating the folding are available online at [9].
No previous experience is required and pleasing results can be achieved in a relatively short time.

Figure 6: Folding instructions for a) a square an b) an equilateral triangle from ‘A’ size paper

Meenan and Thomas

370



Figure 7: Folding instructions for a) a hexagon and b) an octagon and c) a kite from ‘A’ size paper
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Figure 8: Folding instructions for a) a square, b) an equilateral triangle and c) a rhombus from circles
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Figure 9: Folding instructions for a hexagon from a circle

A selection of Islamic tiling patterns that can be made using folded shapes is illustrated in Figure 10.
Decorative designs can be drawn onto the plain tiling patterns once constructed.

Figure 10: Islamic tiling patterns
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Summary

This paper presents a novel approach to the teaching of two-dimensional shape and pattern. Setting these
subjects in the cross-curricular context of Islamic art makes the topics more relevant to students. It has
been observed by the authors that the students involved in the paper folding workshops have shown a
deeper engagement with the subject. The material presented in this paper forms a component of a larger
seminar, which was designed to promote the teaching of two and three-dimensional geometry in both a
visual and practical way. This workshop was successfully targeted at 10 – 16 year old students of a wide
range of abilities and was associated with the exhibition ‘Form, Shape and Space’ [1]. A freely available
teacher’s booklet was developed to support this larger seminar and contains activity sheets on making
polygons and polyhedra using compass and ruler constructions, as well as paper folding and pull-up net
methods [10].
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Abstract 
 
In a hands-on activity with crow beads, participants will learn about introducing very young children to patterns by 
means of number bracelets, and will extend this activity into creating growing and reflecting patterns for older 
children. Clock (modular) arithmetic will be introduced as a basis for other ways to create patterns for bead 
bracelets or necklaces. A discussion of modular arithmetic in loom weaving will conclude the workshop. 

 
 

Introduction 
 
I propose that an ability to recognize, manipulate and construct patterns is a key factor in young children's 
learning about the world generally and about conceptually-based disciplines like mathematics and science 
in particular. Following the research of Constance Kamii [1], Ian Stewart [2] and Elizabeth Warren [3], I 
define patterns as conceptual ordering principles about the ways things repeat. These principles may be 
represented in the natural and the human-created world by concrete objects or may remain abstract, e.g. as 
number or shape concepts.  
 

A patterning activity at its most basic sets up the opportunity to group objects according to certain 
criteria. At the Textile Museum of Canada we use patterning activities with textile materials and 
techniques as tools for developing skills in both mathematics and textile art. For example, children up to 6 
years of age select 8 millimetre plastic beads in different colours, create a simple four to six colour pattern 
by arranging the beads on a simple printed grid like the one in figure 1, glued to a Styrofoam plate, and 
then string the beads on an elastic cord, repeating the pattern to make a bracelet. Older children extend 
this activity by creating growing patterns and/or mirror patterns with the beads.  
 

 
 

Figure 1: Bead grid 
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Figure 2 is an illustration of beads strung in the Fibonacci number sequence that begins as 
0,1,1,2,3,5,8, with the beads starting at 1. The pattern rule is to add each of the last two numbers together 
to get the next number in the sequence. This sequence has some beautiful qualities that are revealed as the 
numbers progress from the first steps, easily understood by budding mathematicians, to larger numbers 
whose ratios, beginning with the ratio of 8 to 13, begin to approach 1.618034 (to six decimal places). This 
number, represented by the Greek letter phi (Ф) is known variously as the Golden Ratio, Angle, Section 
or Proportion [[2], 139]. Its principles are found in the growth patterns of many plants, for example the 
tightly packed arrangement of seeds in the head of a sunflower, and also in art and architecture as a 
principle of composition or structure.  

 

 
 

Figure 2: Number bracelet 
 

Make a Number Bracelet 
 
Grade level: K-3 
 
Summary: This activity investigates how numbers can be used to create visual patterns by organizing 
them on a grid, through the creative work of making jewelry. 
 
Math Expectations: (Numeration) Classify whole numbers; compare and order whole numbers; 
(Patterning and algebra) explore patterns and pattern rules; (Data and probability) sort and classify 
concrete materials [[4], 31]. 
 
Visual Art Expectations: (Knowledge of elements) Recognize and name the primary colours; (Creative 
work) make colour choices in artistic work [5], 30]; (Critical thinking) describe how artists use the 
elements of design to communicate information [5], 31]. 
 
Materials: 1 x 1 cm grid printed on paper, with either 4 or 6 columns x 10 rows; a paper plate, 8 mm 
plastic crow beads, 41 cm piece of round elastic cord.  
 
Description: 1) Tie a bead on one end of the elastic cord so the beads don’t slip off as you string them. 2) 
Cut out a copy of the grid and glue it onto a paper plate. 3) Select a sequence of 4 or 6 numbers from 1 to 
10. Numbers can be repeated if you wish. Our example uses the numbers 1,1,2,3,5,8. 4) Pick different 
colours of beads to correspond to the numbers in your pattern and put them on the grid so you can see the 
pattern as a chart. 5) Starting at the left of the grid, string the beads in order on the cord. When you have 
strung all the beads, repeat the pattern until the cord is almost full (about 50 beads). 6) Leave about 7 cm 
free for tying. Tie the ends of the cord together. Put on your bracelet. It will go twice around your wrist.  
 
Extensions: Once you have strung all the beads on the grid, reverse the pattern when you repeat it.  
(Grades 3-5) String all the beads in the sequence then grow it by doubling each number, then tripling 
them, and so on. Experiment with patterns that grow in different ways. 
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For older students the grid can also be expanded to numbers from 1-20 and the cord can be 
lengthened to make a necklace. The number sequence used in the bracelet can be graphed, using the grid 
and coloured pencils. 

 
 

Number Bracelets and Clock Arithmetic 
 
Grade level: 4-6 
 
Summary: This activity explores computation, units of measure and creating patterns through the 
creative work of making jewelry. 
 
Math Expectations: (Numeration) Solve number problems using addition; (Patterning and algebra) 
create and explore number patterns [[4], 64]. 
 
Visual Art Expectations: (Knowledge of elements) Recognize and name the primary colours; (Creative 
work) make colour choices in artistic work [5], 30]. 
 
Materials: 8 mm coloured plastic crow beads in 10 colours, 41 cm piece of round elastic cord. 
 
Description: 1) Choose any two numbers from 1 to 10. 2) Follow this rule: add the two numbers on the 
right and record just the digit in the ones place in the sum. Add the numbers with the help of the 10-hour 
clock to see why this works.  
 
 2+6=8 
 6+8=4 
 8+4=2 
 4+2=6 
 2+6=8 
                          
              Figure 3: 10-hour clock  
 

This number pattern repeats after line 4 so you have a pattern of 4 numbers, 8-4-2-6. 3) Select four 
colours of beads; for example, 8 yellow, 4 blue, 2 orange and 6 green. This is where the artistic creativity 
comes in. 4) When you are happy with your colour choices for the four numbers in your sequence, string 
them in repeat to make a bracelet. You may also try mirror or growing patterns with your sequence. 
 
 

If you think of the numbers as being on a 10-hour analogue clock, which repeats just as a 12-hour 
clock repeats, you can imagine another kind of clock, for instance a 4-hour clock, and choose a pair of 
numbers. Here is an example using a 4-hour clock. For any sums over 4, subtract 4. Add the numbers 
with the help of the 4-hour clock to see why this works. 
 
 1+2=3 
 2+3=1 
 3+1=4 
 4+1=1 
 1+1=2 
 1+2=3  
              Figure 4: 4-hour clock 

Workshop: Working With Patterns To Introduce Mathematics Concepts To Young Children

377



 

This number pattern repeats after line 5 so you have a pattern of 5 numbers, 3-1-4-1-2. Select five colours 
of beads as before and use this pattern to make a necklace. 
 
 

Weaving and Clock Arithmetic 
 
How does clock arithmetic relate to the technology of weaving? A loom is a device for keeping tension on 
one set of threads, called the warp, so a second set of threads, called the weft, can be inserted in an over – 
under interlacement, for example the over one – under one pattern called tabby. A foot powered floor 
loom usually has 4 shafts. Each warp thread is passed through the eye of a needle, or heddle, in a repeated 
sequence, so the warp thread can be raised to make a space, or shed, for the weft to pass through. The 
patterns created are usually based on the twill weaves of the familiar blue jeans. 
 

     heddles––––––––––        tabby weave 
                     
      

     warps ––––––––––         twill weave 
                     
                     
         
         
 
         
        Figure 5: How a loom works      
 

On a grid with 4 columns x 24 rows, try filling in cells to discover some of the patterns you can 
make on a 4 shaft loom. (Any combination of cells will work on a loom except for all blank or all filled - 
why?) Every 4 columns change the pattern and see what happens. Then cut strips of paper in two colours 
and interlace them to see how your pattern works. 
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Abstract 
 
This workshop aims to explore various mathematical topics that emerge from examining classes of chains and their 
properties. Basic concepts are taken from topology, an area of mathematics that is concerned with notions like 
connectedness, how many holes there are, and orientability; geometry, including symmetries; and collapsibility and 
degrees of freedom. These topics are explored through an examination of a small number of chain designs including 
examples that are not topologically linked at all, examples in which the relative position of the links determine the 
symmetries, degrees of freedom, and the way in which their structure is analogous to that of a Moebius band, and 
finally a model of a chain design with a fractal structure. The workshop will include building human models to 
explore various properties and other activities where the participants will be able to play with necklace models to 
better understand the theory and to come up with their own questions to investigate.   

 
Introduction 

 
According to a popular online dictionary [1], a chain is ‘a series of connected links’, and a link is defined 
as ‘one element of a chain’ [2]. A more useful way to define a chain is as follows: a series of 
interconnected, rigid elements called links which, together, constitute a linear, flexible (non-rigid) object 
that can be used to connect, wind, hang or wrap. Generally, chains are made of a limited number of 
different link types that combine in repeating patterns, thereby displaying predictable properties such as 
symmetries.  
 Some of the mathematical properties of chains, which are explored in the workshop, include the 
topological nature of specific designs, the symmetries that are present or absent, degrees of freedom, 
collapsibility and the significance of the ratio of the sizes of the elements, including the eccentricity, 
gauge (thickness of the wire) and inner radius of the links. These properties are explored through various 
examples including the not-link chain, the Byzantine chain design, the ‘Rope’ chain design and Antoine’s 
Necklace [3]. 

The Not-Link Chain 
 
In knot theory, a ‘link’ refers to a ‘set of knotted loops’ or circles [4]. We call the first example under 
consideration the ‘not-link chain’ because although it functions as a chain according to the general 
definition given above, in knot theory terms it is not linked as the elements are not looped through each 
other. 

 
Figure 1: The Not-Link Chain 
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 In Figure 1 on the left, a section of the chain shows how it alternatively connects two different types 
of elements: the first is a rod at either end of which is attached a slightly larger metal ‘ball’, forming an 
elongated dumbbell; the second element is a small flat figure eight whose holes are of a smaller diameter 
than the ‘ball’ of the dumbbell but larger than that of the rod. These size ratios allow some movement in 
the chain, and prevent it from disconnecting. The right side of Figure 1 shows a connection between the 
two types in more detail. 
 

The Byzantine Chain 
 
The second example under consideration is known as a Byzantine Chain, King’s Chain or Bali Chain [5]. 
It is related to a design called Idiot’s Delight [6], and is made using only one type of element: a simple 
round ring. Figure 2, below, shows a section of Byzantine Chain made using shower curtain rings. The 
distinguishing feature of this design is the interlocked 4-ring combination in the circle. This grouping is 
made rigid by the addition of the rings connecting it to the next interlocked 4-ring grouping. 
 

 
 

Figure 2: Three Sections of Byzantine Chain 
 
 The design of the Byzantine Chain is interesting from a topological point of view in terms of the 
interlocking of the elements. It is also a good example for examining three-dimensional symmetries. In 
addition to longitudinal translation symmetry, the chain also has reflection symmetry across two 
perpendicular, longitudinal planes (one parallel to the picture plan, one perpendicular to it) and one type 
of transversal plane (through each set of four aligned elements). It also has two kinds of ‘glide rotation’ 
symmetries. Firstly, locally, the interlocked grouping can be rotated 90o around the chain’s longitudinal 
axis, then reflected through the transversal plane through its center, and the global positions of the chain 
are preserved. Secondly, the grouping can be rotated through 90o again, then translated to the position of 
the next grouping and globally, the positions are all preserved.  
 This design is often executed in silver, in a much more compact version than in the figure above. In 
this case, the links that form the interlocked groupings are oval, only two links are used between the 
interlocking groupings instead of four, and the chain acquires a more pronounced rigidity [5]. The degrees 
of freedom are then reduced to rotations around axes located in the centre of the connecting pairs of links. 
Each alternate joint can only move in one rotational direction, perpendicularly to its neighbours, and the 
chain is much less fluid. 
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The ‘Rope’ Chain 
 
The third example under consideration is a simpler design in that every element is in the same position 
relative to the others. In tiling terms it is ‘monohedral’ [7]. In the Rope Chain design, a standard chain 
design is modified in such a way that every element is connected, not only to its immediate neighbours on 
either side, but to two or even three. In Figure 3, the elements connect four others each time. 
 

 
Figure 3: The Twisted Rope Chain Design 

 
 This design also has several symmetries, including rotation, longitudinal translation and ‘glide 
rotation’ through which each element is related to all the others. It has no global reflection symmetry. In 
the case of the design as executed in Figure 3, the elements are still loose and the chain can be untwisted 
somewhat so that the staggered positions are not as visible. This flexibility depends on the relationship 
between the gauge and the inner radius of the rings. As the gauge is increased relative to the inner radius, 
the chain becomes more rigid and the ‘twist’ more stable. At the extreme, the flexibility comes solely 
from the freedom of movement afforded by the rotational symmetry of the individual elements that can 
slide around each other.  
 The most interesting feature of this design, from a topological perspective, is the twist built up in the 
chain. If a line is traced that connects the outermost point of each element, on either side, as shown in 
Figure 3, then the design can be seen as a band or ribbon that twists around itself and whose ends can be 
joined, just like a Moebius band. The gauge, the inner radius and the number of links that are 
interconnected together within the length of the chain will determine how many times the ‘band’ twists 
around itself and therefore whether the resulting object has one or two edges and one or two faces. 
  

Antoine’s Necklace 
 
Antoine’s necklace is an interesting topological space that is defined recursively [3]. Start with a torus V. 
C1 is a chain of tori linked together as in Figure 1. In each component of C1, construct a smaller chain of 
tori (generally with the same number of links as in C1). Let C2 denote the union of the smaller tori at this 
level. Continue this process ad infinitum, and Antoine’s necklace is the intersection of the Ci. This set is a 
non-empty, compact subset of R3.  In R3, being compact is equivalent to being closed (contains its 
boundary) and bounded.  Each Ci is a subset of Ci-1 (for i greater than or equal to 2), so the intersection of 
the nested sets is non-empty. 
 

 
 

Figure 1: Antoine’s Necklace (http://mathworld.wolfram.com/AntoinesNecklace.html) 
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Antoine’s necklace is a fractal that is homeomorphic (or topologicially equivalent) to the middle thirds 
Cantor set [3]. The middle thirds Cantor set can be obtained as follows [8]. Start with a closed interval of 
unit length, remove the middle third open line segment leaving two closed line segments each of length 
one third. Then remove the middle thirds of the remaining closed line segments. Continue this process ad 
infinitum. The resulting set possesses many interesting properties. It is compact, uncountable (infinite but 
cannot be put in one-to-one correspondence with the natural numbers), and disconnected (given any two 
distinct points x and y in the set, there exist two disjoint open sets U and V such that x is in U and y is in 
V). The set is also self-similar, and one can find the corresponding similarity dimension D.  An example 
of a more familiar self-similar object is the square.  The similarity dimension D of the square is 2 because 
scaling down by a factor of 2 gives 4 similar squares, thus 2D=4.  In the Cantor set, the original line 
segment is scaled down by a factor of 3 to obtain 2 similar line segments, so D is given by 3D=2, or D = 
log2/log3 0.6309. 

 

 
Figure 2: Middle Thirds Cantor Set 

 
Conclusion 

In summary, the workshop will introduce participants to different mathematical concepts that arise from 
studying various classes of chains.  The hands-on activities will allow participants the opportunity to see 
and feel the abstract concepts and to come up with their own mathematical discoveries and queries about 
the chains.  
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Tiddley Cove Morris & Sword Dancers and Steel Phoenix Rapper, Vancouver, Canada.

Abstract

This interactive 75-minute workshop is suitable for teachers, students, geometry enthusiasts, dancers, and parents
and children participating in the conference. Working with two traditional English sword dancing teams from
Vancouver (Tiddley Cove Morris & Sword Dancers and Steel Phoenix Rapper), we will explore the geometric
constraints of longsword and rapper sword “locks” (friction-locked symmetric configurations of wooden and metal
“swords”). The workshop will offer demonstrations of these traditional dances and locks, led by the two dance
teams; then workshop participants will be encouraged to try building the locks by dancing them (with help from the
professional dancers) and by building them with coffee stir sticks. The geometry of locks will be explored in terms
of some knot theoretic principles (crossings, sticks), and in terms of star polygons, minimum/ maximum angles,
number of sticks, and “physical algorithms” for their production.

Structure of the workshop

Members of the Vancouver longsword and rapper sword teams, Tiddley Cove Morris & Sword and Steel
Phoenix Rapper, will collaborate with Susan Gerofsky (herself a member of both teams) in leading an
interactive workshop on aspects of mathematics and traditional dance for teachers, students, geometry
enthusiasts, dancers, parents and children attending the conference. Demonstrations by the professional
dancers will be followed by opportunities for participants to learn parts of the dances, creating longsword
and rapper locks with swords through choreographed movements and building miniature versions of the
locks with wooden coffee stir sticks, while exploring aspects of geometry and multiple representations
and algorithms embodied by these forms.

What are longsword and rapper sword locks?

Longsword and rapper sword dancing are two styles of traditional sword dances recorded and practiced in
the north of England [1, 2]. Longsword is performed by a team of dancers, traditionally based in one
particular Yorkshire village. The dance uses blunt rigid wooden or metal “swords”, held hilt and point by
the dancers so that the members of the team are connected to one another by their swords through much
of the dance. Longsword dances consist of movment figures danced by the team, punctuated with “locks”
– regular geometric shapes, often star polygons – formed through dance moves. Locks weave all the
dancers’ swords together into an aesthetically pleasing geometric figure, which is held together by
friction. Once the lock has been displayed, to the cheers and appreciation of the audience, dancers grasp
their own sword and break the lock to continue the dance (often carrying out a mock “beheading” of the
team captain or musician in the process!)

Traditional rapper sword dance has been recorded mostly in Northumbria, in the area around
Newcastle-upon-Tyne, England. Like longsword, it is performed with blunt metal “swords” held hilt and
point by the dancers, but rapper swords are flexible and springy rather than rigid, which affords a
different range of shapes and configurations. Rapper sword dance moves are somewhat different from
longsword stepping and figures, but like longsword, rapper is also structured as dance figures interspersed
with “locks” created through collective movements of the dancers. The flexibility of rapper swords offers
more options in the presentation of topologically isomorphic locks.
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Susan Gerofsky, University of British Columbia, Vancouver, Canada. susan.gerofsky@ubc.ca 
Tiddley Cove Morris & Sword Dancers and Steel Phoenix Rapper, Vancouver, Canada.
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Exploring the geometry of longsword and wrapper sword locks

These regular figures are formed quickly in the course of a vigourous set dance, and then raised up,
usually by one dancer, for watchers to admire. The nature of the production and display of the locks raises
the following two interesting issues from a geometric point of view:

1) The locks must be capable of being produced smoothly and quickly through the choreographed
movements of the team of dancers – that is, there must be a “physical algorithm” developed
through the dance to produce these stellated and other shapes. When the same shapes are created
by one person working alone with long wooden coffee stir sticks, it takes much greater time and
effort to arrive at the figure. In this participatory workshop we will:
• explore the nature of the physical algorithm that produces locks with a team of dancers,
• work on developing small-scale physical algorithms that work with the stir sticks, and
• compare these stick-based algorithms with other pencil-and-paper algorithms to produce similar
figures.
Throughout these explorations, we will be working on developing the idea of multiple algorithms
and multiple representations of mathematical objects, and talking about the kinds of insight
gained by noticing equivalencies and differences between these.

2) The locks are held together by friction and tension of materials, in a form that involves weaving
of sticks/ swords. This fact, and the physical construction of the two kinds of sword impose
geometric constraints on the locks. These constraints can be explored through addressing
questions like:
• what is the minimum/ maximum number of swords that can be used in a lock?
• what is the minimum/maximum/optimum number of crossings needed for a lock to hold?
• what constraints are there on the size of the angles in the locks?
• given these constraints, can we design new locks (other than the traditional ones) that would
hold and be constructable using a physical algorithm in the course of the dance?

There is the possibility as well of making lock shapes from string or cord, and exploring
isomorphisms of knots and sticks, an area that has been developed in knot theory.

References
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The Beautiful Triangle workshop introduces to educators a multi-disciplinary study that integrates 
geometry, spatial sense, aesthetics, language, the history of ideas, and visual arts.  The guiding concept 
of the study is that geometric figures represent and communicate concepts, feelings, and experiences.  
The workshop, which is rooted in a constructivist pedagogical model, combines both explanatory and 
experiential learning.  By engaging in the same learning activities as the students would, educators gain 
insight into the analytical and creative processes involved in the study.  The learning activities include:  
making choices based on aesthetic preferences; analyzing these choices through reference to geometric 
properties; naming triangles based on Greek and Latin roots; experimenting with triangles as analytical 
tools based on the model of Thales; appreciating and analyzing the work of Wassily Kandinsky as a 
model of conceptual geometric art; and designing a piece of conceptual geometric art with 
accompanying Artist Statement.  The Beautiful Triangles workshop is based on a unit of study that has 
been piloted with students at The Toronto Heschel School.  The workshop will be of interest to 
educators who are looking for ways to integrate mathematics and arts in ways that enhance critical and 
creative thinking.   

 
 

Introduction 
 
The Beautiful Triangle is a workshop based on a multi-disciplinary study of triangles that integrates 
geometry, spatial sense, aesthetics, language, the history of ideas, and visual arts. The guiding concept of 
the study is that geometric figures represent and communicate concepts, feelings, and experiences. The 
Beautiful Triangle was conceived and developed by educators at the Lola Stein Institute for Leadership in 
Education and has been piloted for the past four years at the Toronto Heschel School with classes of grade 
seven students. Through this unit, students appreciate how the properties of triangles can be used to 
express their own thoughts and ideas. This motivates students to produce innovative conceptual art, and to 
write insightful Artist Statements that evince a deep understanding of the geometry curriculum. The 
workshop - which combines presentation with hands-on activities- enables participants to experience the 
key elements of the unit, and provides them with tools for replicating it with students. 
 
 

Aesthetics 
 
The Beautiful Triangle workshop begins with an exercise in which participants are asked to look at a 
collection of triangles arranged on a white page. Participants are asked to consider which triangle is the 
“most beautiful” or “most appealing”, and to rank the triangles in order from most to least beautiful. 
Participants scribe and then discuss their thoughts and feelings about each triangle. This first stage of 
aesthetic impression is followed by an analytic stage, in which participants use tools such as a ruler and a 
protractor to discover the properties of the triangle which they have selected. For instance, a person who 
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preferred a particular triangle because it appeared to be “balanced” will discover, using a protractor and 
ruler, that the triangle has three equal angles and three equal sides.  

 
 

Constructivist Approach to Naming 
 

The next stage involves naming the triangles. A list is provided of root words, suffixes, and prefixes with 
Greek and Latin etymologies such as poly-, -gon, -skelos. Using these roots, suffixes, and prefixes, 
participants construct a name for each triangle. The purpose of this exercise is two-fold, when done with 
students. Firstly, the activity provides a pretext for a lesson in the history of ideas: it is an opportunity for 
teachers to expose students to the development of geometry in ancient Greco-Roman civilization. 
Secondly, the activity constitutes a form of constructivist pedagogy: by allowing students to construct 
their own terms for the shapes, students recognize how the construction of language has both logical and 
contingent elements. For example, one might reasonably name the “balanced” triangle with equal angles 
an equigon (equi- meaning equal, and -gon meaning angle), or an equilateral (-lateral meaning sides). Of 
course, once students have assigned a personal name to their triangle, they are then introduced to the 
standard accepted nomenclature. This activity is replicated with workshop participants, as a hands-on 
example of constructivist pedagogy.  
 
 

History of Geometry in Abstract Thinking 
 

The workshop continues with examples of lessons that demonstrate for students how the ancient Greeks 
used geometry as an analytical tool. In particular, Thales' use of similar triangles to measure the heights of 
pyramids is discussed, and a practical way for students to replicate his experiment is provided. The 
purpose of these lessons is to further enhance students' understanding of how geometric figures can be 
used to represent and communicate abstract concepts.  
 
 

Models of Abstract Art 
 

The next stage of the workshop, which reflects the progress of the unit of study, is for participants to 
examine the abstract art of Wassily Kandinksy. Slides of Kandisky's work which feature the use of 
geometric figures are shown. Participants respond to the art using the same set of guiding questions that 
are provided to students. These include questions such as, what emotions does this art evoke? What is the 
story or message conveyed by this work? What title would you give this work of art? After participants 
view a few of Kandinsky's works, they have an opportunity to share and discuss responses. The workshop 
leader provides some examples of additional lessons which can be done with students to enhance their 
understanding and appreciation of Kandinsky's background, artwork, and aesthetic philosophy.  
 
 

Student Conceptual Art 
 

The final stage of the Beautiful Triangle unit is for students to create their own abstract geometric art that 
expresses a concept, emotion, or narrative. Over the years, students have selected topics as diverse as 
“Trust & Friendship”, “Jewish History”, “Gymnastics”, “Rock and Roll”, “The Cosmos”, “Chaos”, 
“Creation”, “Acceptance”, and “A Picnic in the Park”. Because of the precision required in forming the 
geometric images, the first stage of the work is done using a pencil, protractor and ruler. The work is then 
finished using pencil crayons, or water colour. In longer versions of the workshop (2-2.5 hours) 
participants have an opportunity to begin creating samples of geometric conceptual art. In shorter versions 
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(1.5 hours) the workshop leader describes the process through which students develop their artwork, and 
provides examples of student work that can be used as models.  
 
 

Artist Statement 
 

Each work of art is accompanied by an Artist Statement, which describes the concept of the work. This 
statement outlines how the choice of composition, the selection of particular shapes, and the properties of 
these shapes support and communicate the concept. The Artist Statement iincludes technical information 
about the shapes used, including their standard nomenclature, various angles and properties such as 
congruency, similarity, and ratio.  
 
 

Teaching Tools 
 

Each workshop participant receives a full colour booklet that provides an outline of the unit of study, 
examples of the key activities, and samples of student art and Artist Statements. 
 

 
Samples of Student Work 

 

Figure 1:  The Cosmos 

The Beautiful Triangle

387



 Figure 2:  
Everything 
Revolves Around 
Art 

Figure 4:  
Diversity 

Figure 3:  
Happiness 

Beiles and Rosenwald

388



 
Perspectives on Perspective 

 
Sarah C. Melville*  Duncan J. Melville 

Department of Humanities and Social Sciences
Clarkson University 
Potsdam, NY 13699 

Department of Mathematics 
St. Lawrence University 

Canton, NY 13617 
E-mail: melville@clarkson.edu E-mail: dmelville@stlawu.edu 

 
 

Abstract 
 

A picture plane is a two-dimensional space that can be approached in many different ways.  Different cultures have 
evolved various conventions for depicting images in space and a study of these representational conventions can, 
therefore, illuminate important cultural conceptions.  In this workshop, we explore the use of artistic conventions as 
a cultural lens. As illustrative exercises, participants will create and critique pictures using two of the most 
mathematical representational systems, the ancient Egyptian grid system, and Renaissance perspective as first 
described by Leon Battista Alberti.  

 
 

Flattening the World 
 

Since the earliest cave and rock art, people have sought to record their experiences of the world on two-
dimensional surfaces.  What they choose to record reflects what is important to them, but so too do the   
techniques used.  In this workshop, we will look at a number of ways cultures have chosen to encode 
representations of space on a two-dimensional surface and use them to frame the cultural issues and 
questions of meaning embedded in the artifacts.  
 

We will focus on two case studies where important artistic concerns demanded the use of 
mathematics. The first is how the functional requirements of Egyptian art were served by the development 
of the grid system, and the second is how the rise of humanism and the privileging of a particular point of 
space and time led to the introduction of true perspective.  We will explain the cultural background and 
participants will have the opportunity to deconstruct, and to construct, pictures using these two 
techniques.  This type of hands-on classroom activity helps students recognize why and how cultures 
choose to represent objects in space in a certain way, and how mathematics allows them to fulfill their 
purpose. 

 
 

The canon of proportions in Ancient Egypt 
 

Probably the most striking feature of ancient Egyptian art is its remarkable uniformity; only slight 
changes in emphasis, costume or accoutrements allow viewers to distinguish between objects from 
different eras. But this fact does not betray a lack of creativity or ability on the part of Egyptian artists, 
nor does it suggest that Egyptian culture was so stagnant or mired in tradition that it entirely rejected 
innovation. For over three thousand years composition and style were governed by specific conventions 
in order to ensure that viewers could instantly decode the meaning of any image and that the image itself 
could fulfill its intended function, whether as a message to the public, as a representative of the living in 
the afterlife, or as a connection between the mundane world and the spiritual plane. To the Egyptians, the 
image was eternal; it was imbued with power and the very essence of life itself. Accordingly, the artist’s 
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goal was to depict the essential and timeless characteristics of an object rather than how it looked at a 
specific moment or from a particular point in space [1]. A flat, two-dimensional picture plane was 
perfectly well suited to the task.  
 
 Since it was necessary to portray the essential nature of a given object, artists showed as much of it 
as possible and to that end, they often combined different views to create a composite image. For 
example, Figure 1 shows a garden pond from a bird’s eye view, but the trees, water plants and fauna from 
a frontal perspective. This was done to include as much of the whole scene as possible. 
 

 
 

Figure 1: Painting of a pond in a garden from the tomb of Nebamun. 18th dynasty. 
 

The human form was also subject to the essentialist principle described above: the head was shown 
in profile with a frontal eye and eyebrow; the chest, shoulders and hips were frontal, but one 
nipple/breast, the small of the back, the legs and feet were all shown in profile. In order to ensure that 
artists could consistently meet the ideal standards when depicting the human form, Egyptian artists 
developed a mathematical grid system to govern proportion. The grid system, which was implemented 
during the Old Kingdom (3rd millennium BCE) and endured with occasional adjustments into the 
Ptolemaic period (c. 323 to 27 BCE), did not stifle artists’ creativity nor was it intended to allow unskilled 
laborers to produce art mechanically. Rather, the grid system guaranteed that the human figure would 
consistently be portrayed in its appropriately perfect form. A typical figure drawn according to the canon 
looks like this: 
 

  
 

Figure 2: After Robins [1] and Iverson [2]. 
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The Egyptian canon of proportions: an exercise for students 
  
In the following exercise students take a modern photograph of a human figure and transform it into an 
essential composite using the standard Egyptian canon of proportions given below. Any clear 
photographic image will suffice, but students respond well to familiar figures such as celebrities. Using 
digital or Polaroid photos of the students is another option. Remember that the picture must conform to 
both ideal representation in terms of pose and proportionality of body. 
 
 
 
 

For pose, you need 
•  Head in profile 
•  Full eye and eyebrow 
•  Frontal chest and shoulders 
•  Profile nipple/breast 
•  Profile small of back 
•  Full view navel 
•  Profile legs and feet 
•  Both feet from inside 

 
For canon of proportions and the grid, you 
want: 18 squares from hairline to soles of 
feet. 
•  H0: Soles of feet  
•  H3: Middle of calf  
•  H6: Top of knee   
•  H9: Lower edge of buttocks  
•  H11: Small of back  (for men) 
•  H12: Elbow   
•  H14: Nipple  
•  H16: Junction of neck and shoulders   
•  H18: Hairline   

 
Also 
• Vertical line through ear bisects figure 
• Shoulders 6 squares wide for men, 4 or 5 

squares for women 
• Armpits 4 squares wide for men, a bit 

narrower for women 
• Feet 3 squares long. 

 
                                                                                  

Figure 3: A grid for a standing figure. 
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Alberti on Perspective 
 

An entire humanistic approach to art is summed up in Alberti’s description of preparing to draw, “I 
inscribe a quadrangle of right lines, as large as I wish, which is to be considered to be an open window 
through which I see what I want to paint.  Here I determine as it pleases me the size of the men in my  
picture…” [3] 
 
 In early fifteenth-century Italy, the rise of humanistic philosophy led to a complex restructuring of 
the roles of viewer, artist, and representation centered in Florence.  A philosophic focus on the individual, 
and individual experience, thoughts, actions and creativity was bound to have an impact on art.  Study of 
the natural world implied an observer, and this, too, carried over to representation.  Painting was to be 
about people, about specific individuals engaged in specific acts, frozen at a moment in time, and 
observed by the artist from a specific location.  That is, a scene is represented as if through an ‘open 
window’ by someone standing at a particular distance from the window. 
 
 While these ideas were first articulated and demonstrated by Brunelleschi around 1415, they were 
first written down some twenty years later by Leon Battista Alberti.  Alberti came from a wealthy 
Florentine family that had been exiled from Florence in one of its periodic political upheavals.  Alberti 
became a Papal Secretary in 1431 at the age of 27 and was sent in the Pope’s service to Florence in 1434. 
Arriving in his hometown, he encountered the artistic ferment there and wrote the first account of the 
perspective style, On Painting, in two versions, Italian for artists, and Latin for patrons. 
 
 The basic technical problem in perspective painting is that a distance vertically up the picture 
represents a distance back horizontally in the scene represented.  How far up should represent how far 
back?  Alberti roundly criticizes some of the techniques then in use and lays out his own scheme for 
creating a projective grid.  Once the grid has been constructed, the artist knows the appropriate scale for 
the people and buildings that filled Alberti’s vision of art.  Alberti also shows how to use the grid to draw 
other simple shapes in correct perspective while conceding that after locating a few key points, the artist 
can fill in the details freehand.   
 
 As inheritors of the western Renaissance and having spent our whole lives watching naturalistic 
perspective representations on a glass window, it can be hard to step back, and realize that what seems 
obvious to us was originally radical and came from a particular philosophy.  Choosing to represent a 
scene meant forgoing all the cultural markers that earlier painting had used so that it could be read by 
viewers.  If size no longer denoted importance, how was one to know who was important in a painting?  
Looking through a window limits the use of well-known symbols and reduces a painting to a single frame 
from the narrative sequences that were often embedded in earlier forms of art.  Fixing a point to look at 
the scene from fixes a point for the viewer to observe the scene.  The artist dictates where the viewer 
should stand and thus re-arranges the relationship between the artist-craftsman and viewer-patron.  
Returning to the first text on perspective, when the theory was new and being laid out for the first time 
can help us to reflect on these issues and look at the art, and our own cultural assumptions in a new way. 
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Albertian Perspective: an exercise for students 
 
In the following exercise, students create a simple scene of buildings and people using Alberti’s directions 
from 1435. 
 
 The first step is to fix the scale of the painting by deciding ‘the size of the men in my picture’.  
Dividing the height of a figure in three gives Alberti a scale he can use across the base of his picture.  He 
conveniently bases his scale on a Florentine unit of measurement, the braccio, of about 23 inches.  

          
 

Figure 4: Choosing 'the size of the men' 
 

 The next step is to choose a ‘centric point’ (the point at infinity) equal to the height of a man and join 
it to the points marked on his base (these are the orthogonals).  Now Alberti chooses a position for the 
observer, for ‘a painted thing can never appear truthful where there is not a definite distance for seeing it’.  
Given the height of the centric point and distance of observer to painting, Alberti shows how to create the 
horizontals for the projection of a square grid.  He makes a copy of the marks across the base of his 
picture, locates the observer and joins the dots.  Where the lines cross the picture plane marks the heights 
of the horizontals.  
 

 
Figure 5: Constructing the horizontal heights. 

 
Transferring the heights to his original rectangle, Alberti marks the horizontals for his square grid.  The 
resulting grid is the classic ‘pavimento’.   
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Figure 6: An Albertian perspective square grid. 

 
As the horizon at infinity is chosen as the height of the people, all figures in the grid will be as tall as the 
horizon, and a building that is, say, three times the height of a person, will appear three times that height 
in the picture.  Hence, Alberti has keyed all three axes to his scale.  
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Abstract 
 

The Fusion Project is a research program under development at the University of San Francisco, envisioned by 
Philip Wagner and directed by Benjamin Wells.  With the collaboration of the Fine Arts Museums of San Francisco 
(and their de Young Museum), it seeks to bring art to the math classroom and math students to the art museum.  In 
this Bridges Workshop, we shall explore the art of the de Young Museum and the mathematics it stimulates.  
Participants will also learn how to align test problems, outcomes, and works of art.  Members of the workshop will 
have the opportunity to extend and improve Fusion Project instructional materials (and the program itself).  The 
workshop is especially geared to middle school math teachers and to those who are interested in replicating or 
adapting this program. 

 
 

1.  The Fusion Project Workshop:  Introduction and Purpose 
 

Philip Wagner created The Fusion Project [1] (FP) as a collaboration between art museums and middle 
school mathematics classrooms.  The main idea of FP is to engage middle school students in learning 
some critical math concepts by discovering them displayed in artwork and architectural components of a 
major art museum.  In 2006 Phil approached the Fine Arts Museums of San Francisco (FAMSF) with the 
idea, and Sheila Pressley, FAMSF Director of Education, saw the value to students and to the museum.  
She immediately wrote a letter of support for FP.  FAMSF defined the initial step of the project as an 
analysis of their permanent collections’ potential for supporting mathematics instruction.  They contracted 
with Benjamin (Pete) Wells to perform alignments of works of art with targeted California 7th grade math 
standards; these arose from aligning the standards with math test results.  Thus began a unique program of 
using the art museum to enhance standard mathematics curricula in middle schools.  The claim of 
uniqueness is based on surveying teachers, districts, and museums in many states, four countries, and 
numerous web pages.  It is not an exceptionalist claim:  we would love to find others doing this work.  
Indeed, spreading the ideas is the main purpose of this workshop.  For more background on FP, see [2–5]. 
 
 

2.  The Fusion Project at FAMSF:  The Rest of the Stories 
 
Pete’s FP report to FAMSF [4] comprises seven Stories, later expanded into Encounters [5].  These are 
described in [2], which includes material from three of the seven topic clusters.  The remaining four 
Stories are given below, abbreviated and slightly reorganized from the original form.  The reader should 
keep in mind that these are outlines, like screen treatments, not finished instructional materials.  Two of 
the Stories/Encounters in [2] are much closer to that.  All art is from the de Young Museum; works not 
pictured here may be seen in [2], and there are many additional works listed in [4]. 
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Story 2.  Fractions, percent, and breakdown.  You enter the gallery that is the new home of the 
Piazzoni Murals (Fig. 1), set into identical alcoves.  The Land side shows inland scenes, the Sea side 
gives coastal views.  It is hard to grasp all of them, and small groups from your math class gather before 
different scenes.  The teacher notices that 1/6 of the class is looking at 1/4 of the murals and these two 
numbers are the same.  Luckily the number of mural wall alcoves is 6 + 6 = 12, and that makes for easy 
fractions.  Harder fractions come from breaking down a mural into sky, water, and land portions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Piazzoni Murals Gallery Figure 2.  Dinner for Threshers1 (Wood), Burning of LA (Petlin) 
 

Math questions related to artworks: Problems, skills, and techniques exercised by answering the 
questions:  arithmetic (and maybe some algebra) with fractions, percent, conversion of fractions to 
percent, easy addition of fractions with unlike denominators. 

Piazzoni Murals Gallery by Gottardo Piazzoni (Fig. 1) 
A. If 1/6 of the class equals 1/4 of the mural niches, then how many students are in the class? 
B. One-sixth of your class would be how many niches?  what fraction of niches?  what percent?  
C. If we add on the niches next to the doors, what percent increase in the number of niches is 

this?  Fractions with denominators 7 and 14 now arise too. 
D. Show different ways to pick 1/3 of the murals, 1/4 of them, 1/6 of them. 
E. Fraction problems based on the ceiling slots, lights, and the window panels can also work. 

Dinner for Threshers by Grant Wood (Fig. 2) 
F. Fractions based on 12 again, or 6, 7, 14 by using one side of the table or the head and foot.  

Then 16 or 17 using the wait-staff, with more people in the wings. 
The Burning of Los Angeles, 1965-1967 by Irving Petlin (Fig. 2) 

G. Fractions based on 13 strips in each of four panels.  Provides parallel to weeks in a year.  
Also the figures are worth counting.  There is only one white figure (or at most a few), so 
percent could be interesting.  How about the fraction of strips with or without smoke?   

 
Story 5.  Lines and planes in space, ruled surfaces, and belts.  There are only a few ways two lines can 
be placed in space:  on top of each other, parallel, intersecting, or skew.  Two or three planes also have 
limited ways to run along or into each other.  With more lines, everything gets more complicated, but 
there are some neat curved surfaces (called ruled surfaces) that are built from lines.  The skin of the 
Hamon Tower (see [2, Figs. 9, 10]) is such a surface.  Another kind of ruled surface is a belt, where the 
lines run across the belt.  These too turn up at the de Young Museum. 
 
Math questions related to artworks:  Problems, skills, and techniques exercised by answering the 
questions:  how lines and planes interact in 3-dimensional space, recognition and qualitative analysis of 
ruled surfaces, different ways belts can be connected and run. 
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Raceme by Daniel Clayman (Fig. 3) 
H. A raceme is a flower shape, but this shape is clearly something more familiar.  Cones are 

ruled surfaces, as are cylinders.  Planes are ruled, so prisms and pyramids are too.  Spheres? 
 
 
 
 
 
 
 
 
 
 
 Figure 3.  Raceme (Clayman), UW84DC#2 (Deacon), Wuvulu ritual oil dish 

 
UW84DC #2 by Richard Deacon (Fig. 3) 

I. Multiple belts form this sculpture.  If a belt is given a half-twist before it is joined in a loop, 
then it is a Moebius surface or band.  This is used in industry for even belt wear, because a 
Moebius band has only one side.  Does this sculpture have any one-sided belts in it? 

Wuvulu ritual oil dish (Fig. 3) 
J.  This shape is simple but it escapes simple description.  The surfaces are not only ruled, they 

are also types of cylinders (the ruling lines are all parallel).  Locate the three ruled surfaces. 
Hovor II by El Anatsui (Fig. 4) 

K. This work is ruled in small areas, but is distorted overall by hanging and by variation in seal 
sizes.  Find some ruled areas and some that are not. 

Terrace overhangs/Mondrianic shadows  (Fig. 4) 
L. Seen from the second floor, the huge Terrace overhangs cast shadows on the courtyards 

below.  The shadows fall from bars arranged in space; how does that affect the lines in the 
shadows?  How will the shadows change as the sun moves? 

 
 
 
 
 
 
 
 
 
 
 Figure 4.  Hovor II 

2 (Anatsui), Mondrianic shadows Figure 5.  3 Gems (Turrell)—interior 
 
Story 6.  Parallels, perspective, other projections, and the shining sun.  Parallel lines and planes 
abound in normal buildings.  There are plenty in the de Young Museum too, but there are some surprising 
departures built right into the architecture, for example the Hamon Tower (see [2, Figs. 9, 10]).  In 
making drawings look realistic, parallel lines (like horizontal ledges on buildings and road edges) are 
drawn so that, if extended, they meet at a point, called the vanishing point.  This is the heart of creating 
linear perspective.  Perspective drawing is a type of projection (think of the bulb in a film projector 
casting rays out in a cone through the film and onto the screen).  There is plenty of perspective in 
paintings at the de Young Museum but there are several other interesting cases of projection too.  One is 
the bright disk cast on the floor in 3 Gems (Fig. 5); it is not an image of the sun, but an image of the 
oculus, the hole in the ceiling.   
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Math questions related to artworks:  Problems, skills, and techniques exercised by answering the 
questions:  Geometric and algebraic conditions for parallels; finding vanishing points in perspective 
drawings; visualizing objects in space; seeing projections and how projections can help us visualize the 
original objects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  From the Garden of the Chateau (DeMuth), Rainy Season in the Tropics3 (Church), Igbo door 

 
3 Gems by James Turrell (Fig. 5) 

M. The rings around the central blue/green disk are parallel.  Why? 
N. At certain times of day, the oculus (the hole in the roof) is projected by the sun on the floor.  

Because the sun is so far away, its rays are nearly parallel.  So the image of the hole on the 
floor is really the same size as the hole seen along the sunbeams (why? because the oculus is 
parallel to the floor).  What does this say about the size of the hole from below? 

From the Garden of Chateau by Charles DeMuth (Fig. 6) 
O. This painting purposely distorts perspective.  It harks back to the days just before the 

Renaissance when artists knew something about parallels appearing to meet in the distance 
but made it more complicated than it needed to be.  See if you can find three violations of 
the rules of perspective here. 

Rainy Season in the Tropics by Frederic Edwin Church (Fig. 6) 
P. Circles can be parallel too.  When does that happen?   
Q. The space between the two rainbows is called Alexander’s dark band.  Describe it. 

Igbo door (Fig. 6) 
R. There are numerous lines and line segments in this carving.  But there seem to be only three 

different slopes plus vertical segments.  How can you figure out the slopes? 
 
Story 7.  Uniformity, symmetry, chaos, confusion, and the feeling of being lost.  Sometimes art is all 
about uniformity, but more often it breaks up order and introduces some element of diversity, even chaos 
or confusion.  The de Young Museum features art lying across this entire range.  But now we focus on the 
extremes:  great sameness and great differences.  The mathematics of sameness is called symmetry, the 
geometry of chaos is called fractal geometry, and the logic of confusion is called paradox.  Any of these 
extremes can give the sense of being lost.  If everything is the same (say, you are in the middle of 
Strontium, [2, Fig. 3]), every place looks alike (but not every direction).  If you are on the crack in Drawn 
Stone (Fig. 7), it looks rough, but pretty much like any other place on the crack.  If you are looking at 
Hovor II (Fig. 4), you might be looking up, or down, or sideways.  People talk about losing themselves in 
art; in these cases, the loss feels very real. 
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Math questions related to artworks:  Problems, skills, and techniques exercised by answering the 
questions:  finding symmetry and uniformity; finding variety and scaling roughness; finding impossibility 
and perplexity. 

Strontium  by Gerhard Richter (see [2, Fig. 3]) 
S. This work has symmetry:  one place is much the same as many nearby places.  In particular, 

there is no difference between one ball and its neighbors of the same size.  The picture can 
shift left or right a column, or up or down a row, and still look the same, but it “resists” 
being turned sideways because the rows of large balls are different than the columns of large 
balls (same idea for the small balls, too).  This type of symmetry is called translation 
symmetry.  Can you see some other translation symmetries in this work of art? 

Eucalyptus benches by architects Jacques Herzog and Pierre de Meuron (see [2, Fig. 7]) 
T. The benches have rotation symmetry.  How much do you have to turn a set of 6 benches 

until it looks like the original (ignore the woodgrain)?  How about in the other direction? 
3 Gems (Fig. 5) 

U. There is rotation symmetry on the floor, and chaos in the mixture of colors in the central 
disk.  If the benches continued all the way around, and the archways were closed, can you 
describe other rotation symmetries? 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 7.  Drawn Stone (Goldsworthy), Shadow Frieze (Cook) 

 
Drawn Stone by Andy Goldsworthy (Fig. 7) 

V. This crack is like a coastline, a scaling fractal, a kind of roughness that has the same 
wiggliness from the second floor window, standing above it, or getting your face close to it.  
But it is not completely random, for it runs fairly straight across the tiles then turns in order 
to pass through the benches.  Is it a loop?  What percent of the tiles does it break?  What 
percent of the benches?  How could the artist crack stone in such a controlled way?  Did he? 

Shadow Frieze by Lia Cook (Fig. 7) 
W. There are symmetries that slide the shapes (ignoring the colors) up to the right and up to the 

left, plus others we can explore.  Up close, there is a lot of confused color.  At a distance, 
both this symmetry and this chaos disappear into a coherent picture of draped cloth, which is 
paradoxical.  Can you find a place to stand where all these extremes balance? 

 
 

3.  Outline of Workshop Activities 
 
Several activities will be offered.  It is likely that there will be some parallelism, but participants will 
determine their own preferences for progressing through the topics.  We believe this introduction to FP 
can benefit participants’ own classrooms as well as the Fusion Project. 
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I.  Math from art.  Examples of art from the FAMSF collection will be shown on slides and posters, and 
participants will be invited to identify interesting math principles, concepts, and topics that could be 
supported by or discovered in the artwork.  The outcome may be something like the stories outlined 
above.  Our personal experience from taking tours of the de Young Museum with middle school and 
college math students (more than 50), math teachers, college professors, and interested nonmathematical 
friends has shown us three things:  (1) there is always more to find in the art, (2) students are remarkably 
insightful, with teachers next, and (3) FP benefits immensely from the visitors’ observations. 
 
II.  Alignments.  Workshop participants will be invited to make their own alignments between math test 
problems and typical standards, and then between the top standards and works of art.  This will be good 
practice if members are interested in replicating FP in other localities.  It can also give one confidence 
when colleagues make judgments that correlate highly with each other’s (and with one’s own).   

Please see Figs. 8–10 for examples extracted from the FP-FAMSF alignments.  These charts are 
fragments of the full worksheets.  In Fig. 8, the problems from a standardized test are associated with the 
math standards [6] for which they have affinity.  The affinity rating depends on the number of incorrect 
answers to a problem; the pink standards have emerged as targets.  Fig. 9 shows an alignment between 
works of art at the de Young Museum and standards.  Fig. 10 shows how the artwork and math topics 
cluster into stories.  These figures are extractions from the full alignments, and the exercises in the 
workshop will be similarly limited. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Figure 8.  Selected data from FP-FAMSF alignment of standards with test problems (see [4]) 
 
III.  Sharing FP techniques.   Workshop facilitators will demonstrate FP enhancements (see [2, pp. 5–7] 
and invite participants to try them out in the workshop.  Some of this is classroom-tested material used in 
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previous teachers’ workshops, including the training of our FP Teachers Advisory Group (TAG).  The 
TAG has been largely responsible for the detailed material we’ll share.  It is still under active 
development, so participants’ reactions will be most valuable. 

Based on FAMSF experience with their program Get Smart with Art @ the de Young [7], it is 
anticipated that several iterations of refinement will be required for a working set of encounter and 
enhancement materials.  Even before that, we are organizing summer workshops for teachers.  Then we 
can evaluate the materials in classroom settings, obtain feedback from the users, and move to distributable 
printed products, with implementation already underway.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 9.  Selected data from FP-FAMSF alignment of standards with artwork (see [4]) 
 
IV.  Building and truing FP.  Workshop members will be invited to contribute now and later to the 
growing body of FP materials.  All those participating in the workshop will be urged to comment on FP 
and offer suggestions for improving it.   

Our model proposed at the University of San Francisco is to pay teachers to take workshops at the de 
Young Museum in order to implement FP in their classrooms, with the assistance of FP-trained USF 
students and local peer teachers.  We have a list of schools and teachers interested in such workshops, and 
by the time of Bridges 2009, we may already have held the first round of summer workshops.  We hope 
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our Bridges workshop results in collaborations that can improve our USF program and lead to similar 
alliances with museums and educational institutions elsewhere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 10.  Selected data from FP-FAMSF alignment of stories with artwork (see [4]) 
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Abstract 

 
In this workshop, participants will build two styles of models. One style of model is built from sticks, and vinyl 

tubing. This first model will determine lengths of struts and lines, and will also be extensively labeled to help in 
building finished tensegrity models. A second style of model will be built from PVC pipe, PVC sleeves, and 
bungee cord. Additional printed information will be provided to help build the finished tensegrity models. 

 
Building physical models [1], [2], [3], and writing about the building process, continues to be my focus. Most 

recently, I have chosen to build tensegrity models, and to provide clear instructions to help build them from PVC 
pipes, PVC sleeves, and bungee cords. I have constructed preliminary models from sticks and vinyl tubing, and 
labeled them extensively in order to assist in the building of the final PVC models. The final models take a 
considerable amount of time and resources to build.  It has been important that the models be durable so they can 
be handled by students through a number of years, and be of a reasonable size so that they can be seen by 20-30 
students in a classroom. Each tensegrity model has an interesting set of spatial properties and is engaging as a 
physical object. 

 
1. Introduction 

 
Physical models for use in K-12 classrooms can be built from paper [1], from sticks and vinyl tubing 

[2] or from PVC pipe, PVC sleeves and bungee cord [3]. These models are simple and use inexpensive 
materials, yet convey meaningful spatial concepts to students who manipulate them in their hands. The 
models described in this paper are tensegrities which combine both compression members and tension 
members. The compression members are struts realized with PVC pipe, and the tension members are 
realized with bungee cords. PVC sleeves interconnect compression members and tension members, 
Figure 1. Tensegrity models are stable, in that their compression members do not move relative to each 
other. In addition, compression members do not touch each other, giving the viewer the impression that 
the compression members are floating in space. 

 
In my research of tensegrity models I encountered the work of Kenneth Snelson [4] with his 

initial discovery of tensegrity structures in 1948. Snelson was an art student at Black Mountain College in 
North Carolina. Snelson’s work of 60 years ago continues to be inspirational for me and is the motivation 
for this paper. He is an artist with his work being exhibited in many prestigious art galleries. 
 

I have produced two sets of physical models for this paper. The first set of models is built with 
sticks and vinyl tubing. These models are based on simple geometric shapes such as a cube, Figure 3a, a 
truncated tetrahedron, Figure 4a, and a twisted triangular anti-prism, Figure 5a. These models contain all 
the struts of the finished tensegrity models, and are extensively labeled in order to better understand and 
assist the building of the final tensegrity models. The stick models serve to support all the compression 
struts of the final tensegrity models. 
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 A cube, Figure 3a, provides support for the struts in the building of a 1st tensegrity model which 
is entitled an extended octahedron, Figure 6a. A truncated tetrahedron, Figure 4a, serves to support the 
struts of a 2nd tensegrity model. A twisted triangular prism, Figure 5a, serves to support and build a 3rd 
tower tensegrity model. The stick models provide both the lengths for compressions members of PVC 
pipe and the length of bungee cord for the tension members. 
 
 All struts in a single tensegrity models are the same length. Once there is an understanding of 
using PVC sleeves and line to connect two struts, all connections in a single tensegrity model are the 
same. The stick models have their struts labeled and their sleeves labeled and provide a map to follow in 
assembling them into a complete tensegrity structure. All individual tensegrity models are assembled in 
an identical manner.  
 

Appendix I itemizes supplies for the individual tensegrity models. This table of supplies has both 
the length of struts, the length of lines, and the number of sleeves to interconnect compression members 
and tension members. Labeled figures in the paper provided a plan for assembling the tensegrity models. 
The labeled figures will hopefully make it easier to be convinced that building these models is a 
reasonable and manageable task to accomplish. 

 
 

2. Supplies and Tools 
 

Supplies for these models consist of PVC sleeves cut into short lengths for individual struts, 
(Figure 2a), ½” PVC pipe, (Figure 2b), and a roll of 7/16” bungee cord, (Figure 2c). A PVC pipe cutter 
is the principal tool (Figure 2 d) for producing the parts for the tensegrity models.  

 
The ½” PVC pipe was chosen to balance with the 16” length of the struts, producing reasonably 

sized models for teachers and students to use in a classroom. The PVC connectors were used to secure the 
bungee cord to the PVC struts, as seen in Figure 1. 

 
A tape measure was used to measure the length of each strut and each piece of bungee cord. The 

PVC pipe cutter was used to cut each strut with a straight 90° cut. It was also used to cut sleeves, Figure 
2a, into pieces; 2 sleeves and a scrap piece. Cuts for stuts were made straight across the pipes in order to 
form 90° right angles when a piece of PVC pipe was joined together with the PVC connector sleeves. 
Small slots were cut lengthwise along pipes near the end of the pipes with a finish saw that was wide 
enough to tightly hold the bungee cord in place. 

 
A solvent was used to clean printing from pipes & sleeves. A power drill with a 1/8” bit was used 

to drill holes in sleeves and pipes through which the bungee cord was threaded. A sleeve with 4 bungee 
cord ends was slipped over an end of a piece of PVC pipe to secure each strut to a sleeve as in Figure 1. 

 
            
                          (a)           (b)               (c)  (d)   (e) 

 
Figure 1: Pipe, sleeve, cord  (a), Sleeves (a),  Struts & Sleeves (b), Bungee Cord (c), and pipe cutter (d) 
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3. Tensegrities from a Cube, a Truncated Tetrahedron, and a Twisted Triangular Prism 

 
3.1. A Tensegrity Model based on a Cube. A first tensegrity model can be built using a cube as a 
supporting structure as in Figure 3a. Struts of this tensegrity model can be seen tilted at a 45°angle to the 
horizon, Figure 3a, parallel to the horizon, Figure 3b, and perpendicular to the horizon, Figure 3c.   
 

                           
 

                 (a)                     (b)                    (c) 
 

Figure 3: A cube with a 45° strut (a), a more horizontal strut (b), a more vertical strut (c). 
 

The cube was built from 12 sticks and 8 rings of vinyl tubing for its vertices.  This tensegrity 
structure uses 6 struts that have additional vinyl tubing that are located at the middle of edges on each side 
of the cube. The 24 lines for the tensegrity are positioned in groups of 4 at the ends of the 6 struts. Views 
of more horizontal struts are seen in Figure 3b, and more vertical struts are in Figure 3c. 

 
3.2. A Tensegrity Model based on a Truncated Tetrahedron.  A second tensegrity model can be built 
using a truncated tetrahedron as a supporting structure as in Figure 4a. This tensegrity model has 6 struts 
and 24 lines. Initially, a tetrahedron can be built with 6 sticks and 4 rings of vinyl tubing for the vertices. 
This tetrahedron has 2 additional vinyl tubing rings added on each edge of the tetrahedron for the edges of 
the truncated tetrahedron, Figure 4b. Each strut has 4 lines connected to each end. 
 

                  
 

   (a)             (b)         (c) 
 

Figure 4: A truncated tetrahedron with tensegrity (a)   Figure 5: Three triangular anti-prisms for a 
tensegrity tower (b), Axial view of tower tensegrity with triangles alternating their direction (c). 

 
 
3.3 A Tensegrity Model based on a Twisted Triangular Anti-Prism. A third tensegrity model can be 
built using three twisted triangular anti-prisms as supporting structures as in Figure 5a. Each twisted 
triangular anti-prism is rotated in either a clockwise or a counterclockwise direction, one above or below 
the other Figure 5a. Viewing the tower along its long axis, Figure 5b, yields a view of triangles that are 
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pointing either mostly up or mostly down. Many of the sticks appearing in Figure 5a will be replaced by 
lines in the final tensegrity model. 
 
 

4. Tensegrity Models of PVC pipes, PVC sleeves and Bungee Cord 
 

4.1 A Tensegrity Model Based on a Cube. Six struts with 3 pairs of parallel struts Figure 6, 12 
sleeves on the 6 struts and 24 bungee cords form an extended octahedron tensegrity model. 
 
4.2 A Tensegrity Model Based on a Truncated Tetrahedron. Six struts  where exterior of 
struts have a truncated tetrahedron with a small triangle and a larger triangle. The model has 12 
shorter bungee cords and 12 longer bungee cord lines along edges of the truncated tetrahedron, 
Figure 7. 
 

           
 
  
Figure 6: Tensegrity on extended octahedron. Figure 7:  Tensegrity on truncated tetrahedron. 

 
 
4.3 Tensegrity Model Based on 3 Anti-Prisms. A tower tensegrity model built from 9 struts 
with 3 sets of 3 parallel edges, with short and long lines for bungee cords, Figure 8. An axial 
view of the tower model yields a view of a central hexagon Figure 9. 
 

        
 
 
Figure 8: Tower tensegrity model Figure 9: Axial view of tower tensegrity model 
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5. Handling PVC Pipes, PVC Sleeves and Bungee Cord Tensegrity Models 
 

I particularly like the 3 tensegrity models presented in this paper, because each stable model provides a 
very different spatial experience for the student. The experience gained by building each model helps a 
great deal toward building a second and third model. These three models allow students to observe 
structures which have struts that appear to float in space without touching each other. 

 
6. Conclusion 

 
During the past year I learned a very valuable lesson about the size of the physical models for the 
classroom and the size of the average student in that classroom. There is a relationship between the size of 
the model where the students are comfortably assembling and manipulating the models in their hands. A 
somewhat smaller model has emerged where the comfort for the students to manipulate the models has 
improved. It may be because I usually present the models to adult teachers, that my models have been 
somewhat larger. However, this year I used smaller models for 6th, 7th, and 8th grade students and the 
presentations have improved for the students.  
 
These PVC based models were built during the past year for the first time. Preliminary stick models 
provided me detailed building information and confidence to go ahead and build the tensegrity models, 
for subsequently presenting them in the classroom and at the conference.  
 

I have given presentations with this paper and these models at the McGillis School in Salt Lake 
City for 3rd through 8th grades. These presentations have been invaluable for the students, who both listen 
well and anticipate the opportunity to handle the models. Models that can be thrown somewhat gently 
around the classroom help to entertain as well as inform the students.  

 
In addition, the presentations with the physical models also help me to learn more about the 

effectiveness of a particular set of models and their associated building instructions in the classroom. The 
tactile experience of handling the models provides the students with a more engaging experience than 
merely viewing three-dimensional images on paper or on a computer monitor. 
 

I have been presenting models in classrooms for over 20 years and they have proven to be well 
received, in addition to being valuable experiences for me. When I am building models I am imagining 
them being handled by students and presenting the associated concepts in a classroom for students and 
teachers. It takes time and effort to build models and I always hope that they will be effective in helping 
to clearly convey underlying geometric concepts. However, with each new set of models, the testing 
ground remains in the classroom. The models are only considered a success if the presentations and 
models are both thought provoking and engaging for students and teachers.  
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Appendix I – 3 Tensegrity Modls 
 

 struts  sleeves  lines  

polyhedron number length #  length # 
 

Cube 6 16” 12  10” 24 
 

Trunc Tetra 6 16” 12 Short 5” 12 
    Long 12” 12 

 
Tri TwAnti 

Prism 9 10” 18 Long 6” 12 
    Short 4” 16 
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Abstract 

 
Crafts are generally known for pieces whose structure and geometry are derived from the constraints of the 
techniques used. In particular, the look of specific patterns and textures are the natural product of the structure of 
the specific medium and technique applied to their production. The transfer of a pattern from its natural medium to 
another whose constraints may differ can sometimes present interesting mathematical challenges. In this workshop, 
this is exemplified through the transfer of a classic pattern resulting from Twill weaving, the Hound’s-Tooth Check 
as it is transferred to a different medium, known as Peyote, Gourd or Twill Stitch, whereby beads are strung in a 
traditional bricklaying pattern using an off-loom beading technique. This transfer presents the challenge of adapting 
a structure so that the transferred pattern still resembles the original, in as simple a way as possible. In the 
workshop, several possible result of this transfer are compared and materials are made available to both design and 
create Peyote-stitched hound’s tooth surfaces, thereby introducing the participants to some of the mathematical 
constraints of this type of transfer.  

 
Introduction 

 
The patterns displayed on a handcrafted object are often a natural result of the constraints of the specific 
technique applied to its creation. In particular, the use of Twill as a weaving technique can produce a 
variety of patterns including Tartans as well as the Hound’s-Tooth Check [1]. Although from a purist 
perspective a pattern belongs to the technique that produces it, a mathematically interesting problem 
emerges from the exploration of how it could be produced in a different medium, whose constraints are 
different. The appearance of the texture produced by Twill weaving is determined mainly by the colour 
and quality of the threads used, the thread count or sett and the way the loom’s harnesses are threaded  
[2, 3]. The appearance and disappearance of each thread is then predetermined and the finished weave 
makes the path of the threads intermittently visible.  
 There is an off-loom beading technique, which produces surface coverings, that is also known as 
‘Twill’ as well as ‘Peyote’ or ‘Gourd Stitch’ [4, 5, 6]. This beading technique is more versatile than Twill 
weaving in that the colour of each bead is completely independent from that of any other bead on the 
finished surface, unless specified in the design. In addition, the relative position of the beads presents a 
different basic pattern. Under these conditions, transferring a Twill pattern from weaving to beading 
necessitates some mathematical reasoning, the process and results of which are presented here and in the 
workshop, focusing specifically on the application of the Hound’s-Tooth Check to Peyote Stitch beading. 
 

Twill Weaving 
 
The Twill weaving method results in a Herringbone pattern, as shown in Figure 1, below, similar to one 
that is sometimes used in bricklaying. The resulting surface shows diagonal bands of translated, parallel 
and adjacent ‘tiles’ and emphasises a single diagonal direction, as determined by the direction of the 
translation of these parallel ‘tiles’. In the case of figure 1, this emphasised diagonal runs from top-left to 
bottom-right.  In addition to translations in two distinct directions, the pattern has 2-fold rotational 
symmetry and glide reflection symmetry but no reflective symmetry. Unlike in masonry, however, in 
weaving some of the ‘tiles’ are connected and their relative colour is determined by the threading: all 
collinear ‘tiles’ will have the same colour, and the sett determines the order of the colours along the 
‘bands’. Visually, therefore, the pattern emphasises three ‘axes’: that determined by the warp (the 
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collinear vertical ‘tiles’ are all of the same colour), that determined by the weft (the collinear horizontal 
‘tiles’ are all of the same colour), and the diagonal determined by the translation of a tile from row to row. 

 
Figure 1: Herringbone pattern with one-by-two tiles 
 
 In the case of the Hound’s-Tooth Check, the sett for both the warp (the threads that are mounted onto 
the loom), and the weft (the threads that are passed through with the shuttle) are of the same colour and 
order and generally the same frequency, namely: x black threads + x white threads. Where the black 
threads cross each other, the result is a completely black square, and the same is true of the white threads. 
Where the two colours cross, a square containing a diagonal pattern is produced, with the vertical ‘tiles’ 
in one colour and the horizontal ‘tiles’ in the other. Overall, this results in a checkerboard pattern in which 
the solid-coloured squares alternate with the striped squares. However, because each striped square is 
adjacent to both white and black squares, visually, the diagonal bands are read as being attached to the 
appropriately coloured adjacent square, giving the Hound’s-Tooth Check its distinctive character, as 
shown below. 

 
Figure 2: Applying the Hound’s-tooth sett to the herringbone pattern 
  
 The Hound’s-Tooth Check is one of the simplest that can be applied to the Twill weaving short of 
making it completely flat by only using one colour, or using one colour for the warp and one for the weft. 
It uses two contrasting colours, resulting in homeomorphic spaces1. It shows with great contrast how the 
areas of colour combine to emphasise the structure of the weaving method and the way the areas of colour 
play off each other.  
                                                      
1 This means that the white areas are of the same shape and size as the black areas, and that one can be transformed 
into the other by simple symmetry transformations, in this case a translation. 
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The Peyote Stitch 
 
The Peyote Stitch is an off-loom beading technique that produces flexible surfaces of interconnected 
beads in the basic form of rectangles, discs or tubes. These forms can be combined to create craft objects 
such as tubular ropes, pouches, banner-like talismans and to cover most shapes, including bottles, buttons, 
etc. Its name derives from the fact that many objects used in the Peyote ceremonies of the Native 
American Church are decorated using this technique [4]. It is also known as the Gourd Stitch and, 
curiously, the Twill Stitch [5]. It can be found in artefacts from many civilisations, including Ancient 
Egypt and Native North America [4].  The type of Peyote Stitch of interest here is the flat, rectangular 
design. Its structure resembles a traditional brick pattern, laid on its side, in that parallel rows of beads are 
shifted by a half bead width, as shown below: 

 
Figure 3: Bead placement in a rectangular Peyote Stitch sample 

 
 To create the rectangular Peyote Stitch, a craftsperson begins by stringing all the beads at the top of 
each column in the design, including both the ‘up’ beads and the ‘down’ beads. Then, on the way back, 
the thread is pulled through each existing ‘down’ bead from the first row, and a new bead is introduced 
below each ‘up’ bead, generating the second row. The pattern is continued in the same manner to create a 
rectangular surface with straight side edges and top and bottom edges showing a wavy finish. 
Structurally, this is similar to chain link fencing, except that the adjacent ‘wires’ or thread are not twisted 
around each other as in fencing, but share a bead instead. In addition to translation in two distinct 
directions, this pattern has 2-fold rotation symmetry, glide-reflection symmetry along a vertical axis 
between columns of beads and two perpendicular reflection symmetries corresponding to the reflection 
symmetries of a single bead. 
 Visually, the pattern also allows for the emphasis of three main axes: along a column (corresponding 
to a row of bricks), and, because of the adjacency created by the shifted rows, two diagonal axes, as 
shown in Figure 4, below. Note that the two diagonal axes are emphasised in a way similar to that in the 
Twill weaving pattern, by colouring tiles with common edges using the same colour. 

 
Figure 4: Rectangular Peyote Stitch sample with emphasised axes 
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Transferring the Effect 
 
In both the Twill weave and the Peyote Stitch patterns, there are three main axes that can be emphasised 
by the basic structure combined with the colour selection, and these are grouped into two similar and one 
different axis. In Twill weaving, the warp and weft axes have a similar impact on the design, and the 
diagonal axis stands alone. In the Peyote Stitch, the vertical axis stands alone and the two diagonal axes 
are equivalent under symmetry. To preserve this relationship, the warp and weft axes of Twill weaving 
are transferred to the two diagonal axes in the Peyote Stitch pattern and the diagonal of the Twill weaving 
becomes the vertical on the Peyote Stitch pattern, resulting in the beading pattern of Figure 5, below. 

 
Figure 5. The Hound’s-Tooth Check transferred from Twill weaving onto the Peyote Stitch 
 

The workshop consists of three parts: a short explanation of the two craft techniques and the way 
designs can be transferred from one to the other, an activity focusing on the design of a Peyote Stitch 
rectangle, and a period of time devoted to creating a piece of Peyote Stitching using Pony Beads. For 
example, the above pattern produces the result of Figure 6, below.  

 
Figure 6. A sample of the Peyote Stitch version of the Hound’s-Tooth Check, using ‘Pony’ beads 
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